6beq Citations

Comprehensive computational design of ordered peptide macrocycles.

Abstract

Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to date, but there is currently no way to systematically search the structural space spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles lack regular secondary structures and hydrophobic cores, and can contain local structures not accessible with l-amino acids. Here, we enumerate the stable structures that can be adopted by macrocyclic peptides composed of l- and d-amino acids by near-exhaustive backbone sampling followed by sequence design and energy landscape calculations. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide macrocycles and vastly increase the available starting scaffolds for both rational drug design and library selection methods.

Articles - 6beq mentioned but not cited (1)

  1. Comprehensive computational design of ordered peptide macrocycles. Hosseinzadeh P, Bhardwaj G, Mulligan VK, Shortridge MD, Craven TW, Pardo-Avila F, Rettie SA, Kim DE, Silva DA, Ibrahim YM, Webb IK, Cort JR, Adkins JN, Varani G, Baker D. Science 358 1461-1466 (2017)


Reviews citing this publication (14)

  1. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Leman JK, Weitzner BD, Lewis SM, Adolf-Bryfogle J, Alam N, Alford RF, Aprahamian M, Baker D, Barlow KA, Barth P, Basanta B, Bender BJ, Blacklock K, Bonet J, Boyken SE, Bradley P, Bystroff C, Conway P, Cooper S, Correia BE, Coventry B, Das R, De Jong RM, DiMaio F, Dsilva L, Dunbrack R, Ford AS, Frenz B, Fu DY, Geniesse C, Goldschmidt L, Gowthaman R, Gray JJ, Gront D, Guffy S, Horowitz S, Huang PS, Huber T, Jacobs TM, Jeliazkov JR, Johnson DK, Kappel K, Karanicolas J, Khakzad H, Khar KR, Khare SD, Khatib F, Khramushin A, King IC, Kleffner R, Koepnick B, Kortemme T, Kuenze G, Kuhlman B, Kuroda D, Labonte JW, Lai JK, Lapidoth G, Leaver-Fay A, Lindert S, Linsky T, London N, Lubin JH, Lyskov S, Maguire J, Malmström L, Marcos E, Marcu O, Marze NA, Meiler J, Moretti R, Mulligan VK, Nerli S, Norn C, Ó'Conchúir S, Ollikainen N, Ovchinnikov S, Pacella MS, Pan X, Park H, Pavlovicz RE, Pethe M, Pierce BG, Pilla KB, Raveh B, Renfrew PD, Burman SSR, Rubenstein A, Sauer MF, Scheck A, Schief W, Schueler-Furman O, Sedan Y, Sevy AM, Sgourakis NG, Shi L, Siegel JB, Silva DA, Smith S, Song Y, Stein A, Szegedy M, Teets FD, Thyme SB, Wang RY, Watkins A, Zimmerman L, Bonneau R. Nat Methods 17 665-680 (2020)
  2. Understanding Cell Penetration of Cyclic Peptides. Dougherty PG, Sahni A, Pei D. Chem Rev 119 10241-10287 (2019)
  3. What has de novo protein design taught us about protein folding and biophysics? Baker D. Protein Sci 28 678-683 (2019)
  4. Emerging Methods and Design Principles for Cell-Penetrant Peptides. Peraro L, Kritzer JA. Angew Chem Int Ed Engl 57 11868-11881 (2018)
  5. Recent advances in de novo protein design: Principles, methods, and applications. Pan X, Kortemme T. J Biol Chem 296 100558 (2021)
  6. Synthetic Biology and Computer-Based Frameworks for Antimicrobial Peptide Discovery. Torres MDT, Cao J, Franco OL, Lu TK, de la Fuente-Nunez C. ACS Nano 15 2143-2164 (2021)
  7. Better together: Elements of successful scientific software development in a distributed collaborative community. Koehler Leman J, Weitzner BD, Renfrew PD, Lewis SM, Moretti R, Watkins AM, Mulligan VK, Lyskov S, Adolf-Bryfogle J, Labonte JW, Krys J, RosettaCommons Consortium, Bystroff C, Schief W, Gront D, Schueler-Furman O, Baker D, Bradley P, Dunbrack R, Kortemme T, Leaver-Fay A, Strauss CEM, Meiler J, Kuhlman B, Gray JJ, Bonneau R. PLoS Comput Biol 16 e1007507 (2020)
  8. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations. Damjanovic J, Miao J, Huang H, Lin YS. Chem Rev 121 2292-2324 (2021)
  9. Polymer Conjugates of Antimicrobial Peptides (AMPs) with d-Amino Acids (d-aa): State of the Art and Future Opportunities. Bellotto O, Semeraro S, Bandiera A, Tramer F, Pavan N, Marchesan S. Pharmaceutics 14 446 (2022)
  10. Towards Structure-Guided Development of Pain Therapeutics Targeting Voltage-Gated Sodium Channels. Nguyen PT, Yarov-Yarovoy V. Front Pharmacol 13 842032 (2022)
  11. Utilization of macrocyclic peptides to target protein-protein interactions in cancer. Yang J, Zhu Q, Wu Y, Qu X, Liu H, Jiang B, Ge D, Song X. Front Oncol 12 992171 (2022)
  12. Design of Protein Segments and Peptides for Binding to Protein Targets. Gupta S, Azadvari N, Hosseinzadeh P. Biodes Res 2022 9783197 (2022)
  13. Development of Peptide-based Metallo-β-lactamase Inhibitors as a New Strategy to Combat Antimicrobial Resistance: A Mini-review. Cheng Q, Zeng P, Chi Chan EW, Chen S, Chen S. Curr Pharm Des 28 3538-3545 (2022)
  14. Molecular chameleons in drug discovery. Poongavanam V, Wieske LHE, Peintner S, Erdélyi M, Kihlberg J. Nat Rev Chem 8 45-60 (2024)

Articles citing this publication (57)

  1. Design of Peptoid-peptide Macrocycles to Inhibit the β-catenin TCF Interaction in Prostate Cancer. Schneider JA, Craven TW, Kasper AC, Yun C, Haugbro M, Briggs EM, Svetlov V, Nudler E, Knaut H, Bonneau R, Garabedian MJ, Kirshenbaum K, Logan SK. Nat Commun 9 4396 (2018)
  2. Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization. Kamenik AS, Lessel U, Fuchs JE, Fox T, Liedl KR. J Chem Inf Model 58 982-992 (2018)
  3. Conformation and Permeability: Cyclic Hexapeptide Diastereomers. Ono S, Naylor MR, Townsend CE, Okumura C, Okada O, Lokey RS. J Chem Inf Model 59 2952-2963 (2019)
  4. An ultra-high affinity ligand of HIV-1 TAR reveals the RNA structure recognized by P-TEFb. Shortridge MD, Wille PT, Jones AN, Davidson A, Bogdanovic J, Arts E, Karn J, Robinson JA, Varani G. Nucleic Acids Res 47 1523-1531 (2019)
  5. Complex Molecules That Fold Like Proteins Can Emerge Spontaneously. Liu B, Pappas CG, Zangrando E, Demitri N, Chmielewski PJ, Otto S. J Am Chem Soc 141 1685-1689 (2019)
  6. Computationally designed peptide macrocycle inhibitors of New Delhi metallo-β-lactamase 1. Mulligan VK, Workman S, Sun T, Rettie S, Li X, Worrall LJ, Craven TW, King DT, Hosseinzadeh P, Watkins AM, Renfrew PD, Guffy S, Labonte JW, Moretti R, Bonneau R, Strynadka NCJ, Baker D. Proc Natl Acad Sci U S A 118 e2012800118 (2021)
  7. Anchor extension: a structure-guided approach to design cyclic peptides targeting enzyme active sites. Hosseinzadeh P, Watson PR, Craven TW, Li X, Rettie S, Pardo-Avila F, Bera AK, Mulligan VK, Lu P, Ford AS, Weitzner BD, Stewart LJ, Moyer AP, Di Piazza M, Whalen JG, Greisen PJ, Christianson DW, Baker D. Nat Commun 12 3384 (2021)
  8. Complex macrocycle exploration: parallel, heuristic, and constraint-based conformer generation using ForceGen. Jain AN, Cleves AE, Gao Q, Wang X, Liu Y, Sherer EC, Reibarkh MY. J Comput Aided Mol Des 33 531-558 (2019)
  9. Macrocyclic Modalities Combining Peptide Epitopes and Natural Product Fragments. Guéret SM, Thavam S, Carbajo RJ, Potowski M, Larsson N, Dahl G, Dellsén A, Grossmann TN, Plowright AT, Valeur E, Lemurell M, Waldmann H. J Am Chem Soc 142 4904-4915 (2020)
  10. Using 1H and 13C NMR chemical shifts to determine cyclic peptide conformations: a combined molecular dynamics and quantum mechanics approach. Nguyen QNN, Schwochert J, Tantillo DJ, Lokey RS. Phys Chem Chem Phys 20 14003-14012 (2018)
  11. Adapting free energy perturbation simulations for large macrocyclic ligands: how to dissect contributions from direct binding and free ligand flexibility. Wallraven K, Holmelin FL, Glas A, Hennig S, Frolov AI, Grossmann TN. Chem Sci 11 2269-2276 (2020)
  12. Transferrin receptor targeting by de novo sheet extension. Sahtoe DD, Coscia A, Mustafaoglu N, Miller LM, Olal D, Vulovic I, Yu TY, Goreshnik I, Lin YR, Clark L, Busch F, Stewart L, Wysocki VH, Ingber DE, Abraham J, Baker D. Proc Natl Acad Sci U S A 118 e2021569118 (2021)
  13. Designing Well-Structured Cyclic Pentapeptides Based on Sequence-Structure Relationships. Slough DP, McHugh SM, Cummings AE, Dai P, Pentelute BL, Kritzer JA, Lin YS. J Phys Chem B 122 3908-3919 (2018)
  14. Reconfigurable asymmetric protein assemblies through implicit negative design. Sahtoe DD, Praetorius F, Courbet A, Hsia Y, Wicky BIM, Edman NI, Miller LM, Timmermans BJR, Decarreau J, Morris HM, Kang A, Bera AK, Baker D. Science 375 eabj7662 (2022)
  15. Networks of electrostatic and hydrophobic interactions modulate the complex folding free energy surface of a designed βα protein. Basak S, Nobrega RP, Tavella D, Deveau LM, Koga N, Koga N, Tatsumi-Koga R, Baker D, Massi F, Matthews CR. Proc Natl Acad Sci U S A 116 6806-6811 (2019)
  16. Accurate de novo design of membrane-traversing macrocycles. Bhardwaj G, O'Connor J, Rettie S, Huang YH, Ramelot TA, Mulligan VK, Alpkilic GG, Palmer J, Bera AK, Bick MJ, Di Piazza M, Li X, Hosseinzadeh P, Craven TW, Tejero R, Lauko A, Choi R, Glynn C, Dong L, Griffin R, van Voorhis WC, Rodriguez J, Stewart L, Montelione GT, Craik D, Baker D. Cell 185 3520-3532.e26 (2022)
  17. Genetically-encoded discovery of proteolytically stable bicyclic inhibitors for morphogen NODAL. Wong JY, Mukherjee R, Miao J, Bilyk O, Triana V, Miskolzie M, Henninot A, Dwyer JJ, Kharchenko S, Iampolska A, Volochnyuk DM, Lin YS, Postovit LM, Derda R. Chem Sci 12 9694-9703 (2021)
  18. Illuminating the dark conformational space of macrocycles using dominant rotors. Diaz DB, Appavoo SD, Bogdanchikova AF, Lebedev Y, McTiernan TJ, Dos Passos Gomes G, Yudin AK. Nat Chem 13 218-225 (2021)
  19. New computational protein design methods for de novo small molecule binding sites. Lucas JE, Kortemme T. PLoS Comput Biol 16 e1008178 (2020)
  20. Computational design of mixed chirality peptide macrocycles with internal symmetry. Mulligan VK, Kang CS, Sawaya MR, Rettie S, Li X, Antselovich I, Craven TW, Watkins AM, Labonte JW, DiMaio F, Yeates TO, Baker D. Protein Sci 29 2433-2445 (2020)
  21. Covalent flexible peptide docking in Rosetta. Tivon B, Gabizon R, Somsen BA, Cossar PJ, Ottmann C, London N. Chem Sci 12 10836-10847 (2021)
  22. Macrocycle Cell Permeability Measured by Solvation Free Energies in Polar and Apolar Environments. Kamenik AS, Kraml J, Hofer F, Waibl F, Quoika PK, Kahler U, Schauperl M, Liedl KR. J Chem Inf Model 60 3508-3517 (2020)
  23. β-Branched Amino Acids Stabilize Specific Conformations of Cyclic Hexapeptides. Cummings AE, Miao J, Slough DP, McHugh SM, Kritzer JA, Lin YS. Biophys J 116 433-444 (2019)
  24. A systematic study of minima in alanine dipeptide. Mironov V, Alexeev Y, Mulligan VK, Fedorov DG. J Comput Chem 40 297-309 (2019)
  25. Assigning NMR spectra of RNA, peptides and small organic molecules using molecular network visualization software. Marchant J, Summers MF, Johnson BA. J Biomol NMR 73 525-529 (2019)
  26. Cyclic peptides: backbone rigidification and capability of mimicking motifs at protein-protein interfaces. Huang H, Damjanovic J, Miao J, Lin YS. Phys Chem Chem Phys 23 607-616 (2021)
  27. Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks. Koehler Leman J, Lyskov S, Lewis SM, Adolf-Bryfogle J, Alford RF, Barlow K, Ben-Aharon Z, Farrell D, Fell J, Hansen WA, Harmalkar A, Jeliazkov J, Kuenze G, Krys JD, Ljubetič A, Loshbaugh AL, Maguire J, Moretti R, Mulligan VK, Nance ML, Nguyen PT, Ó Conchúir S, Roy Burman SS, Samanta R, Smith ST, Teets F, Tiemann JKS, Watkins A, Woods H, Yachnin BJ, Bahl CD, Bailey-Kellogg C, Baker D, Das R, DiMaio F, Khare SD, Kortemme T, Labonte JW, Lindorff-Larsen K, Meiler J, Schief W, Schueler-Furman O, Siegel JB, Stein A, Yarov-Yarovoy V, Kuhlman B, Leaver-Fay A, Gront D, Gray JJ, Bonneau R. Nat Commun 12 6947 (2021)
  28. Host-Guest Induced Peptide Folding with Sequence-Specific Structural Chirality. Clarke DE, Wu G, Wu C, Scherman OA. J Am Chem Soc 143 6323-6327 (2021)
  29. Isolating Conformers to Assess Dynamics of Peptidic Catalysts Using Computationally Designed Macrocyclic Peptides. Stone EA, Hosseinzadeh P, Craven TW, Robertson MJ, Han Y, Hsieh SY, Metrano AJ, Baker D, Miller SJ. ACS Catal 11 4395-4400 (2021)
  30. MHCEpitopeEnergy, a Flexible Rosetta-Based Biotherapeutic Deimmunization Platform. Yachnin BJ, Mulligan VK, Khare SD, Bailey-Kellogg C. J Chem Inf Model 61 2368-2382 (2021)
  31. Structure prediction of cyclic peptides by molecular dynamics + machine learning. Miao J, Descoteaux ML, Lin YS. Chem Sci 12 14927-14936 (2021)
  32. De novo design of tyrosine and serine kinase-driven protein switches. Woodall NB, Weinberg Z, Park J, Busch F, Johnson RS, Feldbauer MJ, Murphy M, Ahlrichs M, Yousif I, MacCoss MJ, Wysocki VH, El-Samad H, Baker D. Nat Struct Mol Biol 28 762-770 (2021)
  33. Sequence-Defined Macrocycles for Understanding and Controlling the Build-up of Hierarchical Order in Self-Assembled 2D Arrays. Dobscha JR, Castillo HD, Li Y, Fadler RE, Taylor RD, Brown AA, Trainor CQ, Tait SL, Flood AH. J Am Chem Soc 141 17588-17600 (2019)
  34. Target-templated de novo design of macrocyclic d-/l-peptides: discovery of drug-like inhibitors of PD-1. Guardiola S, Varese M, Roig X, Sánchez-Navarro M, García J, Giralt E. Chem Sci 12 5164-5170 (2021)
  35. A New Computer Model for Evaluating the Selective Binding Affinity of Phenylalkylamines to T-Type Ca2+ Channels. Lu Y, Li M. Pharmaceuticals (Basel) 14 141 (2021)
  36. Computational Site Saturation Mutagenesis of Canonical and Non-Canonical Amino Acids to Probe Protein-Peptide Interactions. Holden JK, Pavlovicz R, Gobbi A, Song Y, Cunningham CN. Front Mol Biosci 9 848689 (2022)
  37. Navigating complex peptide structures using macrocycle conformational maps. McTiernan TJ, Diaz DB, Saunders GJ, Sprang F, Yudin AK. RSC Chem Biol 3 739-747 (2022)
  38. Ordered and Isomerically Stable Bicyclic Peptide Scaffolds Constrained through Cystine Bridges and Proline Turns. Lin P, Yao H, Zha J, Zhao Y, Wu C. Chembiochem 20 1514-1518 (2019)
  39. Stapled β-Hairpins Featuring 4-Mercaptoproline. Pace JR, Lampkin BJ, Abakah C, Moyer A, Miao J, Deprey K, Cerulli RA, Lin YS, Baleja JD, Baker D, Kritzer JA. J Am Chem Soc 143 15039-15044 (2021)
  40. News The computational protein designers. Perkel JM. Nature 571 585-587 (2019)
  41. De Novo Designed Heterochiral Blue Fluorescent Protein. Prakash V, Ranbhor R, Ramakrishnan V. ACS Omega 5 26382-26388 (2020)
  42. A De Novo Designed Esterase with p-Nitrophenyl Acetate Hydrolysis Activity. Li G, Xu L, Zhang H, Liu J, Yan J, Yan Y. Molecules 25 E4658 (2020)
  43. An evolution-inspired strategy to design disulfide-rich peptides tolerant to extensive sequence manipulation. Zha J, Li J, Fan S, Duan Z, Zhao Y, Wu C. Chem Sci 12 11464-11472 (2021)
  44. Binding Options for the Small Subunit-Like Domain of Cyanobacteria to Rubisco. Rohnke BA, Kerfeld CA, Montgomery BL. Front Microbiol 11 187 (2020)
  45. Computational Design of Structured and Functional Peptide Macrocycles. Berger S, Hosseinzadeh P. Methods Mol Biol 2371 63-100 (2022)
  46. De novo design of monomeric helical bundles for pH-controlled membrane lysis. Goldbach N, Benna I, Wicky BIM, Croft JT, Carter L, Bera AK, Nguyen H, Kang A, Sankaran B, Yang EC, Lee KK, Baker D. Protein Sci 32 e4769 (2023)
  47. De novo design of small beta barrel proteins. Kim DE, Jensen DR, Feldman D, Tischer D, Saleem A, Chow CM, Li X, Carter L, Milles L, Nguyen H, Kang A, Bera AK, Peterson FC, Volkman BF, Ovchinnikov S, Baker D. Proc Natl Acad Sci U S A 120 e2207974120 (2023)
  48. Macrocyclic Octapeptide Binding and Inferences on Protein Substrate Binding to Histone Deacetylase 6. Watson PR, Gupta S, Hosseinzadeh P, Brown BP, Baker D, Christianson DW. ACS Chem Biol 18 959-968 (2023)
  49. Macrocyclization of linear molecules by deep learning to facilitate macrocyclic drug candidates discovery. Diao Y, Liu D, Ge H, Zhang R, Jiang K, Bao R, Zhu X, Bi H, Liao W, Chen Z, Zhang K, Wang R, Zhu L, Zhao Z, Hu Q, Li H. Nat Commun 14 4552 (2023)
  50. Simulation Reveals the Chameleonic Behavior of Macrocycles. Sethio D, Poongavanam V, Xiong R, Tyagi M, Duy Vo D, Lindh R, Kihlberg J. J Chem Inf Model 63 138-146 (2023)
  51. Design and structural validation of peptide-drug conjugate ligands of the kappa-opioid receptor. Muratspahić E, Deibler K, Han J, Tomašević N, Jadhav KB, Olivé-Marti AL, Hochrainer N, Hellinger R, Koehbach J, Fay JF, Rahman MH, Hegazy L, Craven TW, Varga BR, Bhardwaj G, Appourchaux K, Majumdar S, Muttenthaler M, Hosseinzadeh P, Craik DJ, Spetea M, Che T, Baker D, Gruber CW. Nat Commun 14 8064 (2023)
  52. Exploration of Structured Symmetric Cyclic Peptides as Ligands for Metal-Organic Frameworks. Said MY, Kang CS, Wang S, Sheffler W, Salveson PJ, Bera AK, Kang A, Nguyen H, Ballard R, Li X, Bai H, Stewart L, Levine P, Baker D. Chem Mater 34 9736-9744 (2022)
  53. other QnAs with David Baker. Nair P. Proc Natl Acad Sci U S A 115 13142-13144 (2018)
  54. Simultaneous selection of nanobodies for accessible epitopes on immune cells in the tumor microenvironment. Sekar TV, Elghonaimy EA, Swancutt KL, Diegeler S, Gonzalez I, Hamilton C, Leung PQ, Meiler J, Martina CE, Whitney M, Aguilera TA. Nat Commun 14 7473 (2023)
  55. Targeted Mutagenesis of the Multicopy Myrosinase Gene Family in Allotetraploid Brassica juncea Reduces Pungency in Fresh Leaves across Environments. Karlson D, Mojica JP, Poorten TJ, Lawit SJ, Jali S, Chauhan RD, Pham GM, Marri P, Guffy SL, Fear JM, Ochsenfeld CA, Lincoln Chapman TA, Casamali B, Venegas JP, Kim HJ, Call A, Sublett WL, Mathew LG, Shariff A, Watts JM, Mann M, Hummel A, Rapp R. Plants (Basel) 11 2494 (2022)
  56. The structure of Leptospira interrogans GAPDH sheds light into an immunoevasion factor that can target the anaphylatoxin C5a of innate immunity. Navas-Yuste S, de la Paz K, Querol-García J, Gómez-Quevedo S, Rodríguez de Córdoba S, Fernández FJ, Vega MC. Front Immunol 14 1190943 (2023)
  57. Training Neural Network Models Using Molecular Dynamics Simulation Results to Efficiently Predict Cyclic Hexapeptide Structural Ensembles. Hui T, Descoteaux ML, Miao J, Lin YS. J Chem Theory Comput 19 4757-4769 (2023)