6j8j Citations

Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins.

Science 363 1303-1308 (2019)
Related entries: 6j8g, 6j8h, 6j8i

Cited: 206 times
EuropePMC logo PMID: 30765606

Abstract

Voltage-gated sodium channel Nav1.7 represents a promising target for pain relief. Here we report the cryo-electron microscopy structures of the human Nav1.7-β1-β2 complex bound to two combinations of pore blockers and gating modifier toxins (GMTs), tetrodotoxin with protoxin-II and saxitoxin with huwentoxin-IV, both determined at overall resolutions of 3.2 angstroms. The two structures are nearly identical except for minor shifts of voltage-sensing domain II (VSDII), whose S3-S4 linker accommodates the two GMTs in a similar manner. One additional protoxin-II sits on top of the S3-S4 linker in VSDIV The structures may represent an inactivated state with all four VSDs "up" and the intracellular gate closed. The structures illuminate the path toward mechanistic understanding of the function and disease of Nav1.7 and establish the foundation for structure-aided development of analgesics.

Reviews - 6j8j mentioned but not cited (10)

  1. Structure-Function and Therapeutic Potential of Spider Venom-Derived Cysteine Knot Peptides Targeting Sodium Channels. Cardoso FC, Lewis RJ. Front Pharmacol 10 366 (2019)
  2. Structural basis of cytoplasmic NaV1.5 and NaV1.4 regulation. Nathan S, Gabelli SB, Yoder JB, Srinivasan L, Aldrich RW, Tomaselli GF, Ben-Johny M, Amzel LM. J Gen Physiol 153 e202012722 (2021)
  3. Sodium Channels and Local Anesthetics-Old Friends With New Perspectives. Körner J, Albani S, Sudha Bhagavath Eswaran V, Roehl AB, Rossetti G, Lampert A. Front Pharmacol 13 837088 (2022)
  4. P-Loop Channels: Experimental Structures, and Physics-Based and Neural Networks-Based Models. Tikhonov DB, Zhorov BS. Membranes (Basel) 12 229 (2022)
  5. A structural atlas of druggable sites on Nav channels. Li Z, Wu Q, Yan N. Channels (Austin) 18 2287832 (2024)
  6. Photopharmacology of Ion Channels through the Light of the Computational Microscope. Nin-Hill A, Mueller NPF, Molteni C, Rovira C, Alfonso-Prieto M. Int J Mol Sci 22 12072 (2021)
  7. Voltage-gated sodium channels: from roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets. Sanchez-Sandoval AL, Hernández-Plata E, Gomora JC. Front Pharmacol 14 1206136 (2023)
  8. Chemical and Biological Tools for the Study of Voltage-Gated Sodium Channels in Electrogenesis and Nociception. Elleman AV, Du Bois J. Chembiochem 23 e202100625 (2022)
  9. Therapeutic targeting of voltage-gated sodium channel NaV1.7 for cancer metastasis. Pukkanasut P, Jaskula-Sztul R, Gomora JC, Velu SE. Front Pharmacol 15 1416705 (2024)
  10. Voltage-Gated Sodium Channel Inhibition by µ-Conotoxins. McMahon KL, Vetter I, Schroeder CI. Toxins (Basel) 16 55 (2024)

Articles - 6j8j mentioned but not cited (11)



Reviews citing this publication (41)

  1. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Biochem Pharmacol 181 114096 (2020)
  2. Structural mechanisms of transient receptor potential ion channels. Cao E. J Gen Physiol 152 e201811998 (2020)
  3. The role of π-helices in TRP channel gating. Zubcevic L, Lee SY. Curr Opin Struct Biol 58 314-323 (2019)
  4. Cation-π Interactions and their Functional Roles in Membrane Proteins. Infield DT, Rasouli A, Galles GD, Chipot C, Tajkhorshid E, Ahern CA. J Mol Biol 433 167035 (2021)
  5. Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform NaV1.7. Mulcahy JV, Pajouhesh H, Beckley JT, Delwig A, Du Bois J, Hunter JC. J Med Chem 62 8695-8710 (2019)
  6. Cryo-EM as a powerful tool for drug discovery. Van Drie JH, Tong L. Bioorg Med Chem Lett 30 127524 (2020)
  7. The conformational cycle of a prototypical voltage-gated sodium channel. Catterall WA, Wisedchaisri G, Zheng N. Nat Chem Biol 16 1314-1320 (2020)
  8. Spider Knottin Pharmacology at Voltage-Gated Sodium Channels and Their Potential to Modulate Pain Pathways. Dongol Y, Cardoso FC, Lewis RJ. Toxins (Basel) 11 E626 (2019)
  9. Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. Lopez-Charcas O, Pukkanasut P, Velu SE, Brackenbury WJ, Hales TG, Besson P, Gomora JC, Roger S. iScience 24 102270 (2021)
  10. Structural Advances in Voltage-Gated Sodium Channels. Jiang D, Zhang J, Xia Z. Front Pharmacol 13 908867 (2022)
  11. Structures Illuminate Cardiac Ion Channel Functions in Health and in Long QT Syndrome. Brewer KR, Kuenze G, Vanoye CG, George AL, Meiler J, Sanders CR. Front Pharmacol 11 550 (2020)
  12. Druggability of Voltage-Gated Sodium Channels-Exploring Old and New Drug Receptor Sites. Wisedchaisri G, Gamal El-Din TM. Front Pharmacol 13 858348 (2022)
  13. Current Trends and New Challenges in Marine Phycotoxins. Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Mar Drugs 20 198 (2022)
  14. Towards Structure-Guided Development of Pain Therapeutics Targeting Voltage-Gated Sodium Channels. Nguyen PT, Yarov-Yarovoy V. Front Pharmacol 13 842032 (2022)
  15. Cell-Adhesion Properties of β-Subunits in the Regulation of Cardiomyocyte Sodium Channels. Salvage SC, Huang CL, Jackson AP. Biomolecules 10 E989 (2020)
  16. The importance of the membrane for biophysical measurements. Chorev DS, Robinson CV. Nat Chem Biol 16 1285-1292 (2020)
  17. Voltage gated sodium and calcium channels: Discovery, structure, function, and Pharmacology. Catterall WA. Channels (Austin) 17 2281714 (2023)
  18. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Piper SJ, Johnson RM, Wootten D, Sexton PM. Chem Rev 122 13989-14017 (2022)
  19. Voltage-Gated Sodium Channels: A Prominent Target of Marine Toxins. Mackieh R, Abou-Nader R, Wehbe R, Mattei C, Legros C, Fajloun Z, Sabatier JM. Mar Drugs 19 562 (2021)
  20. Voltage-gated Sodium Channels and Blockers: An Overview and Where Will They Go? Li ZM, Chen LX, Li H. Curr Med Sci 39 863-873 (2019)
  21. Ca2+-dependent modulation of voltage-gated myocyte sodium channels. Salvage SC, Habib ZF, Matthews HR, Jackson AP, Huang CL. Biochem Soc Trans 49 1941-1961 (2021)
  22. Conformations of voltage-sensing domain III differentially define NaV channel closed- and open-state inactivation. Angsutararux P, Kang PW, Zhu W, Silva JR. J Gen Physiol 153 e202112891 (2021)
  23. Noncanonical Ion Channel Behaviour in Pain. Ciotu CI, Tsantoulas C, Meents J, Lampert A, McMahon SB, Ludwig A, Fischer MJM. Int J Mol Sci 20 E4572 (2019)
  24. Trafficking and Function of the Voltage-Gated Sodium Channel β2 Subunit. Cortada E, Brugada R, Verges M. Biomolecules 9 E604 (2019)
  25. Fenestropathy of Voltage-Gated Sodium Channels. Gamal El-Din TM, Lenaeus MJ. Front Pharmacol 13 842645 (2022)
  26. Mini-review: antibody therapeutics targeting G protein-coupled receptors and ion channels. Hutchings CJ. Antib Ther 3 257-264 (2020)
  27. Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Borrego J, Feher A, Jost N, Panyi G, Varga Z, Papp F. Pharmaceuticals (Basel) 14 1303 (2021)
  28. Inhibition of NaV1.7: the possibility of ideal analgesics. Kitano Y, Shinozuka T. RSC Med Chem 13 895-920 (2022)
  29. Feedback contributions to excitation-contraction coupling in native functioning striated muscle. Salvage SC, Dulhunty AF, Jeevaratnam K, Jackson AP, Huang CL. Philos Trans R Soc Lond B Biol Sci 378 20220162 (2023)
  30. Selective Targeting of Nav1.7 with Engineered Spider Venom-Based Peptides. Neff RA, Wickenden AD. Channels (Austin) 15 179-193 (2021)
  31. Synthetic Approaches to Zetekitoxin AB, a Potent Voltage-Gated Sodium Channel Inhibitor. Adachi K, Ishizuka H, Odagi M, Nagasawa K. Mar Drugs 18 E24 (2019)
  32. Na+ and K+ channels: history and structure. Armstrong CM, Hollingworth S. Biophys J 120 756-763 (2021)
  33. Simulation and Machine Learning Methods for Ion-Channel Structure Determination, Mechanistic Studies and Drug Design. Zhu Z, Deng Z, Wang Q, Wang Y, Zhang D, Xu R, Guo L, Wen H. Front Pharmacol 13 939555 (2022)
  34. Ion channels in osteoarthritis: emerging roles and potential targets. Zhou R, Fu W, Vasylyev D, Waxman SG, Liu CJ. Nat Rev Rheumatol 20 545-564 (2024)
  35. Natural Products in Polyclad Flatworms. McNab JM, Rodríguez J, Karuso P, Williamson JE. Mar Drugs 19 47 (2021)
  36. The modes of action of ion-channel-targeting neurotoxic insecticides: lessons from structural biology. Raisch T, Raunser S. Nat Struct Mol Biol 30 1411-1427 (2023)
  37. Conotoxins Targeting Voltage-Gated Sodium Ion Channels. Pei S, Wang N, Mei Z, Zhangsun D, Craik DJ, McIntosh JM, Zhu X, Luo S. Pharmacol Rev 76 828-845 (2024)
  38. Peptide and Peptidomimetic Inhibitors Targeting the Interaction of Collapsin Response Mediator Protein 2 with the N-Type Calcium Channel for Pain Relief. Perez-Miller S, Gomez K, Khanna R. ACS Pharmacol Transl Sci 7 1916-1936 (2024)
  39. Shining a Light on Venom-Peptide Receptors: Venom Peptides as Targeted Agents for In Vivo Molecular Imaging. Chow CY, King GF. Toxins (Basel) 16 307 (2024)
  40. Structural biology and molecular pharmacology of voltage-gated ion channels. Huang J, Pan X, Yan N. Nat Rev Mol Cell Biol (2024)
  41. Structural modeling of ion channels using AlphaFold2, RoseTTAFold2, and ESMFold. Nguyen PT, Harris BJ, Mateos DL, González AH, Murray AM, Yarov-Yarovoy V. Channels (Austin) 18 2325032 (2024)

Articles citing this publication (144)