6hps Citations

Near-infrared dual bioluminescence imaging in mouse models of cancer using infraluciferin.

Abstract

Bioluminescence imaging (BLI) is ubiquitous in scientific research for the sensitive tracking of biological processes in small animal models. However, due to the attenuation of visible light by tissue, and the limited set of near-infrared bioluminescent enzymes, BLI is largely restricted to monitoring single processes in vivo. Here we show, that by combining stabilised colour mutants of firefly luciferase (FLuc) with the luciferin (LH2) analogue infraluciferin (iLH2), near-infrared dual BLI can be achieved in vivo. The X-ray crystal structure of FLuc with a high-energy intermediate analogue, 5'-O-[N-(dehydroinfraluciferyl)sulfamoyl] adenosine (iDLSA) provides insight into the FLuc-iLH2 reaction leading to near-infrared light emission. The spectral characterisation and unmixing validation studies reported here established that iLH2 is superior to LH2 for the spectral unmixing of bioluminescent signals in vivo; which led to this novel near-infrared dual BLI system being applied to monitor both tumour burden and CAR T cell therapy within a systemically induced mouse tumour model.

Articles - 6hps mentioned but not cited (1)

  1. Near-infrared dual bioluminescence imaging in mouse models of cancer using infraluciferin. Stowe CL, Burley TA, Allan H, Vinci M, Kramer-Marek G, Ciobota DM, Parkinson GN, Southworth TL, Agliardi G, Hotblack A, Lythgoe MF, Branchini BR, Kalber TL, Anderson JC, Pule MA. Elife 8 e45801 (2019)


Reviews citing this publication (8)

  1. Seeing (and Using) the Light: Recent Developments in Bioluminescence Technology. Love AC, Prescher JA. Cell Chem Biol 27 904-920 (2020)
  2. The Chimeric Antigen Receptor Detection Toolkit. Hu Y, Huang J. Front Immunol 11 1770 (2020)
  3. Brightening up Biology: Advances in Luciferase Systems for in Vivo Imaging. Liu S, Su Y, Lin MZ, Ronald JA. ACS Chem Biol 16 2707-2718 (2021)
  4. Advanced Bioluminescence System for In Vivo Imaging with Brighter and Red-Shifted Light Emission. Endo M, Ozawa T. Int J Mol Sci 21 E6538 (2020)
  5. How to Select Firefly Luciferin Analogues for In Vivo Imaging. Saito-Moriya R, Nakayama J, Kamiya G, Kitada N, Obata R, Maki SA, Aoyama H. Int J Mol Sci 22 1848 (2021)
  6. Photo-Based Nanomedicines Using Polymeric Systems in the Field of Cancer Imaging and Therapy. Husni P, Shin Y, Kim JC, Kang K, Lee ES, Youn YS, Rusdiana T, Oh KT. Biomedicines 8 E618 (2020)
  7. The Role of Optical Imaging in Translational Nanomedicine. Hesemans E, Buttiens K, Manshian BB, Soenen SJ. J Funct Biomater 13 137 (2022)
  8. The elusive relationship between structure and colour emission in beetle luciferases. Carrasco-López C, Lui NM, Schramm S, Naumov P. Nat Rev Chem 5 4-20 (2021)

Articles citing this publication (14)

  1. Red-shifted click beetle luciferase mutant expands the multicolor bioluminescent palette for deep tissue imaging. Zambito G, Hall MP, Wood MG, Gaspar N, Ridwan Y, Stellari FF, Shi C, Kirkland TA, Encell LP, Löwik C, Mezzanotte L. iScience 24 101986 (2021)
  2. Multicomponent Bioluminescence Imaging with a π-Extended Luciferin. Yao Z, Zhang BS, Steinhardt RC, Mills JH, Prescher JA. J Am Chem Soc 142 14080-14089 (2020)
  3. Rapid Multicomponent Bioluminescence Imaging via Substrate Unmixing. Rathbun CM, Ionkina AA, Yao Z, Jones KA, Porterfield WB, Prescher JA. ACS Chem Biol 16 682-690 (2021)
  4. Coumarin luciferins and mutant luciferases for robust multi-component bioluminescence imaging. Yao Z, Caldwell DR, Love AC, Kolbaba-Kartchner B, Mills JH, Schnermann MJ, Prescher JA. Chem Sci 12 11684-11691 (2021)
  5. A Luciferase Mutant with Improved Brightness and Stability for Whole-Cell Bioluminescent Biosensors and In Vitro Biosensing. Calabretta MM, Gregucci D, Martínez-Pérez-Cejuela H, Michelini E. Biosensors (Basel) 12 742 (2022)
  6. Orthogonal Bioluminescent Probes from Disubstituted Luciferins. Williams SJ, Hwang CS, Prescher JA. Biochemistry 60 563-572 (2021)
  7. Multiplexed bioluminescence imaging with a substrate unmixing platform. Brennan CK, Yao Z, Ionkina AA, Rathbun CM, Sathishkumar B, Prescher JA. Cell Chem Biol 29 1649-1660.e4 (2022)
  8. Systematic Comparison of Beetle Luciferase-Luciferin Pairs as Sources of Near-Infrared Light for In Vitro and In Vivo Applications. Branchini BR, Fontaine DM, Kohrt D, Huta BP, Racela AR, Fort BR, Southworth TL, Roda A. Int J Mol Sci 23 2451 (2022)
  9. Red-Shifted Coumarin Luciferins for Improved Bioluminescence Imaging. Love AC, Caldwell DR, Kolbaba-Kartchner B, Townsend KM, Halbers LP, Yao Z, Brennan CK, Ivanic J, Hadjian T, Mills JH, Schnermann MJ, Prescher JA. J Am Chem Soc 145 3335-3345 (2023)
  10. Near-infrared bioluminescence imaging of two cell populations in living mice. Zambito G, Mezzanotte L. STAR Protoc 2 100662 (2021)
  11. A higher spectral range of beetle bioluminescence with infraluciferin. Jathoul AP, Branchini BR, Anderson JC, Murray JAH. Front Bioeng Biotechnol 10 897272 (2022)
  12. Caged luciferins enable rapid multicomponent bioluminescence imaging. Navarro MX, Brennan CK, Love AC, Prescher JA. Photochem Photobiol (2023)
  13. Development of two mouse strains conditionally expressing bright luciferases with distinct emission spectra as new tools for in vivo imaging. Nakashiba T, Ogoh K, Iwano S, Sugiyama T, Mizuno-Iijima S, Nakashima K, Mizuno S, Sugiyama F, Yoshiki A, Miyawaki A, Abe K. Lab Anim (NY) 52 247-257 (2023)
  14. Inhibition of lactate transport by MCT-1 blockade improves chimeric antigen receptor T-cell therapy against B-cell malignancies. Lopez E, Karattil R, Nannini F, Weng-Kit Cheung G, Denzler L, Galvez-Cancino F, Quezada S, Pule MA. J Immunother Cancer 11 e006287 (2023)