6c6l Citations

The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase Vo Proton Channel.

Mol Cell 69 993-1004.e3 (2018)
Cited: 57 times
EuropePMC logo PMID: 29526695

Abstract

The molecular mechanism of transmembrane proton translocation in rotary motor ATPases is not fully understood. Here, we report the 3.5-Å resolution cryoEM structure of the lipid nanodisc-reconstituted Vo proton channel of the yeast vacuolar H+-ATPase, captured in a physiologically relevant, autoinhibited state. The resulting atomic model provides structural detail for the amino acids that constitute the proton pathway at the interface of the proteolipid ring and subunit a. Based on the structure and previous mutagenesis studies, we propose the chemical basis of transmembrane proton transport. Moreover, we discovered that the C terminus of the assembly factor Voa1 is an integral component of mature Vo. Voa1's C-terminal transmembrane α helix is bound inside the proteolipid ring, where it contributes to the stability of the complex. Our structure rationalizes possible mechanisms by which mutations in human Vo can result in disease phenotypes and may thus provide new avenues for therapeutic interventions.

Reviews - 6c6l mentioned but not cited (1)

Articles - 6c6l mentioned but not cited (7)

  1. The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase Vo Proton Channel. Roh SH, Stam NJ, Hryc CF, Couoh-Cardel S, Pintilie G, Chiu W, Wilkens S. Mol Cell 69 993-1004.e3 (2018)
  2. findMySequence: a neural-network-based approach for identification of unknown proteins in X-ray crystallography and cryo-EM. Chojnowski G, Simpkin AJ, Leonardo DA, Seifert-Davila W, Vivas-Ruiz DE, Keegan RM, Rigden DJ. IUCrJ 9 86-97 (2022)
  3. Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner. Khan MM, Lee S, Couoh-Cardel S, Oot RA, Kim H, Wilkens S, Roh SH. EMBO J 41 e109360 (2022)
  4. A cation-π interaction in a transmembrane helix of vacuolar ATPase retains the proton-transporting arginine in a hydrophobic environment. Hohlweg W, Wagner GE, Hofbauer HF, Sarkleti F, Setz M, Gubensäk N, Lichtenegger S, Falsone SF, Wolinski H, Kosol S, Oostenbrink C, Kohlwein SD, Zangger K. J Biol Chem 293 18977-18988 (2018)
  5. research-article Human V-ATPase a-subunit isoforms bind specifically to distinct phosphoinositide phospholipids. Mitra C, Kane PM. bioRxiv 2023.04.24.538068 (2023)
  6. Human V-ATPase a-subunit isoforms bind specifically to distinct phosphoinositide phospholipids. Mitra C, Winkley S, Kane PM. J Biol Chem 299 105473 (2023)
  7. Six states of Enterococcus hirae V-type ATPase reveals non-uniform rotor rotation during turnover. Burton-Smith RN, Song C, Ueno H, Murata T, Iino R, Murata K. Commun Biol 6 755 (2023)


Reviews citing this publication (15)

  1. Cryo-EM in drug discovery: achievements, limitations and prospects. Renaud JP, Chari A, Ciferri C, Liu WT, Rémigy HW, Stark H, Wiesmann C. Nat Rev Drug Discov 17 471-492 (2018)
  2. Regulation and function of V-ATPases in physiology and disease. Collins MP, Forgac M. Biochim Biophys Acta Biomembr 1862 183341 (2020)
  3. Vacuolar-type ATPase: A proton pump to lysosomal trafficking. Futai M, Sun-Wada GH, Wada Y, Matsumoto N, Nakanishi-Matsui M. Proc Jpn Acad Ser B Phys Biol Sci 95 261-277 (2019)
  4. Regulation of V-ATPase Activity and Organelle pH by Phosphatidylinositol Phosphate Lipids. Banerjee S, Kane PM. Front Cell Dev Biol 8 510 (2020)
  5. Regulation of V-ATPase Assembly in Nutrient Sensing and Function of V-ATPases in Breast Cancer Metastasis. Collins MP, Forgac M. Front Physiol 9 902 (2018)
  6. Frontiers in Cryo Electron Microscopy of Complex Macromolecular Assemblies. Ognjenović J, Grisshammer R, Subramaniam S. Annu Rev Biomed Eng 21 395-415 (2019)
  7. RAVE and Rabconnectin-3 Complexes as Signal Dependent Regulators of Organelle Acidification. Jaskolka MC, Winkley SR, Kane PM. Front Cell Dev Biol 9 698190 (2021)
  8. The V-ATPases in cancer and cell death. Chen F, Kang R, Liu J, Tang D. Cancer Gene Ther 29 1529-1541 (2022)
  9. Essay on Biomembrane Structure. Gerle C. J Membr Biol 252 115-130 (2019)
  10. The Plant V-ATPase. Seidel T. Front Plant Sci 13 931777 (2022)
  11. Cryo-EM studies of the rotary H+-ATPase/synthase from Thermus thermophilus. Nakanishi A, Kishikawa JI, Mitsuoka K, Yokoyama K. Biophys Physicobiol 16 140-146 (2019)
  12. Structural and Functional Diversity of Two ATP-Driven Plant Proton Pumps. Kabała K, Janicka M. Int J Mol Sci 24 4512 (2023)
  13. Structural and functional understanding of disease-associated mutations in V-ATPase subunit a1 and other isoforms. Indrawinata K, Argiropoulos P, Sugita S. Front Mol Neurosci 16 1135015 (2023)
  14. The cytosolic N-terminal domain of V-ATPase a-subunits is a regulatory hub targeted by multiple signals. Tuli F, Kane PM. Front Mol Biosci 10 1168680 (2023)
  15. Rotary mechanism of V/A-ATPases-how is ATP hydrolysis converted into a mechanical step rotation in rotary ATPases? Yokoyama K. Front Mol Biosci 10 1176114 (2023)

Articles citing this publication (34)

  1. Structure of V-ATPase from the mammalian brain. Abbas YM, Wu D, Bueler SA, Robinson CV, Rubinstein JL. Science 367 1240-1246 (2020)
  2. Cryo-EM structure of the entire mammalian F-type ATP synthase. Pinke G, Zhou L, Sazanov LA. Nat Struct Mol Biol 27 1077-1085 (2020)
  3. Structures of a Complete Human V-ATPase Reveal Mechanisms of Its Assembly. Wang L, Wu D, Robinson CV, Wu H, Fu TM. Mol Cell 80 501-511.e3 (2020)
  4. Structural comparison of the vacuolar and Golgi V-ATPases from Saccharomyces cerevisiae. Vasanthakumar T, Bueler SA, Wu D, Beilsten-Edmands V, Robinson CV, Rubinstein JL. Proc Natl Acad Sci U S A 116 7272-7277 (2019)
  5. Molecular basis of V-ATPase inhibition by bafilomycin A1. Wang R, Wang J, Hassan A, Lee CH, Xie XS, Li X. Nat Commun 12 1782 (2021)
  6. Cryo-EM structures of intact V-ATPase from bovine brain. Wang R, Long T, Hassan A, Wang J, Sun Y, Xie XS, Li X. Nat Commun 11 3921 (2020)
  7. Cryo-EM and MD infer water-mediated proton transport and autoinhibition mechanisms of Vo complex. Roh SH, Shekhar M, Pintilie G, Chipot C, Wilkens S, Singharoy A, Chiu W. Sci Adv 6 eabb9605 (2020)
  8. Cryo-EM sample preparation method for extremely low concentration liposomes. Tonggu L, Wang L. Ultramicroscopy 208 112849 (2020)
  9. Interaction of the late endo-lysosomal lipid PI(3,5)P2 with the Vph1 isoform of yeast V-ATPase increases its activity and cellular stress tolerance. Banerjee S, Clapp K, Tarsio M, Kane PM. J Biol Chem 294 9161-9171 (2019)
  10. Cryo-EM structures of undocked innexin-6 hemichannels in phospholipids. Burendei B, Shinozaki R, Watanabe M, Terada T, Tani K, Fujiyoshi Y, Oshima A. Sci Adv 6 eaax3157 (2020)
  11. ATP6AP2 functions as a V-ATPase assembly factor in the endoplasmic reticulum. Guida MC, Hermle T, Graham LA, Hauser V, Ryan M, Stevens TH, Simons M. Mol Biol Cell 29 2156-2164 (2018)
  12. Atp6ap2 deletion causes extensive vacuolation that consumes the insulin content of pancreatic β cells. Binger KJ, Neukam M, Tattikota SG, Qadri F, Puchkov D, Willmes DM, Wurmsee S, Geisberger S, Dechend R, Raile K, Kurth T, Nguyen G, Poy MN, Solimena M, Muller DN, Birkenfeld AL. Proc Natl Acad Sci U S A 116 19983-19988 (2019)
  13. Functional reconstitution of vacuolar H+-ATPase from Vo proton channel and mutant V1-ATPase provides insight into the mechanism of reversible disassembly. Sharma S, Oot RA, Khan MM, Wilkens S. J Biol Chem 294 6439-6449 (2019)
  14. Unusual features of the c-ring of F1FO ATP synthases. Vlasov AV, Kovalev KV, Marx SH, Round ES, Gushchin IY, Polovinkin VA, Tsoy NM, Okhrimenko IS, Borshchevskiy VI, Büldt GD, Ryzhykau YL, Rogachev AV, Chupin VV, Kuklin AI, Dencher NA, Gordeliy VI. Sci Rep 9 18547 (2019)
  15. Defining steps in RAVE-catalyzed V-ATPase assembly using purified RAVE and V-ATPase subcomplexes. Jaskolka MC, Tarsio M, Smardon AM, Khan MM, Kane PM. J Biol Chem 296 100703 (2021)
  16. Recurrent sequence evolution after independent gene duplication. A von der Dunk SH, Snel B. BMC Evol Biol 20 98 (2020)
  17. Coordinated conformational changes in the V1 complex during V-ATPase reversible dissociation. Vasanthakumar T, Keon KA, Bueler SA, Jaskolka MC, Rubinstein JL. Nat Struct Mol Biol 29 430-439 (2022)
  18. Mechanical inhibition of isolated Vo from V/A-ATPase for proton conductance. Kishikawa JI, Nakanishi A, Furuta A, Kato T, Namba K, Tamakoshi M, Mitsuoka K, Yokoyama K. Elife 9 e56862 (2020)
  19. Structure of the Human BK Ion Channel in Lipid Environment. Tonggu L, Wang L. Membranes (Basel) 12 758 (2022)
  20. A distinct inhibitory mechanism of the V-ATPase by Vibrio VopQ revealed by cryo-EM. Peng W, Casey AK, Fernandez J, Carpinone EM, Servage KA, Chen Z, Li Y, Tomchick DR, Starai VJ, Orth K. Nat Struct Mol Biol 27 589-597 (2020)
  21. Assembly of Spinach Chloroplast ATP Synthase Rotor Ring Protein-Lipid Complex. Novitskaia O, Buslaev P, Gushchin I. Front Mol Biosci 6 135 (2019)
  22. Variants in ATP6V0A1 cause progressive myoclonus epilepsy and developmental and epileptic encephalopathy. Bott LC, Forouhan M, Lieto M, Sala AJ, Ellerington R, Johnson JO, Speciale AA, Criscuolo C, Filla A, Chitayat D, Alkhunaizi E, Shannon P, Nemeth AH, Italian Undiagnosed Diseases Network , Angelucci F, Lim WF, Striano P, Zara F, Helbig I, Muona M, Courage C, Lehesjoki AE, Berkovic SF, ATPase Consortium , Fischbeck KH, Brancati F, Morimoto RI, Wood MJA, Rinaldi C, Rinaldi C. Brain Commun 3 fcab245 (2021)
  23. Chimeric a-subunit isoforms generate functional yeast V-ATPases with altered regulatory properties in vitro and in vivo. Tuli F, Kane PM. Mol Biol Cell 34 ar14 (2023)
  24. NGF-Induced Upregulation of CGRP in Orofacial Pain Induced by Tooth Movement Is Dependent on Atp6v0a1 and Vesicle Release. Tao T, Liu Y, Zhang J, Lai W, Long H. Int J Mol Sci 23 11440 (2022)
  25. Crystallization of ApoA1 and ApoE4 nanolipoprotein particles and initial XFEL-based structural studies. Shelby ML, Gilbile D, Grant TD, Bauer WJ, Segelke B, He W, Evans AC, Crespo N, Fischer P, Pakendorf T, Hennicke V, Hunter MS, Batyuk A, Barthelmess M, Meents A, Kuhl TL, Frank M, Coleman MA. Crystals (Basel) 10 886 (2020)
  26. Direct observation of stepping rotation of V-ATPase reveals rigid component in coupling between Vo and V1 motors. Otomo A, Iida T, Okuni Y, Ueno H, Murata T, Iino R. Proc Natl Acad Sci U S A 119 e2210204119 (2022)
  27. Molecular basis of mEAK7-mediated human V-ATPase regulation. Wang R, Qin Y, Xie XS, Li X. Nat Commun 13 3272 (2022)
  28. A Role for the V0 Sector of the V-ATPase in Neuroexocytosis: Exogenous V0d Blocks Complexin and SNARE Interactions with V0c. Lévêque C, Maulet Y, Wang Q, Rame M, Rodriguez L, Mochida S, Sangiardi M, Youssouf F, Iborra C, Seagar M, Vitale N, El Far O. Cells 12 750 (2023)
  29. Structural basis of V-ATPase VO region assembly by Vma12p, 21p, and 22p. Wang H, Bueler SA, Rubinstein JL. Proc Natl Acad Sci U S A 120 e2217181120 (2023)
  30. Energy powerhouses of cells come into focus. Kane PM. Science 360 600-601 (2018)
  31. Knockdown of Vacuolar ATPase Subunit G Gene Affects Larval Survival and Impaired Pupation and Adult Emergence in Henosepilachna vigintioctopunctata. Zeng J, Kang WN, Jin L, Anjum AA, Li GQ. Insects 12 935 (2021)
  32. Structures of multisubunit membrane complexes with the CRYO ARM 200. Gerle C, Kishikawa JI, Yamaguchi T, Nakanishi A, Çoruh O, Makino F, Miyata T, Kawamoto A, Yokoyama K, Namba K, Kurisu G, Kato T. Microscopy (Oxf) 71 249-261 (2022)
  33. Tender love and disassembly: How a TLDc domain protein breaks the V-ATPase. Wilkens S, Khan MM, Knight K, Oot RA. Bioessays 45 e2200251 (2023)
  34. Yeast as a tool for membrane protein production and structure determination. Carlesso A, Delgado R, Ruiz Isant O, Uwangue O, Valli D, Bill RM, Hedfalk K. FEMS Yeast Res 22 foac047 (2022)