6dnu Citations

Structural and biochemical insights into the disulfide reductase mechanism of DsbD, an essential enzyme for neisserial pathogens.

J Biol Chem 293 16559-16571 (2018)
Related entries: 6dnl, 6dnv, 6dps

Cited: 4 times
EuropePMC logo PMID: 30181210

Abstract

The worldwide incidence of neisserial infections, particularly gonococcal infections, is increasingly associated with antibiotic-resistant strains. In particular, extensively drug-resistant Neisseria gonorrhoeae strains that are resistant to third-generation cephalosporins are a major public health concern. There is a pressing clinical need to identify new targets for the development of antibiotics effective against Neisseria-specific processes. In this study, we report that the bacterial disulfide reductase DsbD is highly prevalent and conserved among Neisseria spp. and that this enzyme is essential for survival of N. gonorrhoeae DsbD is a membrane-bound protein that consists of two periplasmic domains, n-DsbD and c-DsbD, which flank the transmembrane domain t-DsbD. In this work, we show that the two functionally essential periplasmic domains of Neisseria DsbD catalyze electron transfer reactions through unidirectional interdomain interactions, from reduced c-DsbD to oxidized n-DsbD, and that this process is not dictated by their redox potentials. Structural characterization of the Neisseria n- and c-DsbD domains in both redox states provides evidence that steric hindrance reduces interactions between the two periplasmic domains when n-DsbD is reduced, thereby preventing a futile redox cycle. Finally, we propose a conserved mechanism of electron transfer for DsbD and define the residues involved in domain-domain recognition. Inhibitors of the interaction of the two DsbD domains have the potential to be developed as anti-neisserial agents.

Articles - 6dnu mentioned but not cited (1)

  1. Structural and biochemical insights into the disulfide reductase mechanism of DsbD, an essential enzyme for neisserial pathogens. Smith RP, Mohanty B, Mowlaboccus S, Paxman JJ, Williams ML, Headey SJ, Wang G, Subedi P, Doak BC, Kahler CM, Scanlon MJ, Heras B. J. Biol. Chem. 293 16559-16571 (2018)


Articles citing this publication (3)

  1. Structure of Arabidopsis SOQ1 lumenal region unveils C-terminal domain essential for negative regulation of photoprotective qH. Yu G, Hao J, Pan X, Shi L, Zhang Y, Wang J, Fan H, Xiao Y, Yang F, Lou J, Chang W, Malnoƫ A, Li M. Nat Plants 8 840-855 (2022)
  2. Local frustration determines loop opening during the catalytic cycle of an oxidoreductase. Stelzl LS, Mavridou DA, Saridakis E, Gonzalez D, Baldwin AJ, Ferguson SJ, Sansom MS, Redfield C. Elife 9 (2020)
  3. The Scs disulfide reductase system cooperates with the metallochaperone CueP in Salmonella copper resistance. Subedi P, Paxman JJ, Wang G, Ukuwela AA, Xiao Z, Heras B. J. Biol. Chem. 294 15876-15888 (2019)


Related citations provided by authors (1)

  1. Production, biophysical characterization and initial crystallization studies of the N- and C-terminal domains of DsbD, an essential enzyme in Neisseria meningitidis.. Smith RP, Whitten AE, Paxman JJ, Kahler CM, Scanlon MJ, Heras B Acta Crystallogr F Struct Biol Commun 74 31-38 (2018)