6cnf Citations

Structural visualization of RNA polymerase III transcription machineries.

Cell Discov 4 40 (2018)
Related entries: 6cnb, 6cnc, 6cnd

Cited: 36 times
EuropePMC logo PMID: 30083386

Abstract

RNA polymerase III (Pol III) transcription initiation requires the action of the transcription factor IIIB (TFIIIB) and is highly regulated. Here, we determine the structures of Pol III pre-initiation complexes (PICs) using single particle cryo-electron microscopy (cryo-EM). We observe stable Pol III-TFIIIB complexes using nucleic acid scaffolds mimicking various functional states, in which TFIIIB tightly encircles the upstream promoter DNA. There is an intricate interaction between TFIIIB and Pol III, which stabilizes the winged-helix domains of the C34 subunit of Pol III over the active site cleft. The architecture of Pol III PIC more resembles that of the Pol II PIC than the Pol I PIC. In addition, we also obtain a 3D reconstruction of Pol III in complex with TFIIIB using the elongation complex (EC) scaffold, shedding light on the mechanism of facilitated recycling of Pol III prior to transcription re-initiation.

Articles - 6cnf mentioned but not cited (1)

  1. Structural visualization of RNA polymerase III transcription machineries. Han Y, Yan C, Fishbain S, Ivanov I, He Y. Cell Discov 4 40 (2018)


Reviews citing this publication (7)

  1. Transfer RNAs: diversity in form and function. Berg MD, Brandl CJ. RNA Biol 18 316-339 (2021)
  2. Dynamics of the RNA polymerase I TFIIF/TFIIE-like subcomplex: a mini-review. Knutson BA, McNamar R, Rothblum LI. Biochem Soc Trans 48 1917-1927 (2020)
  3. The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications. Greber BJ, Nogales E. Subcell Biochem 93 143-192 (2019)
  4. Host factors associated with either VP16 or VP16-induced complex differentially affect HSV-1 lytic infection. Ding X, Neumann DM, Zhu L. Rev Med Virol 32 e2394 (2022)
  5. Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure. Kisly I, Tamm T. Comput Struct Biotechnol J 21 1249-1261 (2023)
  6. Cell Cycle-Dependent Transcription: The Cyclin Dependent Kinase Cdk1 Is a Direct Regulator of Basal Transcription Machineries. Enserink JM, Chymkowitch P. Int J Mol Sci 23 1293 (2022)
  7. Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Girbig M, Misiaszek AD, Müller CW. Nat Rev Mol Cell Biol (2022)

Articles citing this publication (28)

  1. Gene-Specific Control of tRNA Expression by RNA Polymerase II. Gerber A, Ito K, Chu CS, Roeder RG. Mol Cell 78 765-778.e7 (2020)
  2. A high-resolution protein architecture of the budding yeast genome. Rossi MJ, Kuntala PK, Lai WKM, Yamada N, Badjatia N, Mittal C, Kuzu G, Bocklund K, Farrell NP, Blanda TR, Mairose JD, Basting AV, Mistretta KS, Rocco DJ, Perkinson ES, Kellogg GD, Mahony S, Pugh BF. Nature 592 309-314 (2021)
  3. Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Han Y, Reyes AA, Malik S, He Y. Nature 579 452-455 (2020)
  4. Structure of human RNA polymerase III elongation complex. Li L, Yu Z, Zhao D, Ren Y, Hou H, Xu Y. Cell Res 31 791-800 (2021)
  5. Functional characterization of Polr3a hypomyelinating leukodystrophy mutations in the S. cerevisiae homolog, RPC160. Moir RD, Lavados C, Lee J, Willis IM. Gene 768 145259 (2021)
  6. Single-molecule studies reveal branched pathways for activator-dependent assembly of RNA polymerase II pre-initiation complexes. Baek I, Friedman LJ, Gelles J, Buratowski S. Mol Cell 81 3576-3588.e6 (2021)
  7. Structural basis for RNA polymerase III transcription repression by Maf1. Vorländer MK, Baudin F, Moir RD, Wetzel R, Hagen WJH, Willis IM, Müller CW. Nat Struct Mol Biol 27 229-232 (2020)
  8. Structural basis of RNA polymerase I pre-initiation complex formation and promoter melting. Pilsl M, Engel C. Nat Commun 11 1206 (2020)
  9. RNA Polymerase II transcription independent of TBP in murine embryonic stem cells. Kwan JZJ, Nguyen TF, Uzozie AC, Budzynski MA, Cui J, Lee JMC, Van Petegem F, Lange PF, Teves SS. Elife 12 e83810 (2023)
  10. Simulation-Based Methods for Model Building and Refinement in Cryoelectron Microscopy. Dodd T, Yan C, Ivanov I. J Chem Inf Model 60 2470-2483 (2020)
  11. Structural basis of SNAPc-dependent snRNA transcription initiation by RNA polymerase II. Rengachari S, Schilbach S, Kaliyappan T, Gouge J, Zumer K, Schwarz J, Urlaub H, Dienemann C, Vannini A, Cramer P. Nat Struct Mol Biol 29 1159-1169 (2022)
  12. Structural basis of Ty3 retrotransposon integration at RNA Polymerase III-transcribed genes. Abascal-Palacios G, Jochem L, Pla-Prats C, Beuron F, Vannini A. Nat Commun 12 6992 (2021)
  13. Structural insights into RNA polymerase III-mediated transcription termination through trapping poly-deoxythymidine. Hou H, Li Y, Wang M, Liu A, Yu Z, Chen K, Zhao D, Xu Y. Nat Commun 12 6135 (2021)
  14. The MAF1 Phosphoregulatory Region Controls MAF1 Interaction with the RNA Polymerase III C34 Subunit and Transcriptional Repression in Plants. Oliveira Andrade M, Sforça ML, Batista FAH, Figueira ACM, Benedetti CE. Plant Cell 32 3019-3035 (2020)
  15. The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Kessler AC, Maraia RJ. Nucleic Acids Res 49 12017-12034 (2021)
  16. A structural perspective of human RNA polymerase III. Wang Q, Lei M, Wu J. RNA Biol 19 246-255 (2022)
  17. Alignment and quantification of ChIP-exo crosslinking patterns reveal the spatial organization of protein-DNA complexes. Yamada N, Rossi MJ, Farrell N, Pugh BF, Mahony S. Nucleic Acids Res 48 11215-11226 (2020)
  18. Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Girbig M, Misiaszek AD, Vorländer MK, Lafita A, Grötsch H, Baudin F, Bateman A, Müller CW. Nat Struct Mol Biol 28 210-219 (2021)
  19. DNA-dependent RNA polymerases in plants. Yang DL, Huang K, Deng D, Zeng Y, Wang Z, Zhang Y. Plant Cell 35 3641-3661 (2023)
  20. Distinct Interaction Modes for the Eukaryotic RNA Polymerase Alpha-like Subunits. Belkevich AE, Pascual HG, Fakhouri AM, Ball DG, Knutson BA. Mol Cell Biol 43 269-282 (2023)
  21. Site-directed biochemical analyses reveal that the switchable C-terminus of Rpc31 contributes to RNA polymerase III transcription initiation. Shekhar AC, Sun YE, Khoo SK, Lin YC, Malau EB, Chang WH, Chen HT. Nucleic Acids Res 51 4223-4236 (2023)
  22. Structural basis of TFIIIC-dependent RNA polymerase III transcription initiation. Talyzina A, Han Y, Banerjee C, Fishbain S, Reyes A, Vafabakhsh R, He Y. Mol Cell 83 2641-2652.e7 (2023)
  23. Structural basis of Ty1 integrase tethering to RNA polymerase III for targeted retrotransposon integration. Nguyen PQ, Huecas S, Asif-Laidin A, Plaza-Pegueroles A, Capuzzi B, Palmic N, Conesa C, Acker J, Reguera J, Lesage P, Fernández-Tornero C. Nat Commun 14 1729 (2023)
  24. Structural insights into transcriptional regulation of human RNA polymerase III. Wang Q, Li S, Wan F, Xu Y, Wu Z, Cao M, Lan P, Lei M, Wu J. Nat Struct Mol Biol 28 220-227 (2021)
  25. Structure of Rift Valley Fever Virus RNA-Dependent RNA Polymerase. Wang X, Hu C, Ye W, Wang J, Dong X, Xu J, Li X, Zhang M, Lu H, Zhang F, Wu W, Dai S, Wang HW, Chen Z. J Virol 96 e0171321 (2022)
  26. Letter Structure of the SNAPc-bound RNA polymerase III preinitiation complex. Hou H, Jin Q, Ren Y, Chen Z, Wang Q, Xu Y. Cell Res 33 565-568 (2023)
  27. TFIIIB Subunit Bdp1 Participates in RNA Polymerase III Transcription in the Protozoan Parasite Leishmania major. Román-Carraro FC, Florencio-Martínez LE, Romero-Meza G, Nepomuceno-Mejía T, Carrero JC, Arroyo R, Ortega-López J, Manning-Cela RG, Martínez-Calvillo S. Biomed Res Int 2019 1425281 (2019)
  28. Truncated PARP1 mediates ADP-ribosylation of RNA polymerase III for apoptosis. Chen Q, Ma K, Liu X, Chen SH, Li P, Yu Y, Leung AKL, Yu X. Cell Discov 8 3 (2022)