6c05 Citations

Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts.

OpenAccess logo Elife 7 (2018)
Related entries: 6bzo, 6c04, 6c06

Cited: 46 times
EuropePMC logo PMID: 29480804

Abstract

Fidaxomicin (Fdx) is an antimicrobial RNA polymerase (RNAP) inhibitor highly effective against Mycobacterium tuberculosis RNAP in vitro, but clinical use of Fdx is limited to treating Clostridium difficile intestinal infections due to poor absorption. To identify the structural determinants of Fdx binding to RNAP, we determined the 3.4 Å cryo-electron microscopy structure of a complete M. tuberculosis RNAP holoenzyme in complex with Fdx. We find that the actinobacteria general transcription factor RbpA contacts fidaxomycin, explaining its strong effect on M. tuberculosis. Additional structures define conformational states of M. tuberculosis RNAP between the free apo-holoenzyme and the promoter-engaged open complex ready for transcription. The results establish that Fdx acts like a doorstop to jam the enzyme in an open state, preventing the motions necessary to secure promoter DNA in the active site. Our results provide a structural platform to guide development of anti-tuberculosis antimicrobials based on the Fdx binding pocket.

Reviews - 6c05 mentioned but not cited (5)

  1. Transcription initiation in mycobacteria: a biophysical perspective. Boyaci H, Saecker RM, Campbell EA. Transcription 11 53-65 (2020)
  2. The σ Subunit-Remodeling Factors: An Emerging Paradigms of Transcription Regulation. Vishwakarma RK, Brodolin K. Front Microbiol 11 1798 (2020)
  3. Recent Insights into the Structure and Function of Mycobacterial Membrane Proteins Facilitated by Cryo-EM. Bendre AD, Peters PJ, Kumar J. J Membr Biol 254 321-341 (2021)
  4. M. tuberculosis Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts. Stephanie F, Tambunan USF, Siahaan TJ. Life (Basel) 12 1774 (2022)
  5. Diverse and unified mechanisms of transcription initiation in bacteria. Chen J, Boyaci H, Campbell EA. Nat Rev Microbiol 19 95-109 (2021)

Articles - 6c05 mentioned but not cited (4)

  1. Recognition of Streptococcal Promoters by the Pneumococcal SigA Protein. Solano-Collado V, Ruiz-Cruz S, Lorenzo-Díaz F, Pluta R, Espinosa M, Bravo A. Front Mol Biosci 8 666504 (2021)
  2. Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding. Boyaci H, Chen J, Jansen R, Darst SA, Campbell EA. Nature 565 382-385 (2019)
  3. Structural basis of the mycobacterial stress-response RNA polymerase auto-inhibition via oligomerization. Morichaud Z, Trapani S, Vishwakarma RK, Chaloin L, Lionne C, Lai-Kee-Him J, Bron P, Brodolin K. Nat Commun 14 484 (2023)
  4. The Core and Holoenzyme Forms of RNA Polymerase from Mycobacterium smegmatis. Kouba T, Pospíšil J, Hnilicová J, Šanderová H, Barvík I, Krásný L. J. Bacteriol. 201 (2019)


Reviews citing this publication (2)

  1. RNA polymerases from low G+C gram-positive bacteria. Miller M, Oakley AJ, Lewis PJ. Transcription 12 92-102 (2021)
  2. [New inhibitors targeting bacterial RNA polymerase]. Shi J, Feng Y. Zhejiang Da Xue Xue Bao Yi Xue Ban 48 44-49 (2019)

Articles citing this publication (35)

  1. Eliminating effects of particle adsorption to the air/water interface in single-particle cryo-electron microscopy: Bacterial RNA polymerase and CHAPSO. Chen J, Noble AJ, Kang JY, Darst SA. J Struct Biol X 1 (2019)
  2. Stepwise Promoter Melting by Bacterial RNA Polymerase. Chen J, Chiu C, Gopalkrishnan S, Chen AY, Olinares PDB, Saecker RM, Winkelman JT, Maloney MF, Chait BT, Ross W, Gourse RL, Campbell EA, Darst SA. Mol Cell 78 275-288.e6 (2020)
  3. Semisynthetic Analogs of the Antibiotic Fidaxomicin-Design, Synthesis, and Biological Evaluation. Dorst A, Berg R, Gertzen CGW, Schäfle D, Zerbe K, Gwerder M, Schnell SD, Sander P, Gohlke H, Gademann K. ACS Med Chem Lett 11 2414-2420 (2020)
  4. Computational saturation mutagenesis to predict structural consequences of systematic mutations in the beta subunit of RNA polymerase in Mycobacterium leprae. Vedithi SC, Rodrigues CHM, Portelli S, Skwark MJ, Das M, Ascher DB, Blundell TL, Malhotra S. Comput Struct Biotechnol J 18 271-286 (2020)
  5. Role of bacterial RNA polymerase gate opening dynamics in DNA loading and antibiotics inhibition elucidated by quasi-Markov State Model. Unarta IC, Cao S, Kubo S, Wang W, Cheung PP, Gao X, Takada S, Huang X. Proc Natl Acad Sci U S A 118 e2024324118 (2021)
  6. Domains within RbpA Serve Specific Functional Roles That Regulate the Expression of Distinct Mycobacterial Gene Subsets. Prusa J, Jensen D, Santiago-Collazo G, Pope SS, Garner AL, Miller JJ, Ruiz Manzano A, Galburt EA, Stallings CL. J. Bacteriol. 200 (2018)
  7. Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Kouba T, Koval' T, Sudzinová P, Pospíšil J, Brezovská B, Hnilicová J, Šanderová H, Janoušková M, Šiková M, Halada P, Sýkora M, Barvík I, Nováček J, Trundová M, Dušková J, Skálová T, Chon U, Murakami KS, Dohnálek J, Krásný L. Nat Commun 11 6419 (2020)
  8. RbpA relaxes promoter selectivity of M. tuberculosis RNA polymerase. Sudalaiyadum Perumal A, Vishwakarma RK, Hu Y, Morichaud Z, Brodolin K. Nucleic Acids Res. 46 10106-10118 (2018)
  9. Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7. Lilic M, Darst SA, Campbell EA. Mol Cell 81 2875-2886.e5 (2021)
  10. A synthetic switch based on orange carotenoid protein to control blue-green light responses in chloroplasts. Piccinini L, Iacopino S, Cazzaniga S, Ballottari M, Giuntoli B, Licausi F. Plant Physiol 189 1153-1168 (2022)
  11. Structural basis of dual activation of cell division by the actinobacterial transcription factors WhiA and WhiB. Lilic M, Holmes NA, Bush MJ, Marti AK, Widdick DA, Findlay KC, Choi YJ, Froom R, Koh S, Buttner MJ, Campbell EA. Proc Natl Acad Sci U S A 120 e2220785120 (2023)
  12. Transcriptional Approach for Decoding the Mechanism of rpoC Compensatory Mutations for the Fitness Cost in Rifampicin-Resistant Mycobacterium tuberculosis. Xu Z, Zhou A, Wu J, Zhou A, Li J, Zhang S, Wu W, Karakousis PC, Yao YF. Front Microbiol 9 2895 (2018)
  13. "Upcycling" known molecules and targets for drug-resistant TB. Roubert C, Fontaine E, Upton AM. Front Cell Infect Microbiol 12 1029044 (2022)
  14. An improved statistical method to identify chemical-genetic interactions by exploiting concentration-dependence. Dutta E, DeJesus MA, Ruecker N, Zaveri A, Koh EI, Sassetti CM, Schnappinger D, Ioerger TR. PLoS One 16 e0257911 (2021)
  15. Association of ω with the C-Terminal Region of the β' Subunit Is Essential for Assembly of RNA Polymerase in Mycobacterium tuberculosis. Mao C, Zhu Y, Lu P, Feng L, Chen S, Hu Y. J. Bacteriol. 200 (2018)
  16. Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile. Cao X, Boyaci H, Chen J, Bao Y, Landick R, Campbell EA. Nature 604 541-545 (2022)
  17. CarD and RbpA modify the kinetics of initial transcription and slow promoter escape of the Mycobacterium tuberculosis RNA polymerase. Jensen D, Manzano AR, Rammohan J, Stallings CL, Galburt EA. Nucleic Acids Res. 47 6685-6698 (2019)
  18. CueR activates transcription through a DNA distortion mechanism. Fang C, Philips SJ, Wu X, Chen K, Shi J, Shen L, Xu J, Feng Y, O'Halloran TV, Zhang Y. Nat Chem Biol 17 57-64 (2021)
  19. Expression, Purification, and In Silico Characterization of Mycobacterium smegmatis Alternative Sigma Factor SigB. Singh RK, Jaiswal LK, Nayak T, Rawat RS, Kumar S, Rai SN, Gupta A. Dis Markers 2022 7475704 (2022)
  20. Going Retro, Going Viral: Experiences and Lessons in Drug Discovery from COVID-19. Wang B, Svetlov D, Bartikofsky D, Wobus CE, Artsimovitch I. Molecules 27 3815 (2022)
  21. High-throughput screening to discover inhibitors of the CarD·RNA polymerase protein-protein interaction in Mycobacterium tuberculosis. Stefan MA, Velazquez GM, Garcia GA. Sci Rep 10 21309 (2020)
  22. High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for the Mycobacterium tuberculosis RNA polymerase. Jensen D, Ruiz Manzano A, Rector M, Tomko EJ, Record MT, Galburt EA. Nucleic Acids Res 51 e99 (2023)
  23. IM How the antibiotic fidaxomicin targets an intestinal pathogen. Nature (2022)
  24. Identification and Structural Modeling of the RNA Polymerase Omega Subunits in Chlamydiae and Other Obligate Intracellular Bacteria. Cheng A, Wan D, Ghatak A, Wang C, Feng D, Fondell JD, Ebright RH, Fan H. mBio 14 e0349922 (2023)
  25. Novel fidaxomicin antibiotics through site-selective catalysis. Dailler D, Dorst A, Schäfle D, Sander P, Gademann K. Commun Chem 4 59 (2021)
  26. Oxazinomycin arrests RNA polymerase at the polythymidine sequences. Prajapati RK, Rosenqvist P, Palmu K, Mäkinen JJ, Malinen AM, Virta P, Metsä-Ketelä M, Belogurov GA. Nucleic Acids Res. 47 10296-10312 (2019)
  27. Pseudomonas aeruginosa SutA wedges RNAP lobe domain open to facilitate promoter DNA unwinding. He D, You L, Wu X, Shi J, Wen A, Yan Z, Mu W, Fang C, Feng Y, Zhang Y. Nat Commun 13 4204 (2022)
  28. Region 4 of the RNA polymerase σ subunit counteracts pausing during initial transcription. Brodolin K, Morichaud Z. J Biol Chem 296 100253 (2021)
  29. Structural and functional basis of the universal transcription factor NusG pro-pausing activity in Mycobacterium tuberculosis. Delbeau M, Omollo EO, Froom R, Koh S, Mooney RA, Lilic M, Brewer JJ, Rock J, Darst SA, Campbell EA, Landick R. Mol Cell 83 1474-1488.e8 (2023)
  30. Structural basis for transcription antitermination at bacterial intrinsic terminator. You L, Shi J, Shen L, Li L, Fang C, Yu C, Cheng W, Feng Y, Zhang Y. Nat Commun 10 3048 (2019)
  31. Structural basis of non-canonical transcriptional regulation by the σA-bound iron-sulfur protein WhiB1 in M. tuberculosis. Wan T, Li S, Beltran DG, Schacht A, Zhang L, Becker DF, Zhang L. Nucleic Acids Res. 48 501-516 (2020)
  32. The antibiotic sorangicin A inhibits promoter DNA unwinding in a Mycobacterium tuberculosis rifampicin-resistant RNA polymerase. Lilic M, Chen J, Boyaci H, Braffman N, Hubin EA, Herrmann J, Müller R, Mooney R, Landick R, Darst SA, Campbell EA. Proc Natl Acad Sci U S A 117 30423-30432 (2020)
  33. Universal functions of the σ finger in alternative σ factors during transcription initiation by bacterial RNA polymerase. Oguienko A, Petushkov I, Pupov D, Esyunina D, Kulbachinskiy A. RNA Biol 18 2028-2037 (2021)
  34. Visualization of two architectures in class-II CAP-dependent transcription activation. Shi W, Jiang Y, Deng Y, Dong Z, Liu B. PLoS Biol 18 e3000706 (2020)
  35. What the Hel: recent advances in understanding rifampicin resistance in bacteria. Sudzinová P, Šanderová H, Koval' T, Skálová T, Borah N, Hnilicová J, Kouba T, Dohnálek J, Krásný L. FEMS Microbiol Rev 47 fuac051 (2023)


Related citations provided by authors (1)

  1. Structure of Mycobacterium Tuberculosis RNAP Holo Enzyme/RbpA in closed clamp conformation. Darst SA, Campbell EA, Boyaci Selcuk H, Chen J, Lilic M To be published -