6hrm Citations

Controlling orthogonal ribosome subunit interactions enables evolution of new function.

Nature 564 444-448 (2018)
Cited: 50 times
EuropePMC logo PMID: 30518861

Abstract

Orthogonal ribosomes are unnatural ribosomes that are directed towards orthogonal messenger RNAs in Escherichia coli, through an altered version of the 16S ribosomal RNA of the small subunit1. Directed evolution of orthogonal ribosomes has provided access to new ribosomal function, and the evolved orthogonal ribosomes have enabled the encoding of multiple non-canonical amino acids into proteins2-4. The original orthogonal ribosomes shared the pool of 23S ribosomal RNAs, contained in the large subunit, with endogenous ribosomes. Selectively directing a new 23S rRNA to an orthogonal mRNA, by controlling the association between the orthogonal 16S rRNAs and 23S rRNAs, would enable the evolution of new function in the large subunit. Previous work covalently linked orthogonal 16S rRNA and a circularly permuted 23S rRNA to create orthogonal ribosomes with low activity5,6; however, the linked subunits in these ribosomes do not associate specifically with each other, and mediate translation by associating with endogenous subunits. Here we discover engineered orthogonal 'stapled' ribosomes (with subunits linked through an optimized RNA staple) with activities comparable to that of the parent orthogonal ribosome; they minimize association with endogenous subunits and mediate translation of orthogonal mRNAs through the association of stapled subunits. We evolve cells with genomically encoded stapled ribosomes as the sole ribosomes, which support cellular growth at similar rates to natural ribosomes. Moreover, we visualize the engineered stapled ribosome structure by cryo-electron microscopy at 3.0 Å, revealing how the staple links the subunits and controls their association. We demonstrate the utility of controlling subunit association by evolving orthogonal stapled ribosomes which efficiently polymerize a sequence of monomers that the natural ribosome is intrinsically unable to translate. Our work provides a foundation for evolving the rRNA of the entire orthogonal ribosome for the encoded cellular synthesis of non-canonical biological polymers7.

Articles - 6hrm mentioned but not cited (2)

  1. Controlling orthogonal ribosome subunit interactions enables evolution of new function. Schmied WH, Tnimov Z, Uttamapinant C, Rae CD, Fried SD, Chin JW. Nature 564 444-448 (2018)
  2. Structural analysis of 70S ribosomes by cross-linking/mass spectrometry reveals conformational plasticity. Tüting C, Iacobucci C, Ihling CH, Kastritis PL, Sinz A. Sci Rep 10 12618 (2020)


Reviews citing this publication (14)

  1. Reprogramming the genetic code. de la Torre D, Chin JW. Nat Rev Genet 22 169-184 (2021)
  2. Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Nödling AR, Spear LA, Williams TL, Luk LYP, Tsai YH. Essays Biochem 63 237-266 (2019)
  3. Genetic Code Expansion: A Brief History and Perspective. Shandell MA, Tan Z, Cornish VW. Biochemistry 60 3455-3469 (2021)
  4. Strategies for in vitro engineering of the translation machinery. Hammerling MJ, Krüger A, Jewett MC. Nucleic Acids Res 48 1068-1083 (2020)
  5. Synthetic Biological Circuits within an Orthogonal Central Dogma. Costello A, Badran AH. Trends Biotechnol 39 59-71 (2021)
  6. Chemical modifications of proteins and their applications in metalloenzyme studies. Naowarojna N, Cheng R, Lopez J, Wong C, Qiao L, Liu P. Synth Syst Biotechnol 6 32-49 (2021)
  7. Hijacking Translation Initiation for Synthetic Biology. Tharp JM, Krahn N, Varshney U, Söll D. Chembiochem 21 1387-1396 (2020)
  8. Biochemistry of fluoroprolines: the prospect of making fluorine a bioelement. Kubyshkin V, Davis R, Budisa N. Beilstein J Org Chem 17 439-460 (2021)
  9. Specialised ribosomes as versatile regulators of gene expression. Joo M, Yeom JH, Choi Y, Jun H, Song W, Kim HL, Lee K, Shin E. RNA Biol 19 1103-1114 (2022)
  10. Genome recoding strategies to improve cellular properties: mechanisms and advances. Singh T, Yadav SK, Vainstein A, Kumar V. aBIOTECH 2 79-95 (2021)
  11. Incorporation of nonstandard amino acids into proteins: principles and applications. Wang T, Liang C, Xu H, An Y, Xiao S, Zheng M, Liu L, Nie L. World J Microbiol Biotechnol 36 60 (2020)
  12. Cell-free Biosynthesis of Peptidomimetics. Lee K, Willi JA, Cho N, Kim I, Jewett MC, Lee J. Biotechnol Bioprocess Eng 1-17 (2023)
  13. Artificial Small Molecules as Cofactors and Biomacromolecular Building Blocks in Synthetic Biology: Design, Synthesis, Applications, and Challenges. Liu F, He L, Dong S, Xuan J, Cui Q, Feng Y. Molecules 28 5850 (2023)
  14. Bioorthogonal Reactions in Bioimaging. Kozma E, Kele P. Top Curr Chem (Cham) 382 7 (2024)

Articles citing this publication (34)

  1. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Robertson WE, Funke LFH, de la Torre D, Fredens J, Elliott TS, Spinck M, Christova Y, Cervettini D, Böge FL, Liu KC, Buse S, Maslen S, Salmond GPC, Chin JW. Science 372 1057-1062 (2021)
  2. Engineered triply orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs enable the genetic encoding of three distinct non-canonical amino acids. Dunkelmann DL, Willis JCW, Beattie AT, Chin JW. Nat Chem 12 535-544 (2020)
  3. Expanding the limits of the second genetic code with ribozymes. Lee J, Schwieter KE, Watkins AM, Kim DS, Yu H, Schwarz KJ, Lim J, Coronado J, Byrom M, Anslyn EV, Ellington AD, Moore JS, Jewett MC. Nat Commun 10 5097 (2019)
  4. Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase-tRNA pairs. Cervettini D, Tang S, Fried SD, Willis JCW, Funke LFH, Colwell LJ, Chin JW. Nat Biotechnol 38 989-999 (2020)
  5. Computational design of three-dimensional RNA structure and function. Yesselman JD, Eiler D, Carlson ED, Gotrik MR, d'Aquino AE, Ooms AN, Kladwang W, Carlson PD, Shi X, Costantino DA, Herschlag D, Lucks JB, Jewett MC, Kieft JS, Das R. Nat Nanotechnol 14 866-873 (2019)
  6. In vitro ribosome synthesis and evolution through ribosome display. Hammerling MJ, Fritz BR, Yoesep DJ, Kim DS, Carlson ED, Jewett MC. Nat Commun 11 1108 (2020)
  7. Ribosome-mediated polymerization of long chain carbon and cyclic amino acids into peptides in vitro. Lee J, Schwarz KJ, Kim DS, Moore JS, Jewett MC. Nat Commun 11 4304 (2020)
  8. Assembly and functionality of the ribosome with tethered subunits. Aleksashin NA, Leppik M, Hockenberry AJ, Klepacki D, Vázquez-Laslop N, Jewett MC, Remme J, Mankin AS. Nat Commun 10 930 (2019)
  9. Engineered ribosomes with tethered subunits for expanding biological function. Carlson ED, d'Aquino AE, Kim DS, Fulk EM, Hoang K, Szal T, Mankin AS, Jewett MC. Nat Commun 10 3920 (2019)
  10. A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design. Dunkelmann DL, Oehm SB, Beattie AT, Chin JW. Nat Chem 13 1110-1117 (2021)
  11. A fully orthogonal system for protein synthesis in bacterial cells. Aleksashin NA, Szal T, d'Aquino AE, Jewett MC, Vázquez-Laslop N, Mankin AS. Nat Commun 11 1858 (2020)
  12. Programmed chromosome fission and fusion enable precise large-scale genome rearrangement and assembly. Wang K, de la Torre D, Robertson WE, Chin JW. Science 365 922-926 (2019)
  13. Systematic Review Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Cui Z, Johnston WA, Alexandrov K. Front Bioeng Biotechnol 8 1031 (2020)
  14. Dual film-like organelles enable spatial separation of orthogonal eukaryotic translation. Reinkemeier CD, Lemke EA. Cell 184 4886-4903.e21 (2021)
  15. Mutational characterization and mapping of the 70S ribosome active site. d'Aquino AE, Azim T, Aleksashin NA, Hockenberry AJ, Krüger A, Jewett MC. Nucleic Acids Res 48 2777-2789 (2020)
  16. A versatile cis-acting element reporter system to study the function, maturation and stability of ribosomal RNA mutants in archaea. Jüttner M, Weiß M, Ostheimer N, Reglin C, Kern M, Knüppel R, Ferreira-Cerca S. Nucleic Acids Res 48 2073-2090 (2020)
  17. Defects in the Assembly of Ribosomes Selected for β-Amino Acid Incorporation. Ward FR, Watson ZL, Ad O, Schepartz A, Cate JHD. Biochemistry 58 4494-4504 (2019)
  18. Measuring the tolerance of the genetic code to altered codon size. DeBenedictis EA, Söll D, Esvelt KM. Elife 11 e76941 (2022)
  19. The Role of Orthogonality in Genetic Code Expansion. Arranz-Gibert P, Patel JR, Isaacs FJ. Life (Basel) 9 E58 (2019)
  20. Genetically programmed cell-based synthesis of non-natural peptide and depsipeptide macrocycles. Spinck M, Piedrafita C, Robertson WE, Elliott TS, Cervettini D, de la Torre D, Chin JW. Nat Chem 15 61-69 (2023)
  21. In vivo, in vitro and in silico: an open space for the development of microbe-based applications of synthetic biology. Danchin A. Microb Biotechnol 15 42-64 (2022)
  22. Orthogonal translation enables heterologous ribosome engineering in E. coli. Kolber NS, Fattal R, Bratulic S, Carver GD, Badran AH. Nat Commun 12 599 (2021)
  23. Three-dimensional structure-guided evolution of a ribosome with tethered subunits. Kim DS, Watkins A, Bidstrup E, Lee J, Topkar V, Kofman C, Schwarz KJ, Liu Y, Pintilie G, Roney E, Das R, Jewett MC. Nat Chem Biol 18 990-998 (2022)
  24. Targeted editing and evolution of engineered ribosomes in vivo by filtered editing. Radford F, Elliott SD, Schepartz A, Isaacs FJ. Nat Commun 13 180 (2022)
  25. CRISPR interference-guided modulation of glucose pathways to boost aconitic acid production in Escherichia coli. Li Q, Zhao P, Yin H, Liu Z, Zhao H, Tian P. Microb Cell Fact 19 174 (2020)
  26. Community science designed ribosomes with beneficial phenotypes. Krüger A, Watkins AM, Wellington-Oguri R, Romano J, Kofman C, DeFoe A, Kim Y, Anderson-Lee J, Fisker E, Townley J, Eterna Participants, d'Aquino AE, Das R, Jewett MC. Nat Commun 14 961 (2023)
  27. Mechanistic studies of non-canonical amino acid mutagenesis. Fleisher RC, Michael N, Gonzalez RL. Methods Enzymol 656 375-428 (2021)
  28. Adding α,α-disubstituted and β-linked monomers to the genetic code of an organism. Dunkelmann DL, Piedrafita C, Dickson A, Liu KC, Elliott TS, Fiedler M, Bellini D, Zhou A, Cervettini D, Chin JW. Nature 625 603-610 (2024)
  29. Airway microecology in rifampicin-resistant and rifampicin-sensitive pulmonary tuberculosis patients. Cai X, Luo Y, Zhang Y, Lin Y, Wu B, Cao Z, Hu Z, Wu X, Tan S. BMC Microbiol 22 286 (2022)
  30. Selected reaction monitoring for the quantification of Escherichia coli ribosomal proteins. Kosaka Y, Aoki W, Mori M, Aburaya S, Ohtani Y, Minakuchi H, Ueda M. PLoS One 15 e0236850 (2020)
  31. Automated 3D Design and Evaluation of RNA Nanostructures with RNAMake. Jurich CP, Yesselman JD. Methods Mol Biol 2586 251-261 (2023)
  32. Mapping the in vivo fitness landscape of a tethered ribosome. Radford F, Rinehart J, Isaacs FJ. Sci Adv 9 eade8934 (2023)
  33. Selective and Site-Specific Incorporation of Nonstandard Amino Acids Within Proteins for Therapeutic Applications. Butler ND, Kunjapur AM. Methods Mol Biol 2720 35-53 (2024)
  34. Single enzyme RT-PCR of full-length ribosomal RNA. Hammerling MJ, Yoesep DJ, Jewett MC. Synth Biol (Oxf) 5 ysaa028 (2020)