6ibl Citations

Molecular basis of β-arrestin coupling to formoterol-bound β1-adrenoceptor.

Abstract

The β1-adrenoceptor (β1AR) is a G-protein-coupled receptor (GPCR) that couples1 to the heterotrimeric G protein Gs. G-protein-mediated signalling is terminated by phosphorylation of the C terminus of the receptor by GPCR kinases (GRKs) and by coupling of β-arrestin 1 (βarr1, also known as arrestin 2), which displaces Gs and induces signalling through the MAP kinase pathway2. The ability of synthetic agonists to induce signalling preferentially through either G proteins or arrestins-known as biased agonism3-is important in drug development, because the therapeutic effect may arise from only one signalling cascade, whereas the other pathway may mediate undesirable side effects4. To understand the molecular basis for arrestin coupling, here we determined the cryo-electron microscopy structure of the β1AR-βarr1 complex in lipid nanodiscs bound to the biased agonist formoterol5, and the crystal structure of formoterol-bound β1AR coupled to the G-protein-mimetic nanobody6 Nb80. βarr1 couples to β1AR in a manner distinct to that7 of Gs coupling to β2AR-the finger loop of βarr1 occupies a narrower cleft on the intracellular surface, and is closer to transmembrane helix H7 of the receptor when compared with the C-terminal α5 helix of Gs. The conformation of the finger loop in βarr1 is different from that adopted by the finger loop of visual arrestin when it couples to rhodopsin8. β1AR coupled to βarr1 shows considerable differences in structure compared with β1AR coupled to Nb80, including an inward movement of extracellular loop 3 and the cytoplasmic ends of H5 and H6. We observe weakened interactions between formoterol and two serine residues in H5 at the orthosteric binding site of β1AR, and find that formoterol has a lower affinity for the β1AR-βarr1 complex than for the β1AR-Gs complex. The structural differences between these complexes of β1AR provide a foundation for the design of small molecules that could bias signalling in the β-adrenoceptors.

Reviews - 6ibl mentioned but not cited (3)

  1. G protein-coupled receptors: structure- and function-based drug discovery. Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J, Liu Q, Zhao S, Shui W, Jiang Y, Wang MW. Signal Transduct Target Ther 6 7 (2021)
  2. Allosteric communication regulates ligand-specific GPCR activity. Ma N, Nivedha AK, Vaidehi N. FEBS J 288 2502-2512 (2021)
  3. G protein-coupled receptor interactions with arrestins and GPCR kinases: The unresolved issue of signal bias. Chen Q, Tesmer JJG. J Biol Chem 298 102279 (2022)

Articles - 6ibl mentioned but not cited (15)

  1. Molecular basis of β-arrestin coupling to formoterol-bound β1-adrenoceptor. Lee Y, Warne T, Nehmé R, Pandey S, Dwivedi-Agnihotri H, Chaturvedi M, Edwards PC, García-Nafría J, Leslie AGW, Shukla AK, Tate CG. Nature 583 862-866 (2020)
  2. INDI-integrated nanobody database for immunoinformatics. Deszyński P, Młokosiewicz J, Volanakis A, Jaszczyszyn I, Castellana N, Bonissone S, Ganesan R, Krawczyk K. Nucleic Acids Res 50 D1273-D1281 (2022)
  3. Crystal structure of the α1B-adrenergic receptor reveals molecular determinants of selective ligand recognition. Deluigi M, Morstein L, Schuster M, Klenk C, Merklinger L, Cridge RR, de Zhang LA, Klipp A, Vacca S, Vaid TM, Mittl PRE, Egloff P, Eberle SA, Zerbe O, Chalmers DK, Scott DJ, Plückthun A. Nat Commun 13 382 (2022)
  4. Membrane-Facilitated Receptor Access and Binding Mechanisms of Long-Acting β2-Adrenergic Receptor Agonists. Szlenk CT, Gc JB, Natesan S. Mol Pharmacol 100 406-427 (2021)
  5. Discovery of Novel Trace Amine-Associated Receptor 5 (TAAR5) Antagonists Using a Deep Convolutional Neural Network. Bon C, Chern TR, Cichero E, O'Brien TE, Gustincich S, Gainetdinov RR, Espinoza S. Int J Mol Sci 23 3127 (2022)
  6. Novel GPR120 Agonists with Improved Pharmacokinetic Profiles for the Treatment of Type 2 Diabetes. Ji G, Guo Q, Xue Q, Kong R, Wang S, Lei K, Liu R, Wang X. Molecules 26 6907 (2021)
  7. Unique features of different classes of G-protein-coupled receptors revealed from sequence coevolutionary and structural analysis. Do HN, Haldane A, Levy RM, Miao Y. Proteins 90 601-614 (2022)
  8. The Novel Application of Geometric Morphometrics with Principal Component Analysis to Existing G Protein-Coupled Receptor (GPCR) Structures. Wiseman DN, Samra N, Román Lara MM, Penrice SC, Goddard AD. Pharmaceuticals (Basel) 14 953 (2021)
  9. Thiazolidinedione derivatives as novel GPR120 agonists for the treatment of type 2 diabetes. Wang X, Ji G, Han X, Hao H, Liu W, Xue Q, Guo Q, Wang S, Lei K, Liu Y. RSC Adv 12 5732-5742 (2022)
  10. Computational evaluation of interactions between olfactory receptor OR2W1 and its ligands. Oh SJ. Genomics Inform 19 e9 (2021)
  11. Discovery of Novel and Selective G-Protein Coupled Receptor 120 (GPR120) Agonists for the Treatment of Type 2 Diabetes Mellitus. Wang X, Li X, Wei S, Wang M, Xu Y, Hu W, Gao Z, Liu R, Wang S, Ji G. Molecules 27 9018 (2022)
  12. The molecular mechanism of phytosphingosine binding to FFAR4/GPR120 differs from that of other fatty acids. Nagasawa T, Horitani M, Kawaguchi SI, Higashiyama S, Hama Y, Mitsutake S. FEBS Open Bio 11 3081-3089 (2021)
  13. Locating ligand binding sites in G-protein coupled receptors using combined information from docking and sequence conservation. Vidad AR, Macaspac S, Ng HL. PeerJ 9 e12219 (2021)
  14. Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Wu A, Salom D, Hong JD, Tworak A, Watanabe K, Pardon E, Steyaert J, Kandori H, Katayama K, Kiser PD, Palczewski K. Nat Commun 14 5209 (2023)
  15. Structure-Activity Relationship Target Prediction Studies of Clindamycin Derivatives with Broad-Spectrum Bacteriostatic Antibacterial Properties. Jia Y, Zhang Y, Zhu H. Molecules 28 7357 (2023)


Reviews citing this publication (24)

  1. Conformational Basis of G Protein-Coupled Receptor Signaling Versatility. Wingler LM, Lefkowitz RJ. Trends Cell Biol 30 736-747 (2020)
  2. Nanodiscs: A toolkit for membrane protein science. Sligar SG, Denisov IG. Protein Sci 30 297-315 (2021)
  3. Receptor-Arrestin Interactions: The GPCR Perspective. Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Biomolecules 11 218 (2021)
  4. Ligands of Adrenergic Receptors: A Structural Point of View. Wu Y, Zeng L, Zhao S. Biomolecules 11 936 (2021)
  5. Lipid nanoparticle technologies for the study of G protein-coupled receptors in lipid environments. Lavington S, Watts A. Biophys Rev (2020)
  6. Structural basis of GPCR coupling to distinct signal transducers: implications for biased signaling. Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Trends Biochem Sci 47 570-581 (2022)
  7. Structure determination of GPCRs: cryo-EM compared with X-ray crystallography. García-Nafría J, Tate CG. Biochem Soc Trans 49 2345-2355 (2021)
  8. Differential Regulation of GPCRs-Are GRK Expression Levels the Key? Matthees ESF, Haider RS, Hoffmann C, Drube J. Front Cell Dev Biol 9 687489 (2021)
  9. Biased agonism at β-adrenergic receptors. Ippolito M, Benovic JL. Cell Signal 80 109905 (2021)
  10. New Structural Perspectives in G Protein-Coupled Receptor-Mediated Src Family Kinase Activation. Berndt S, Liebscher I. Int J Mol Sci 22 6489 (2021)
  11. Emerging structural insights into GPCR-β-arrestin interaction and functional outcomes. Maharana J, Banerjee R, Yadav MK, Sarma P, Shukla AK. Curr Opin Struct Biol 75 102406 (2022)
  12. The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs. Egyed A, Kiss DJ, Keserű GM. Front Pharmacol 13 847788 (2022)
  13. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Piper SJ, Johnson RM, Wootten D, Sexton PM. Chem Rev 122 13989-14017 (2022)
  14. New insights into GPCR coupling and dimerisation from cryo-EM structures. Gusach A, García-Nafría J, Tate CG. Curr Opin Struct Biol 80 102574 (2023)
  15. Solo vs. Chorus: Monomers and Oligomers of Arrestin Proteins. Gurevich VV, Gurevich EV. Int J Mol Sci 23 7253 (2022)
  16. Structural Basis of Arrestin Selectivity for Active Phosphorylated G Protein-Coupled Receptors. Karnam PC, Vishnivetskiy SA, Gurevich VV. Int J Mol Sci 22 12481 (2021)
  17. The Bright Side of Psychedelics: Latest Advances and Challenges in Neuropharmacology. Mastinu A, Anyanwu M, Carone M, Abate G, Bonini SA, Peron G, Tirelli E, Pucci M, Ribaudo G, Oselladore E, Premoli M, Gianoncelli A, Uberti DL, Memo M. Int J Mol Sci 24 1329 (2023)
  18. Structural Insights into Ligand-Receptor Interactions Involved in Biased Agonism of G-Protein Coupled Receptors. Jóźwiak K, Płazińska A. Molecules 26 851 (2021)
  19. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Shpakov AO. Int J Mol Sci 24 6187 (2023)
  20. Function Investigations and Applications of Membrane Proteins on Artificial Lipid Membranes. Tosaka T, Kamiya K. Int J Mol Sci 24 7231 (2023)
  21. The role of G protein-coupled receptor in neutrophil dysfunction during sepsis-induced acute respiratory distress syndrome. Wang Y, Zhu CL, Li P, Liu Q, Li HR, Yu CM, Deng XM, Wang JF. Front Immunol 14 1112196 (2023)
  22. Understanding How Physical Exercise Improves Alzheimer's Disease: Cholinergic and Monoaminergic Systems. Zong B, Yu F, Zhang X, Zhao W, Sun P, Li S, Li L. Front Aging Neurosci 14 869507 (2022)
  23. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. Pharmacol Rev 75 854-884 (2023)
  24. Structure, function and drug discovery of GPCR signaling. Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, Sun S, Feng Y, Yong X, Tian X, Qin H, Yan W, Shao Z. Mol Biomed 4 46 (2023)

Articles citing this publication (58)

  1. Structure of a Hallucinogen-Activated Gq-Coupled 5-HT2A Serotonin Receptor. Kim K, Che T, Panova O, DiBerto JF, Lyu J, Krumm BE, Wacker D, Robertson MJ, Seven AB, Nichols DE, Shoichet BK, Skiniotis G, Roth BL. Cell 182 1574-1588.e19 (2020)
  2. Intrinsic bias at non-canonical, β-arrestin-coupled seven transmembrane receptors. Pandey S, Kumari P, Baidya M, Kise R, Cao Y, Dwivedi-Agnihotri H, Banerjee R, Li XX, Cui CS, Lee JD, Kawakami K, Maharana J, Ranjan A, Chaturvedi M, Jhingan GD, Laporte SA, Woodruff TM, Inoue A, Shukla AK. Mol Cell 81 4605-4621.e11 (2021)
  3. Distinct phosphorylation sites in a prototypical GPCR differently orchestrate β-arrestin interaction, trafficking, and signaling. Dwivedi-Agnihotri H, Chaturvedi M, Baidya M, Stepniewski TM, Pandey S, Maharana J, Srivastava A, Caengprasath N, Hanyaloglu AC, Selent J, Shukla AK. Sci Adv 6 eabb8368 (2020)
  4. Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β-arrestin transducer bias. Kawakami K, Yanagawa M, Hiratsuka S, Yoshida M, Ono Y, Hiroshima M, Ueda M, Aoki J, Sako Y, Inoue A. Nat Commun 13 487 (2022)
  5. Signaling snapshots of a serotonin receptor activated by the prototypical psychedelic LSD. Cao C, Barros-Álvarez X, Zhang S, Kim K, Dämgen MA, Panova O, Suomivuori CM, Fay JF, Zhong X, Krumm BE, Gumpper RH, Seven AB, Robertson MJ, Krogan NJ, Hüttenhain R, Nichols DE, Dror RO, Skiniotis G, Roth BL. Neuron 110 3154-3167.e7 (2022)
  6. Key phosphorylation sites in GPCRs orchestrate the contribution of β-Arrestin 1 in ERK1/2 activation. Baidya M, Kumari P, Dwivedi-Agnihotri H, Pandey S, Chaturvedi M, Stepniewski TM, Kawakami K, Cao Y, Laporte SA, Selent J, Inoue A, Shukla AK. EMBO Rep 21 e49886 (2020)
  7. Structural studies of phosphorylation-dependent interactions between the V2R receptor and arrestin-2. He QT, Xiao P, Huang SM, Jia YL, Zhu ZL, Lin JY, Yang F, Tao XN, Zhao RJ, Gao FY, Niu XG, Xiao KH, Wang J, Jin C, Sun JP, Yu X. Nat Commun 12 2396 (2021)
  8. Exploring GPCR-arrestin interfaces with genetically encoded crosslinkers. Böttke T, Ernicke S, Serfling R, Ihling C, Burda E, Gurevich VV, Sinz A, Coin I. EMBO Rep 21 e50437 (2020)
  9. GPCR-mediated β-arrestin activation deconvoluted with single-molecule precision. Asher WB, Terry DS, Gregorio GGA, Kahsai AW, Borgia A, Xie B, Modak A, Zhu Y, Jang W, Govindaraju A, Huang LY, Inoue A, Lambert NA, Gurevich VV, Shi L, Lefkowitz RJ, Blanchard SC, Javitch JA. Cell 185 1661-1675.e16 (2022)
  10. Identification of ligand-specific G protein-coupled receptor states and prediction of downstream efficacy via data-driven modeling. Fleetwood O, Carlsson J, Delemotte L. Elife 10 e60715 (2021)
  11. The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes. Krug U, Gloge A, Schmidt P, Becker-Baldus J, Bernhard F, Kaiser A, Montag C, Gauglitz M, Vishnivetskiy SA, Gurevich VV, Beck-Sickinger AG, Glaubitz C, Huster D. Angew Chem Int Ed Engl 59 23854-23861 (2020)
  12. Capturing a rhodopsin receptor signalling cascade across a native membrane. Chen S, Getter T, Salom D, Wu D, Quetschlich D, Chorev DS, Palczewski K, Robinson CV. Nature 604 384-390 (2022)
  13. Ligand-Specific Factors Influencing GLP-1 Receptor Post-Endocytic Trafficking and Degradation in Pancreatic Beta Cells. Fang Z, Chen S, Manchanda Y, Bitsi S, Pickford P, David A, Shchepinova MM, Corrêa IR, Hodson DJ, Broichhagen J, Tate EW, Reimann F, Salem V, Rutter GA, Tan T, Bloom SR, Tomas A, Jones B. Int J Mol Sci 21 E8404 (2020)
  14. Molecular insights into the biased signaling mechanism of the μ-opioid receptor. Cong X, Maurel D, Déméné H, Vasiliauskaité-Brooks I, Hagelberger J, Peysson F, Saint-Paul J, Golebiowski J, Granier S, Sounier R. Mol Cell 81 4165-4175.e6 (2021)
  15. Serial femtosecond crystallography. Barends TRM, Stauch B, Cherezov V, Schlichting I. Nat Rev Methods Primers 2 59 (2022)
  16. Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics. Janetzko J, Kise R, Barsi-Rhyne B, Siepe DH, Heydenreich FM, Kawakami K, Masureel M, Maeda S, Garcia KC, von Zastrow M, Inoue A, Kobilka BK. Cell 185 4560-4573.e19 (2022)
  17. Ligand recognition and biased agonism of the D1 dopamine receptor. Teng X, Chen S, Nie Y, Xiao P, Yu X, Shao Z, Zheng S. Nat Commun 13 3186 (2022)
  18. An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins. Chen Q, Zhuo Y, Sharma P, Perez I, Francis DJ, Chakravarthy S, Vishnivetskiy SA, Berndt S, Hanson SM, Zhan X, Brooks EK, Altenbach C, Hubbell WL, Klug CS, Iverson TM, Gurevich VV. J Mol Biol 433 166790 (2021)
  19. Biphasic activation of β-arrestin 1 upon interaction with a GPCR revealed by methyl-TROSY NMR. Shiraishi Y, Kofuku Y, Ueda T, Pandey S, Dwivedi-Agnihotri H, Shukla AK, Shimada I. Nat Commun 12 7158 (2021)
  20. Ligand-Specific Allosteric Coupling Controls G-Protein-Coupled Receptor Signaling. Holze J, Bermudez M, Pfeil EM, Kauk M, Bödefeld T, Irmen M, Matera C, Dallanoce C, De Amici M, Holzgrabe U, König GM, Tränkle C, Wolber G, Schrage R, Mohr K, Hoffmann C, Kostenis E, Bock A. ACS Pharmacol Transl Sci 3 859-867 (2020)
  21. Quantifying the Kinetics of Signaling and Arrestin Recruitment by Nervous System G-Protein Coupled Receptors. Hoare SRJ, Tewson PH, Sachdev S, Connor M, Hughes TE, Quinn AM. Front Cell Neurosci 15 814547 (2021)
  22. Structural details of a Class B GPCR-arrestin complex revealed by genetically encoded crosslinkers in living cells. Aydin Y, Böttke T, Lam JH, Ernicke S, Fortmann A, Tretbar M, Zarzycka B, Gurevich VV, Katritch V, Coin I. Nat Commun 14 1151 (2023)
  23. The Open Question of How GPCRs Interact with GPCR Kinases (GRKs). Cato MC, Yen YC, Francis CJ, Elkins KE, Shareef A, Sterne-Marr R, Tesmer JJG. Biomolecules 11 447 (2021)
  24. The finger loop as an activation sensor in arrestin. Vishnivetskiy SA, Huh EK, Gurevich EV, Gurevich VV. J Neurochem 157 1138-1152 (2021)
  25. Biased signaling due to oligomerization of the G protein-coupled platelet-activating factor receptor. Liu J, Tang H, Xu C, Zhou S, Zhu X, Li Y, Prézeau L, Xu T, Pin JP, Rondard P, Ji W, Liu J. Nat Commun 13 6365 (2022)
  26. Constitutive signal bias mediated by the human GHRHR splice variant 1. Cong Z, Zhou F, Zhang C, Zou X, Zhang H, Wang Y, Zhou Q, Cai X, Liu Q, Li J, Shao L, Mao C, Wang X, Wu J, Xia T, Zhao LH, Jiang H, Zhang Y, Xu HE, Cheng X, Yang D, Wang MW. Proc Natl Acad Sci U S A 118 e2106606118 (2021)
  27. Lipids and Phosphorylation Conjointly Modulate Complex Formation of β2-Adrenergic Receptor and β-arrestin2. Pluhackova K, Wilhelm FM, Müller DJ. Front Cell Dev Biol 9 807913 (2021)
  28. Modulating TSH Receptor Signaling for Therapeutic Benefit. Krause G, Eckstein A, Schülein R. Eur Thyroid J 9 66-77 (2020)
  29. Plasma membrane preassociation drives β-arrestin coupling to receptors and activation. Grimes J, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien SL, Stepniewski TM, Medel-Lacruz B, Baidya M, Makarova M, Mistry R, Goulding J, Drube J, Hoffmann C, Owen DM, Shukla AK, Selent J, Hill SJ, Calebiro D. Cell 186 2238-2255.e20 (2023)
  30. Conformational selection guides β-arrestin recruitment at a biased G protein-coupled receptor. Kleist AB, Jenjak S, Sente A, Laskowski LJ, Szpakowska M, Calkins MM, Anderson EI, McNally LM, Heukers R, Bobkov V, Peterson FC, Thomas MA, Chevigné A, Smit MJ, McCorvy JD, Babu MM, Volkman BF. Science 377 222-228 (2022)
  31. Keys to the Kingdom: GPCR phosphorylation patterns direct β-arrestin. Premont RT. EMBO Rep 21 e51249 (2020)
  32. Analysis of Missense Variants in the Human Histamine Receptor Family Reveals Increased Constitutive Activity of E4106.30×30K Variant in the Histamine H1 Receptor. Ma X, Segura MA, Zarzycka B, Vischer HF, Leurs R. Int J Mol Sci 22 3702 (2021)
  33. Class B1 GPCR activation by an intracellular agonist. Kobayashi K, Kawakami K, Kusakizako T, Tomita A, Nishimura M, Sawada K, Okamoto HH, Hiratsuka S, Nakamura G, Kuwabara R, Noda H, Muramatsu H, Shimizu M, Taguchi T, Inoue A, Murata T, Nureki O. Nature 618 1085-1093 (2023)
  34. New Insights into the Structure and Function of Class B1 GPCRs. Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. Endocr Rev 44 492-517 (2023)
  35. Structural Insights into the Intrinsically Disordered GPCR C-Terminal Region, Major Actor in Arrestin-GPCR Interaction. Guillien M, Mouhand A, Fournet A, Gontier A, Martí Navia A, Cordeiro TN, Allemand F, Thureau A, Banères JL, Bernadó P, Sibille N. Biomolecules 12 617 (2022)
  36. GPCR Binding and JNK3 Activation by Arrestin-3 Have Different Structural Requirements. Zheng C, Weinstein LD, Nguyen KK, Grewal A, Gurevich EV, Gurevich VV. Cells 12 1563 (2023)
  37. Human GPR17 missense variants identified in metabolic disease patients have distinct downstream signaling profiles. Conley JM, Sun H, Ayers KL, Zhu H, Chen R, Shen M, Hall MD, Ren H. J Biol Chem 297 100881 (2021)
  38. Structure of the GOLD-domain seven-transmembrane helix protein family member TMEM87A. Hoel CM, Zhang L, Brohawn SG. Elife 11 e81704 (2022)
  39. The Role of Arrestin-1 Middle Loop in Rhodopsin Binding. Vishnivetskiy SA, Huh EK, Karnam PC, Oviedo S, Gurevich EV, Gurevich VV. Int J Mol Sci 23 13887 (2022)
  40. Transmitting the Signal: Structure of the β1-Adrenergic Receptor-Gs Protein Complex. Pandey S, Saha S, Shukla AK. Mol Cell 80 3-5 (2020)
  41. Universal Properties and Specificities of the β2-Adrenergic Receptor-Gs Protein Complex Activation Mechanism Revealed by All-Atom Molecular Dynamics Simulations. Mitra A, Sarkar A, Borics A. Int J Mol Sci 22 10423 (2021)
  42. GPCR activation and GRK2 assembly by a biased intracellular agonist. Duan J, Liu H, Zhao F, Yuan Q, Ji Y, Cai X, He X, Li X, Li J, Wu K, Gao T, Zhu S, Lin S, Wang MW, Cheng X, Yin W, Jiang Y, Yang D, Xu HE. Nature 620 676-681 (2023)
  43. Melatonin-Medicated Neural JNK3 Up-Regulation Promotes Ameloblastic Mineralization. Ren Q, Pan J, Chen Y, Shen Z, Yang Z, Kwon K, Guo Y, Wang Y, Ji F. Front Cell Dev Biol 9 749642 (2021)
  44. Pharmacological targeting of G protein-coupled receptor heteromers. Moreno E, Casajuana-Martin N, Coyle M, Campos BC, Galaj E, Del Torrent CL, Seyedian A, Rea W, Cai NS, Bonifazi A, Florán B, Xi ZX, Guitart X, Casadó V, Newman AH, Bishop C, Pardo L, Ferré S. Pharmacol Res 185 106476 (2022)
  45. Structural Elements Directing G Proteins and β-Arrestin Interactions with the Human Melatonin Type 2 Receptor Revealed by Natural Variants. Plouffe B, Karamitri A, Flock T, Gallion JM, Houston S, Daly CA, Bonnefond A, Guillaume JL, Le Gouill C, Froguel P, Lichtarge O, Deupi X, Jockers R, Bouvier M. ACS Pharmacol Transl Sci 5 89-101 (2022)
  46. Structural Insights into β-arrestin/CB1 Receptor Interaction: NMR and CD Studies on Model Peptides. Morales P, Bruix M, Jiménez MA. Int J Mol Sci 21 E8111 (2020)
  47. All-Atom Molecular Dynamics Simulations Indicated the Involvement of a Conserved Polar Signaling Channel in the Activation Mechanism of the Type I Cannabinoid Receptor. Sarkar A, Mitra A, Borics A. Int J Mol Sci 24 4232 (2023)
  48. Computational insights into ligand-induced G protein and β-arrestin signaling of the dopamine D1 receptor. Li H, Urs NM, Horenstein N. J Comput Aided Mol Des 37 227-244 (2023)
  49. Computational investigation of functional water molecules in GPCRs bound to G protein or arrestin. Hu J, Sun X, Kang Z, Cheng J. J Comput Aided Mol Des 37 91-105 (2023)
  50. Distinct activation mechanisms of β-arrestin-1 revealed by 19F NMR spectroscopy. Zhai R, Wang Z, Chai Z, Niu X, Li C, Jin C, Hu Y. Nat Commun 14 7865 (2023)
  51. Do arrestin oligomers have specific functions? Gurevich VV. Cell Signal (Middlet) 1 42-46 (2023)
  52. Feeling at home: Structure of the NTSR1-Gi complex in a lipid environment. Maharana J, Shukla AK. Nat Struct Mol Biol 28 331-333 (2021)
  53. Functional Role of Arrestin-1 Residues Interacting with Unphosphorylated Rhodopsin Elements. Vishnivetskiy SA, Weinstein LD, Zheng C, Gurevich EV, Gurevich VV. Int J Mol Sci 24 8903 (2023)
  54. In-Cell Arrestin-Receptor Interaction Assays. Zheng C, Javitch JA, Lambert NA, Donthamsetti P, Gurevich VV. Curr Protoc 3 e890 (2023)
  55. Structural insights into constitutive activity of 5-HT6 receptor. He L, Zhao Q, Qi J, Wang Y, Han W, Chen Z, Cong Y, Wang S. Proc Natl Acad Sci U S A 120 e2209917120 (2023)
  56. Surveying nonvisual arrestins reveals allosteric interactions between functional sites. Seckler JM, Robinson EN, Lewis SJ, Grossfield A. Proteins 91 99-107 (2023)
  57. Tail engagement of arrestin at the glucagon receptor. Chen K, Zhang C, Lin S, Yan X, Cai H, Yi C, Ma L, Chu X, Liu Y, Zhu Y, Han S, Zhao Q, Wu B. Nature 620 904-910 (2023)
  58. Unraveling allostery within the angiotensin II type 1 receptor for Gαq and β-arrestin coupling. Cao Y, van der Velden WJC, Namkung Y, Nivedha AK, Cho A, Sedki D, Holleran B, Lee N, Leduc R, Muk S, Le K, Bhattacharya S, Vaidehi N, Laporte SA. Sci Signal 16 eadf2173 (2023)


Related citations provided by authors (1)

  1. Molecular basis for high affinity agonist binding in GPCRs. Warne T, Edwards PC, Dore AS, Leslie AGW, Tate CG Biorxiv - (2018)