6e9e Citations

Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d.

Abstract

CRISPR-Cas endonucleases directed against foreign nucleic acids mediate prokaryotic adaptive immunity and have been tailored for broad genetic engineering applications. Type VI-D CRISPR systems contain the smallest known family of single effector Cas enzymes, and their signature Cas13d ribonuclease employs guide RNAs to cleave matching target RNAs. To understand the molecular basis for Cas13d function and explain its compact molecular architecture, we resolved cryoelectron microscopy structures of Cas13d-guide RNA binary complex and Cas13d-guide-target RNA ternary complex to 3.4 and 3.3 Å resolution, respectively. Furthermore, a 6.5 Å reconstruction of apo Cas13d combined with hydrogen-deuterium exchange revealed conformational dynamics that have implications for RNA scanning. These structures, together with biochemical and cellular characterization, provide insights into its RNA-guided, RNA-targeting mechanism and delineate a blueprint for the rational design of improved transcriptome engineering technologies.

Reviews - 6e9e mentioned but not cited (2)

  1. HEPN RNases - an emerging class of functionally distinct RNA processing and degradation enzymes. Pillon MC, Gordon J, Frazier MN, Stanley RE. Crit Rev Biochem Mol Biol 56 88-108 (2021)
  2. How to Find the Right RNA-Sensing CRISPR-Cas System for an In Vitro Application. Díaz-Galicia E, Grünberg R, Arold ST. Biosensors (Basel) 12 53 (2022)

Articles - 6e9e mentioned but not cited (4)

  1. Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d. Zhang C, Konermann S, Brideau NJ, Lotfy P, Wu X, Novick SJ, Strutzenberg T, Griffin PR, Hsu PD, Lyumkis D. Cell 175 212-223.e17 (2018)
  2. High-Resolution Structure of Cas13b and Biochemical Characterization of RNA Targeting and Cleavage. Slaymaker IM, Mesa P, Kellner MJ, Kannan S, Brignole E, Koob J, Feliciano PR, Stella S, Abudayyeh OO, Gootenberg JS, Strecker J, Montoya G, Zhang F. Cell Rep 26 3741-3751.e5 (2019)
  3. In silico optimization of RNA-protein interactions for CRISPR-Cas13-based antimicrobials. Park HM, Park Y, Berani U, Bang E, Vankerschaver J, Van Messem A, De Neve W, Shim H. Biol Direct 17 27 (2022)
  4. Orthogonal inducible control of Cas13 circuits enables programmable RNA regulation in mammalian cells. Ding Y, Tous C, Choi J, Chen J, Wong WW. Nat Commun 15 1572 (2024)


Reviews citing this publication (41)

  1. Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9. Zhang HX, Zhang Y, Yin H. Mol Ther 27 735-746 (2019)
  2. RNA-Targeting CRISPR-Cas Systems and Their Applications. Burmistrz M, Krakowski K, Krawczyk-Balska A. Int J Mol Sci 21 E1122 (2020)
  3. CRISPR technology incorporating amplification strategies: molecular assays for nucleic acids, proteins, and small molecules. Feng W, Newbigging AM, Tao J, Cao Y, Peng H, Le C, Wu J, Pang B, Li J, Tyrrell DL, Zhang H, Le XC. Chem Sci 12 4683-4698 (2021)
  4. The Role of RNA Editing in Cancer Development and Metabolic Disorders. Kung CP, Maggi LB, Weber JD. Front Endocrinol (Lausanne) 9 762 (2018)
  5. Gene Editing and Systems Biology Tools for Pesticide Bioremediation: A Review. Jaiswal S, Singh DK, Shukla P. Front Microbiol 10 87 (2019)
  6. Nonsense suppression therapies in human genetic diseases. Martins-Dias P, Romão L. Cell Mol Life Sci 78 4677-4701 (2021)
  7. CRISPR/Cas13: A potential therapeutic option of COVID-19. Lotfi M, Rezaei N. Biomed Pharmacother 131 110738 (2020)
  8. RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Smargon AA, Shi YJ, Yeo GW. Nat Cell Biol 22 143-150 (2020)
  9. How low can we go? Structure determination of small biological complexes using single-particle cryo-EM. Wu M, Lander GC. Curr Opin Struct Biol 64 9-16 (2020)
  10. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Liu W, Li L, Jiang J, Wu M, Lin P. Precis Clin Med 4 179-191 (2021)
  11. Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. Dodbele S, Mutlu N, Wilusz JE. EMBO Rep 22 e52072 (2021)
  12. The rapidly advancing Class 2 CRISPR-Cas technologies: A customizable toolbox for molecular manipulations. Wang J, Zhang C, Feng B. J Cell Mol Med 24 3256-3270 (2020)
  13. Three New Cs for CRISPR: Collateral, Communicate, Cooperate. Varble A, Marraffini LA. Trends Genet 35 446-456 (2019)
  14. Cas13d: A New Molecular Scissor for Transcriptome Engineering. Gupta R, Ghosh A, Chakravarti R, Singh R, Ravichandiran V, Swarnakar S, Ghosh D. Front Cell Dev Biol 10 866800 (2022)
  15. CRISPR/Cas-based tools for the targeted control of plant viruses. Robertson G, Burger J, Campa M. Mol Plant Pathol 23 1701-1718 (2022)
  16. Functional Features and Current Applications of the RNA-Targeting Type VI CRISPR-Cas Systems. Perčulija V, Lin J, Zhang B, Ouyang S. Adv Sci (Weinh) 8 2004685 (2021)
  17. Recent progress on rapid SARS-CoV-2/COVID-19 detection by CRISPR-Cas13-based platforms. Aquino-Jarquin G. Drug Discov Today 26 2025-2035 (2021)
  18. Programmable Biosensors Based on RNA-Guided CRISPR/Cas Endonuclease. Liu X, Hussain M, Dai J, Li Y, Zhang L, Yang J, Ali Z, He N, Tang Y. Biol Proced Online 24 2 (2022)
  19. Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family. Liu L, Pei DS. Int J Mol Sci 23 11400 (2022)
  20. Applying stem cells and CRISPR engineering to uncover the etiology of schizophrenia. Michael Deans PJ, Brennand KJ. Curr Opin Neurobiol 69 193-201 (2021)
  21. CRISPR Approaches for the Diagnosis of Human Diseases. Puig-Serra P, Casado-Rosas MC, Martinez-Lage M, Olalla-Sastre B, Alonso-Yanez A, Torres-Ruiz R, Rodriguez-Perales S. Int J Mol Sci 23 1757 (2022)
  22. CRISPR/Cas: a potential gene-editing tool in the nervous system. Gao Y, Gao K, Yang H. Cell Regen 9 12 (2020)
  23. Programmable RNA manipulation in living cells. Pei Y, Lu M. Cell Mol Life Sci 76 4861-4867 (2019)
  24. Progress of CRISPR-Cas13 Mediated Live-Cell RNA Imaging and Detection of RNA-Protein Interactions. Cao H, Wang Y, Zhang N, Xia S, Tian P, Lu L, Du J, Du Y. Front Cell Dev Biol 10 866820 (2022)
  25. Screening circular RNAs with functional potential using the RfxCas13d/BSJ-gRNA system. Li S, Wu H, Chen LL. Nat Protoc 17 2085-2107 (2022)
  26. Structural principles of CRISPR-Cas enzymes used in nucleic acid detection. Das A, Goswami HN, Whyms CT, Sridhara S, Li H. J Struct Biol 214 107838 (2022)
  27. CRISPR-based point-of-care diagnostics incorporating Cas9, Cas12, and Cas13 enzymes advanced for SARS-CoV-2 detection. Verma MK, Roychowdhury S, Sahu BD, Mishra A, Sethi KK. J Biochem Mol Toxicol 36 e23113 (2022)
  28. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. Thompson MK, Sobol RW, Prakash A. Biology (Basel) 10 530 (2021)
  29. Progress on COVID-19 Chemotherapeutics Discovery and Novel Technology. Zhou Y, Wang H, Yang L, Wang Q. Molecules 27 8257 (2022)
  30. Long noncoding RNA study: Genome-wide approaches. Tao S, Hou Y, Diao L, Hu Y, Xu W, Xie S, Xiao Z. Genes Dis 10 2491-2510 (2023)
  31. Application of the CRISPR/Cas9 System to Study Regulation Pathways of the Cellular Immune Response to Influenza Virus. Prokhorova D, Zhukova Eschenko N, Lemza A, Sergeeva M, Amirkhanov R, Stepanov G. Viruses 14 437 (2022)
  32. Current landscape of gene-editing technology in biomedicine: Applications, advantages, challenges, and perspectives. Zhou W, Yang J, Zhang Y, Hu X, Wang W. MedComm (2020) 3 e155 (2022)
  33. Optimization of CRISPR-Cas system for clinical cancer therapy. Meng X, Wu TG, Lou QY, Niu KY, Jiang L, Xiao QZ, Xu T, Zhang L. Bioeng Transl Med 8 e10474 (2023)
  34. Raising Climate-Resilient Crops: Journey From the Conventional Breeding to New Breeding Approaches. Gaba Y, Pareek A, Singla-Pareek SL. Curr Genomics 22 450-467 (2021)
  35. CRISPR-Cas13 in malaria parasite: Diagnosis and prospective gene function identification. Quansah E, Chen Y, Yang S, Wang J, Sun D, Zhao Y, Chen M, Yu L, Zhang C. Front Microbiol 14 1076947 (2023)
  36. CRISPR-based m6A modification and its potential applications in telomerase regulation. Yi M, Wang M, Xu Y, Cao Z, Ling Y, Zhang Z, Cao H. Front Cell Dev Biol 11 1200734 (2023)
  37. Development of Cas13a-based therapy for cancer treatment. Dong Y, Zhang B, Wei Y, Murashev A, Wang S, Wu Y, Ma W, Liu T. Mol Biol Rep 51 94 (2024)
  38. HIV infection detection using CRISPR/Cas systems: Present and future prospects. Deng B, Xue J. Comput Struct Biotechnol J 21 4409-4423 (2023)
  39. Not making the cut: Techniques to prevent RNA cleavage in structural studies of RNase-RNA complexes. Jones SP, Goossen C, Lewis SD, Delaney AM, Gleghorn ML. J Struct Biol X 6 100066 (2022)
  40. Therapeutic potential for renal fibrosis by targeting Smad3-dependent noncoding RNAs. Gu YY, Liu XS, Lan HY. Mol Ther 32 313-324 (2024)
  41. Unleashing the potential of CRISPR multiplexing: Harnessing Cas12 and Cas13 for precise gene modulation in eye diseases. Bigini F, Lee SH, Sun YJ, Sun Y, Mahajan VB. Vision Res 213 108317 (2023)

Articles citing this publication (53)

  1. Massively parallel Cas13 screens reveal principles for guide RNA design. Wessels HH, Méndez-Mancilla A, Guo X, Legut M, Daniloski Z, Sanjana NE. Nat Biotechnol 38 722-727 (2020)
  2. RNA-protein interaction mapping via MS2- or Cas13-based APEX targeting. Han S, Zhao BS, Myers SA, Carr SA, He C, Ting AY. Proc Natl Acad Sci U S A 117 22068-22079 (2020)
  3. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Tong H, Huang J, Xiao Q, He B, Dong X, Liu Y, Yang X, Han D, Wang Z, Wang X, Ying W, Zhang R, Wei Y, Xu C, Zhou Y, Li Y, Cai M, Wang Q, Xue M, Li G, Fang K, Zhang H, Yang H. Nat Biotechnol 41 108-119 (2023)
  4. A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity. Meeske AJ, Jia N, Cassel AK, Kozlova A, Liao J, Wiedmann M, Patel DJ, Marraffini LA. Science 369 54-59 (2020)
  5. CRISPR-Cas13 Inhibitors Block RNA Editing in Bacteria and Mammalian Cells. Lin P, Qin S, Pu Q, Wang Z, Wu Q, Gao P, Schettler J, Guo K, Li R, Li G, Huang C, Wei Y, Gao GF, Jiang J, Wu M. Mol Cell 78 850-861.e5 (2020)
  6. CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells. Ai Y, Liang D, Wilusz JE. Nucleic Acids Res 50 e65 (2022)
  7. Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d. Zhang B, Ye Y, Ye W, Perčulija V, Jiang H, Chen Y, Li Y, Chen J, Lin J, Wang S, Chen Q, Han YS, Ouyang S. Nat Commun 10 2544 (2019)
  8. Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance. Fareh M, Zhao W, Hu W, Casan JML, Kumar A, Symons J, Zerbato JM, Fong D, Voskoboinik I, Ekert PG, Rudraraju R, Purcell DFJ, Lewin SR, Trapani JA. Nat Commun 12 4270 (2021)
  9. Abrogation of PRRSV infectivity by CRISPR-Cas13b-mediated viral RNA cleavage in mammalian cells. Cui J, Techakriengkrai N, Nedumpun T, Suradhat S. Sci Rep 10 9617 (2020)
  10. Programmable C-to-U RNA editing using the human APOBEC3A deaminase. Huang X, Lv J, Li Y, Mao S, Li Z, Jing Z, Sun Y, Zhang X, Shen S, Wang X, Di M, Ge J, Huang X, Zuo E, Chi T. EMBO J 39 e104741 (2020)
  11. Chemically modified guide RNAs enhance CRISPR-Cas13 knockdown in human cells. Méndez-Mancilla A, Wessels HH, Legut M, Kadina A, Mabuchi M, Walker J, Robb GB, Holden K, Sanjana NE. Cell Chem Biol 29 321-327.e4 (2022)
  12. Enhanced Cas12a multi-gene regulation using a CRISPR array separator. Magnusson JP, Rios AR, Wu L, Qi LS. Elife 10 e66406 (2021)
  13. Structure-based design of gRNA for Cas13. Bandaru S, Tsuji MH, Shimizu Y, Usami K, Lee S, Takei NK, Yoshitome K, Nishimura Y, Otsuki T, Ito T. Sci Rep 10 11610 (2020)
  14. An RNA-targeting CRISPR-Cas13d system alleviates disease-related phenotypes in Huntington's disease models. Morelli KH, Wu Q, Gosztyla ML, Liu H, Yao M, Zhang C, Chen J, Marina RJ, Lee K, Jones KL, Huang MY, Li A, Smith-Geater C, Thompson LM, Duan W, Yeo GW. Nat Neurosci 26 27-38 (2023)
  15. Structural insights into the modulatory role of the accessory protein WYL1 in the Type VI-D CRISPR-Cas system. Zhang H, Dong C, Li L, Wasney GA, Min J. Nucleic Acids Res 47 5420-5428 (2019)
  16. Structural basis for self-cleavage prevention by tag:anti-tag pairing complementarity in type VI Cas13 CRISPR systems. Wang B, Zhang T, Yin J, Yu Y, Xu W, Ding J, Patel DJ, Yang H. Mol Cell 81 1100-1115.e5 (2021)
  17. Precise transcript targeting by CRISPR-Csm complexes. Colognori D, Trinidad M, Doudna JA. Nat Biotechnol 41 1256-1264 (2023)
  18. Cryo-EM reveals active site coordination within a multienzyme pre-rRNA processing complex. Pillon MC, Hsu AL, Krahn JM, Williams JG, Goslen KH, Sobhany M, Borgnia MJ, Stanley RE. Nat Struct Mol Biol 26 830-839 (2019)
  19. The collateral activity of RfxCas13d can induce lethality in a RfxCas13d knock-in mouse model. Li Y, Xu J, Guo X, Li Z, Cao L, Liu S, Guo Y, Wang G, Luo Y, Zhang Z, Wei X, Zhao Y, Liu T, Wang X, Xia H, Kuang M, Guo Q, Li J, Chen L, Wang Y, Li Q, Wang F, Liu Q, You F. Genome Biol 24 20 (2023)
  20. Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq. Wessels HH, Méndez-Mancilla A, Hao Y, Papalexi E, Mauck WM, Lu L, Morris JA, Mimitou EP, Smibert P, Sanjana NE, Satija R. Nat Methods 20 86-94 (2023)
  21. Evaluating Local and Directional Resolution of Cryo-EM Density Maps. Aiyer S, Zhang C, Baldwin PR, Lyumkis D. Methods Mol Biol 2215 161-187 (2021)
  22. Negative autoregulation mitigates collateral RNase activity of repeat-targeting CRISPR-Cas13d in mammalian cells. Kelley CP, Haerle MC, Wang ET. Cell Rep 40 111226 (2022)
  23. CRISPR/Cas13d-Mediated Microbial RNA Knockdown. Zhang K, Zhang Z, Kang J, Chen J, Liu J, Gao N, Fan L, Zheng P, Wang Y, Sun J. Front Bioeng Biotechnol 8 856 (2020)
  24. Efficient Inhibition of HIV Using CRISPR/Cas13d Nuclease System. Nguyen H, Wilson H, Jayakumar S, Kulkarni V, Kulkarni S. Viruses 13 1850 (2021)
  25. Letter Conferring Resistance to Plant RNA Viruses with the CRISPR/CasRx System. Cao Y, Zhou H, Zhou X, Li F. Virol Sin 36 814-817 (2021)
  26. It takes two (Las1 HEPN endoribonuclease domains) to cut RNA correctly. Pillon MC, Goslen KH, Gordon J, Wells ML, Williams JG, Stanley RE. J Biol Chem 295 5857-5870 (2020)
  27. Non-invasive and high-throughput interrogation of exon-specific isoform expression. Truong DJ, Phlairaharn T, Eßwein B, Gruber C, Tümen D, Baligács E, Armbrust N, Vaccaro FL, Lederer EM, Beck EM, Geilenkeuser J, Göppert S, Krumwiede L, Grätz C, Raffl G, Schwarz D, Zirngibl M, Živanić M, Beyer M, Körner JD, Santl T, Evsyukov V, Strauß T, Schwarz SC, Höglinger GU, Heutink P, Doll S, Conrad M, Giesert F, Wurst W, Westmeyer GG. Nat Cell Biol 23 652-663 (2021)
  28. Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning. Wessels HH, Stirn A, Méndez-Mancilla A, Kim EJ, Hart SK, Knowles DA, Sanjana NE. Nat Biotechnol (2023)
  29. Structure and engineering of the minimal type VI CRISPR-Cas13bt3. Nakagawa R, Kannan S, Altae-Tran H, Takeda SN, Tomita A, Hirano H, Kusakizako T, Nishizawa T, Yamashita K, Zhang F, Nishimasu H, Nureki O. Mol Cell 82 3178-3192.e5 (2022)
  30. In vivo discovery of RNA proximal proteins via proximity-dependent biotinylation. Lin X, Fonseca MAS, Breunig JJ, Corona RI, Lawrenson K. RNA Biol 18 2203-2217 (2021)
  31. Letter Metagenomic discovery of novel CRISPR-Cas13 systems. Hu Y, Chen Y, Xu J, Wang X, Luo S, Mao B, Zhou Q, Li W. Cell Discov 8 107 (2022)
  32. Nol9 Is a Spatial Regulator for the Human ITS2 Pre-rRNA Endonuclease-Kinase Complex. Gordon J, Pillon MC, Stanley RE. J Mol Biol 431 3771-3786 (2019)
  33. Efficient CRISPR-Cas13d-Based Antiviral Strategy to Combat SARS-CoV-2. Hussein M, Andrade Dos Ramos Z, Vink MA, Kroon P, Yu Z, Enjuanes L, Zuñiga S, Berkhout B, Herrera-Carrillo E. Viruses 15 686 (2023)
  34. New design strategies for ultra-specific CRISPR-Cas13a-based RNA detection with single-nucleotide mismatch sensitivity. Molina Vargas AM, Sinha S, Osborn R, Arantes PR, Patel A, Dewhurst S, Hardy DJ, Cameron A, Palermo G, O'Connell MR. Nucleic Acids Res 52 921-939 (2024)
  35. CaSilico: A versatile CRISPR package for in silico CRISPR RNA designing for Cas12, Cas13, and Cas14. Asadbeigi A, Norouzi M, Vafaei Sadi MS, Saffari M, Bakhtiarizadeh MR. Front Bioeng Biotechnol 10 957131 (2022)
  36. Cryo-EM structure and protease activity of the type III-E CRISPR-Cas effector. Huo Y, Zhao H, Dong Q, Jiang T. Nat Microbiol 8 522-532 (2023)
  37. Detection of pks Island mRNAs Using Toehold Sensors in Escherichia coli. Heo T, Kang H, Choi S, Kim J. Life (Basel) 11 1280 (2021)
  38. In Silico Prediction and Selection of Target Sequences in the SARS-CoV-2 RNA Genome for an Antiviral Attack. Hussein M, Andrade Dos Ramos Z, Berkhout B, Herrera-Carrillo E. Viruses 14 385 (2022)
  39. Sensitive and rapid RT-RPA-Cas12a-mediated detection method capable of human rhinovirus A and/or C species by targeting VP4. Qian W, Wang X, Huang J, Liu J, Chen S, Wang T, Zhang D, Li Y. Virus Res 323 199001 (2023)
  40. Structural basis for the activation of a compact CRISPR-Cas13 nuclease. Deng X, Osikpa E, Yang J, Oladeji SJ, Smith J, Gao X, Gao Y. Nat Commun 14 5845 (2023)
  41. Thermodynamic Swings: How Ideal Complex of Cas9-RNA/DNA Forms. Zhdanova PV, Lomzov AA, Prokhorova DV, Stepanov GA, Chernonosov AA, Koval VV. Int J Mol Sci 23 8891 (2022)
  42. A strategy for Cas13 miniaturization based on the structure and AlphaFold. Zhao F, Zhang T, Sun X, Zhang X, Chen L, Wang H, Li J, Fan P, Lai L, Sui T, Li Z. Nat Commun 14 5545 (2023)
  43. CRISPR use in diagnosis and therapy for COVID-19. Deol P, Madhwal A, Sharma G, Kaushik R, Malik YS. Methods Microbiol 50 123-150 (2022)
  44. CRISPR-based resistance to grapevine virus A. Spencer KP, Burger JT, Campa M. Front Plant Sci 14 1296251 (2023)
  45. CRISPR/Cas Technologies Applied to Pseudogenes. Vitiello M, Poliseno L. Methods Mol Biol 2324 265-284 (2021)
  46. Computational analysis of cas proteins unlocks new potential in HIV-1 targeted gene therapy. Dampier W, Berman R, Nonnemacher MR, Wigdahl B. Front Genome Ed 5 1248982 (2023)
  47. Genome-scale pan-cancer interrogation of lncRNA dependencies using CasRx. Montero JJ, Trozzo R, Sugden M, Öllinger R, Belka A, Zhigalova E, Waetzig P, Engleitner T, Schmidt-Supprian M, Saur D, Rad R. Nat Methods (2024)
  48. LinearCoFold and LinearCoPartition: linear-time algorithms for secondary structure prediction of interacting RNA molecules. Zhang H, Li S, Dai N, Zhang L, Mathews DH, Huang L. Nucleic Acids Res 51 e94 (2023)
  49. Massively parallel profiling of RNA-targeting CRISPR-Cas13d. Kuo HC, Prupes J, Chou CW, Finkelstein IJ. Nat Commun 15 498 (2024)
  50. Polyvalent guide RNAs for CRISPR antivirals. Bagchi R, Tinker-Kulberg R, Salehin M, Supakar T, Chamberlain S, Ligaba-Osena A, Josephs EA. iScience 25 105333 (2022)
  51. Role of surfactants in electron cryo-microscopy film preparation. Michon B, López-Sánchez U, Degrouard J, Nury H, Leforestier A, Rio E, Salonen A, Zoonens M. Biophys J 122 1846-1857 (2023)
  52. Targeting APEX2 to the mRNA encoding fatty acid synthase β in yeast identifies interacting proteins that control its abundance in the cell cycle. Blank HM, Griffith WP, Polymenis M. Mol Biol Cell 34 br20 (2023)
  53. Vector enabled CRISPR gene editing - A revolutionary strategy for targeting the diversity of brain pathologies. Forgham H, Liu L, Zhu J, Javed I, Cai W, Qiao R, Davis TP. Coord Chem Rev 487 215172 (2023)