6m2n Citations

Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients.

Abstract

Human infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and there is no cure currently. The 3CL protease (3CLpro) is a highly conserved protease which is indispensable for CoVs replication, and is a promising target for development of broad-spectrum antiviral drugs. In this study we investigated the anti-SARS-CoV-2 potential of Shuanghuanglian preparation, a Chinese traditional patent medicine with a long history for treating respiratory tract infection in China. We showed that either the oral liquid of Shuanghuanglian, the lyophilized powder of Shuanghuanglian for injection or their bioactive components dose-dependently inhibited SARS-CoV-2 3CLpro as well as the replication of SARS-CoV-2 in Vero E6 cells. Baicalin and baicalein, two ingredients of Shuanghuanglian, were characterized as the first noncovalent, nonpeptidomimetic inhibitors of SARS-CoV-2 3CLpro and exhibited potent antiviral activities in a cell-based system. Remarkably, the binding mode of baicalein with SARS-CoV-2 3CLpro determined by X-ray protein crystallography was distinctly different from those of known 3CLpro inhibitors. Baicalein was productively ensconced in the core of the substrate-binding pocket by interacting with two catalytic residues, the crucial S1/S2 subsites and the oxyanion loop, acting as a "shield" in front of the catalytic dyad to effectively prevent substrate access to the catalytic dyad within the active site. Overall, this study provides an example for exploring the in vitro potency of Chinese traditional patent medicines and effectively identifying bioactive ingredients toward a specific target, and gains evidence supporting the in vivo studies of Shuanghuanglian oral liquid as well as two natural products for COVID-19 treatment.

Reviews - 6m2n mentioned but not cited (31)

  1. The SARS-CoV-2 main protease as drug target. Ullrich S, Nitsche C. Bioorg Med Chem Lett 30 127377 (2020)
  2. Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Mengist HM, Dilnessa T, Jin T. Front Chem 9 622898 (2021)
  3. Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Mariano G, Farthing RJ, Lale-Farjat SLM, Bergeron JRC. Front Mol Biosci 7 605236 (2020)
  4. Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities. Cannalire R, Cerchia C, Beccari AR, Di Leva FS, Summa V. J Med Chem 65 2716-2746 (2022)
  5. Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Amin SA, Banerjee S, Ghosh K, Gayen S, Jha T. Bioorg Med Chem 29 115860 (2021)
  6. SARS-CoV-2 Mpro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. Citarella A, Scala A, Piperno A, Micale N. Biomolecules 11 607 (2021)
  7. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Yang L, Wang Z. Biomedicines 9 689 (2021)
  8. What coronavirus 3C-like protease tells us: From structure, substrate selectivity, to inhibitor design. Xiong M, Su H, Zhao W, Xie H, Shao Q, Xu Y. Med Res Rev 41 1965-1998 (2021)
  9. Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. Cui W, Yang K, Yang H. Front Mol Biosci 7 616341 (2020)
  10. Structure and Function of Major SARS-CoV-2 and SARS-CoV Proteins. Gorkhali R, Koirala P, Rijal S, Mainali A, Baral A, Bhattarai HK. Bioinform Biol Insights 15 11779322211025876 (2021)
  11. Targeting novel structural and functional features of coronavirus protease nsp5 (3CLpro, Mpro) in the age of COVID-19. Roe MK, Junod NA, Young AR, Beachboard DC, Stobart CC. J Gen Virol 102 (2021)
  12. Fight against novel coronavirus: A perspective of medicinal chemists. Amin SA, Jha T. Eur J Med Chem 201 112559 (2020)
  13. Targeting Proteases for Treating COVID-19. Luan B, Huynh T, Cheng X, Lan G, Wang HR. J Proteome Res 19 4316-4326 (2020)
  14. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Saied EM, El-Maradny YA, Osman AA, Darwish AMG, Abo Nahas HH, Niedbała G, Piekutowska M, Abdel-Rahman MA, Balbool BA, Abdel-Azeem AM. Pharmaceutics 13 1759 (2021)
  15. Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature's toolbox of bioactive compounds. Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Comput Struct Biotechnol J 20 1306-1344 (2022)
  16. Genomics insights of SARS-CoV-2 (COVID-19) into target-based drug discovery. Chellapandi P, Saranya S. Med Chem Res 29 1777-1791 (2020)
  17. Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery. Wang Z, Yang L, Zhao XE. Comput Struct Biotechnol J 19 4684-4701 (2021)
  18. Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Gao S, Huang T, Song L, Xu S, Cheng Y, Cherukupalli S, Kang D, Zhao T, Sun L, Zhang J, Zhan P, Liu X. Acta Pharm Sin B 12 581-599 (2022)
  19. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Chem Rev 122 11287-11368 (2022)
  20. Union is strength: antiviral and anti-inflammatory drugs for COVID-19. Naveja JJ, Madariaga-Mazón A, Flores-Murrieta F, Granados-Montiel J, Maradiaga-Ceceña M, Alaniz VD, Maldonado-Rodriguez M, García-Morales J, Senosiain-Peláez JP, Martinez-Mayorga K. Drug Discov Today 26 229-239 (2021)
  21. Repositioning microbial biotechnology against COVID-19: the case of microbial production of flavonoids. Goris T, Pérez-Valero Á, Martínez I, Yi D, Fernández-Calleja L, San León D, Bornscheuer UT, Magadán-Corpas P, Lombó F, Nogales J. Microb Biotechnol 14 94-110 (2021)
  22. Innate immune evasion mediated by picornaviral 3C protease: Possible lessons for coronaviral 3C-like protease? Ng CS, Stobart CC, Luo H. Rev Med Virol 31 1-22 (2021)
  23. Chaetomugilins and Chaetoviridins-Promising Natural Metabolites: Structures, Separation, Characterization, Biosynthesis, Bioactivities, Molecular Docking, and Molecular Dynamics. Omar AM, Mohamed GA, Ibrahim SRM. J Fungi (Basel) 8 127 (2022)
  24. Molecular Docking as a Potential Approach in Repurposing Drugs Against COVID-19: a Systematic Review and Novel Pharmacophore Models. Fadlalla M, Ahmed M, Ali M, Elshiekh AA, Yousef BA. Curr Pharmacol Rep 8 212-226 (2022)
  25. Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-Coronavirus. Hartini Y, Saputra B, Wahono B, Auw Z, Indayani F, Adelya L, Namba G, Hariono M. Results Chem 3 100087 (2021)
  26. Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2. Ali F, Alom S, Shakya A, Ghosh SK, Singh UP, Bhat HR. Arch Pharm (Weinheim) 355 e2100360 (2022)
  27. Pharmaceutical Prospects of Curcuminoids for the Remedy of COVID-19: Truth or Myth. Fu YS, Ho WY, Kang N, Tsai MJ, Wu J, Huang L, Weng CF. Front Pharmacol 13 863082 (2022)
  28. The Therapeutic Potential of Natural Dietary Flavonoids against SARS-CoV-2 Infection. Wang Z, Yang L. Nutrients 15 3443 (2023)
  29. Evaluation of the anti-diabetic drug sitagliptin as a novel attenuate to SARS-CoV-2 evidence-based in silico: molecular docking and molecular dynamics. da Cruz Freire JE, Júnior JEM, Pinheiro DP, da Cruz Paiva Lima GE, do Amaral CL, Veras VR, Madeira MP, Freire EBL, Freire EBL, Ozório RG, Fernandes VO, Montenegro APDR, Montenegro RC, Colares JKB, Júnior RMM. 3 Biotech 12 344 (2022)
  30. Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules. Guerra Y, Celi D, Cueva P, Perez-Castillo Y, Giampieri F, Alvarez-Suarez JM, Tejera E. ACS Omega 7 44542-44555 (2022)
  31. The current state of validated small molecules inhibiting SARS-CoV-2 nonstructural proteins. Kocabaş F, Uslu M. Turk J Biol 45 469-483 (2021)

Articles - 6m2n mentioned but not cited (105)

  1. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Su HX, Yao S, Zhao WF, Li MJ, Liu J, Shang WJ, Xie H, Ke CQ, Hu HC, Gao MN, Yu KQ, Liu H, Shen JS, Tang W, Zhang LK, Xiao GF, Ni L, Wang DW, Zuo JP, Jiang HL, Bai F, Wu Y, Ye Y, Xu YC. Acta Pharmacol Sin 41 1167-1177 (2020)
  2. Screening of phytochemicals as potent inhibitor of 3-chymotrypsin and papain-like proteases of SARS-CoV2: an in silico approach to combat COVID-19. Swargiary A, Mahmud S, Saleh MA. J Biomol Struct Dyn 40 2067-2081 (2022)
  3. Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy. Mohammad T, Shamsi A, Anwar S, Umair M, Hussain A, Rehman MT, AlAjmi MF, Islam A, Hassan MI. Virus Res 288 198102 (2020)
  4. Benchmark of Popular Free Energy Approaches Revealing the Inhibitors Binding to SARS-CoV-2 Mpro. Ngo ST, Tam NM, Pham MQ, Nguyen TH. J Chem Inf Model 61 2302-2312 (2021)
  5. Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: an integrated computational approach. Mishra CB, Pandey P, Sharma RD, Malik MZ, Mongre RK, Lynn AM, Prasad R, Jeon R, Prakash A. Brief Bioinform 22 1346-1360 (2021)
  6. Microbial Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro). Sayed AM, Alhadrami HA, El-Gendy AO, Shamikh YI, Belbahri L, Hassan HM, Abdelmohsen UR, Rateb ME. Microorganisms 8 E970 (2020)
  7. Identification of Inhibitors of SARS-CoV-2 3CL-Pro Enzymatic Activity Using a Small Molecule in Vitro Repurposing Screen. Kuzikov M, Costanzi E, Reinshagen J, Esposito F, Vangeel L, Wolf M, Ellinger B, Claussen C, Geisslinger G, Corona A, Iaconis D, Talarico C, Manelfi C, Cannalire R, Rossetti G, Gossen J, Albani S, Musiani F, Herzog K, Ye Y, Giabbai B, Demitri N, Jochmans D, Jonghe S, Rymenants J, Summa V, Tramontano E, Beccari AR, Leyssen P, Storici P, Neyts J, Gribbon P, Zaliani A. ACS Pharmacol Transl Sci 4 1096-1110 (2021)
  8. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus. Eleftheriou P, Amanatidou D, Petrou A, Geronikaki A. Molecules 25 E2529 (2020)
  9. Proton-Coupled Conformational Activation of SARS Coronavirus Main Proteases and Opportunity for Designing Small-Molecule Broad-Spectrum Targeted Covalent Inhibitors. Verma N, Henderson JA, Shen J. J Am Chem Soc 142 21883-21890 (2020)
  10. Perspectives on SARS-CoV-2 Main Protease Inhibitors. Gao K, Wang R, Chen J, Tepe JJ, Huang F, Wei GW. J Med Chem 64 16922-16955 (2021)
  11. Computational Studies of SARS-CoV-2 3CLpro: Insights from MD Simulations. Grottesi A, Bešker N, Emerson A, Manelfi C, Beccari AR, Frigerio F, Lindahl E, Cerchia C, Talarico C. Int J Mol Sci 21 E5346 (2020)
  12. Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases. Chen Z, Cui Q, Cooper L, Zhang P, Lee H, Chen Z, Wang Y, Liu X, Rong L, Du R. Cell Biosci 11 45 (2021)
  13. Update on the target structures of SARS-CoV-2: A systematic review. Prajapat M, Sarma P, Shekhar N, Prakash A, Avti P, Bhattacharyya A, Kaur H, Kumar S, Bansal S, Sharma AR, Medhi B. Indian J Pharmacol 52 142-149 (2020)
  14. Discovery of chebulagic acid and punicalagin as novel allosteric inhibitors of SARS-CoV-2 3CLpro. Du R, Cooper L, Chen Z, Lee H, Rong L, Cui Q. Antiviral Res 190 105075 (2021)
  15. Conserved interactions required for inhibition of the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Shitrit A, Zaidman D, Kalid O, Bloch I, Doron D, Yarnizky T, Buch I, Segev I, Ben-Zeev E, Segev E, Kobiler O. Sci Rep 10 20808 (2020)
  16. Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols. Bahun M, Jukić M, Oblak D, Kranjc L, Bajc G, Butala M, Bozovičar K, Bratkovič T, Podlipnik Č, Poklar Ulrih N. Food Chem 373 131594 (2022)
  17. Rutin and flavone analogs as prospective SARS-CoV-2 main protease inhibitors: In silico drug discovery study. Ibrahim MAA, Mohamed EAR, Abdelrahman AHM, Allemailem KS, Moustafa MF, Shawky AM, Mahzari A, Hakami AR, Abdeljawaad KAA, Atia MAM. J Mol Graph Model 105 107904 (2021)
  18. A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics. Gossen J, Albani S, Hanke A, Joseph BP, Bergh C, Kuzikov M, Costanzi E, Manelfi C, Storici P, Gribbon P, Beccari AR, Talarico C, Spyrakis F, Lindahl E, Zaliani A, Carloni P, Wade RC, Musiani F, Kokh DB, Rossetti G. ACS Pharmacol Transl Sci 4 1079-1095 (2021)
  19. Crystal structure of SARS-CoV-2 main protease in complex with the natural product inhibitor shikonin illuminates a unique binding mode. Li J, Zhou X, Zhang Y, Zhong F, Lin C, McCormick PJ, Jiang F, Luo J, Zhou H, Wang Q, Fu Y, Duan J, Zhang J. Sci Bull (Beijing) 66 661-663 (2021)
  20. First structure-activity relationship analysis of SARS-CoV-2 virus main protease (Mpro) inhibitors: an endeavor on COVID-19 drug discovery. Amin SA, Banerjee S, Singh S, Qureshi IA, Gayen S, Jha T. Mol Divers 25 1827-1838 (2021)
  21. A Comprehensive Mapping of the Druggable Cavities within the SARS-CoV-2 Therapeutically Relevant Proteins by Combining Pocket and Docking Searches as Implemented in Pockets 2.0. Gervasoni S, Vistoli G, Talarico C, Manelfi C, Beccari AR, Studer G, Tauriello G, Waterhouse AM, Schwede T, Pedretti A. Int J Mol Sci 21 E5152 (2020)
  22. Design, synthesis and in vitro evaluation of novel SARS-CoV-2 3CLpro covalent inhibitors. Stille JK, Tjutrins J, Wang G, Venegas FA, Hennecker C, Rueda AM, Sharon I, Blaine N, Miron CE, Pinus S, Labarre A, Plescia J, Burai Patrascu M, Zhang X, Wahba AS, Vlaho D, Huot MJ, Schmeing TM, Mittermaier AK, Moitessier N. Eur J Med Chem 229 114046 (2022)
  23. Manipulated bio antimicrobial peptides from probiotic bacteria as proposed drugs for COVID-19 disease. Balmeh N, Mahmoudi S, Fard NA. Inform Med Unlocked 23 100515 (2021)
  24. Ensemble Docking Coupled to Linear Interaction Energy Calculations for Identification of Coronavirus Main Protease (3CLpro) Non-Covalent Small-Molecule Inhibitors. Jukič M, Janežič D, Bren U. Molecules 25 E5808 (2020)
  25. Interaction of 8-anilinonaphthalene-1-sulfonate with SARS-CoV-2 main protease and its application as a fluorescent probe for inhibitor identification. Deetanya P, Hengphasatporn K, Wilasluck P, Shigeta Y, Rungrotmongkol T, Wangkanont K. Comput Struct Biotechnol J 19 3364-3371 (2021)
  26. Computational guided identification of a citrus flavonoid as potential inhibitor of SARS-CoV-2 main protease. Gogoi N, Chowdhury P, Goswami AK, Das A, Chetia D, Gogoi B. Mol Divers 25 1745-1759 (2021)
  27. Pharmacophore Model for SARS-CoV-2 3CLpro Small-Molecule Inhibitors and in Vitro Experimental Validation of Computationally Screened Inhibitors. Glaab E, Manoharan GB, Abankwa D. J Chem Inf Model 61 4082-4096 (2021)
  28. Small-Molecule Thioesters as SARS-CoV-2 Main Protease Inhibitors: Enzyme Inhibition, Structure-Activity Relationships, Antiviral Activity, and X-ray Structure Determination. Pillaiyar T, Flury P, Krüger N, Su H, Schäkel L, Barbosa Da Silva E, Eppler O, Kronenberger T, Nie T, Luedtke S, Rocha C, Sylvester K, Petry MRI, McKerrow JH, Poso A, Pöhlmann S, Gütschow M, O'Donoghue AJ, Xu Y, Müller CE, Laufer SA. J Med Chem 65 9376-9395 (2022)
  29. Crystallographic models of SARS-CoV-2 3CLpro: in-depth assessment of structure quality and validation. Jaskolski M, Dauter Z, Shabalin IG, Gilski M, Brzezinski D, Kowiel M, Rupp B, Wlodawer A. IUCrJ 8 238-256 (2021)
  30. Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study. Surti M, Patel M, Adnan M, Moin A, Ashraf SA, Siddiqui AJ, Snoussi M, Deshpande S, Reddy MN. RSC Adv 10 37707-37720 (2020)
  31. Molecular mechanism of anti-SARS-CoV2 activity of Ashwagandha-derived withanolides. Dhanjal JK, Kumar V, Garg S, Subramani C, Agarwal S, Wang J, Zhang H, Kaul A, Kalra RS, Kaul SC, Vrati S, Sundar D, Wadhwa R. Int J Biol Macromol 184 297-312 (2021)
  32. Prioritisation of Compounds for 3CLpro Inhibitor Development on SARS-CoV-2 Variants. Jukič M, Škrlj B, Tomšič G, Pleško S, Podlipnik Č, Bren U. Molecules 26 3003 (2021)
  33. Potential inhibitors of SARS-CoV-2 (COVID 19) proteases PLpro and Mpro/ 3CLpro: molecular docking and simulation studies of three pertinent medicinal plant natural components. Verma D, Mitra D, Paul M, Chaudhary P, Kamboj A, Thatoi H, Janmeda P, Jain D, Panneerselvam P, Shrivastav R, Pant K, Das Mohapatra PK. Curr Res Pharmacol Drug Discov 2 100038 (2021)
  34. GC-MS, LC-MS/MS, Docking and Molecular Dynamics Approaches to Identify Potential SARS-CoV-2 3-Chymotrypsin-Like Protease Inhibitors from Zingiber officinale Roscoe. Zubair MS, Maulana S, Widodo A, Pitopang R, Arba M, Hariono M. Molecules 26 5230 (2021)
  35. SARS-CoV-2 nsp5 Exhibits Stronger Catalytic Activity and Interferon Antagonism than Its SARS-CoV Ortholog. Chen J, Li Z, Guo J, Xu S, Zhou J, Chen Q, Tong X, Wang D, Peng G, Fang L, Xiao S. J Virol 96 e0003722 (2022)
  36. Protein structural heterogeneity: A hypothesis for the basis of proteolytic recognition by the main protease of SARS-CoV and SARS-CoV-2. Behnam MAM. Biochimie 182 177-184 (2021)
  37. C60 fullerene against SARS-CoV-2 coronavirus: an in silico insight. Hurmach VV, Platonov MO, Prylutska SV, Scharff P, Prylutskyy YI, Ritter U. Sci Rep 11 17748 (2021)
  38. Potential SARS-CoV-2 3CLpro inhibitors from chromene, flavonoid and hydroxamic acid compound based on FRET assay, docking and pharmacophore studies. Hariono M, Hariyono P, Dwiastuti R, Setyani W, Yusuf M, Salin N, Wahab H. Results Chem 3 100195 (2021)
  39. Structure-Based Identification of Naphthoquinones and Derivatives as Novel Inhibitors of Main Protease Mpro and Papain-like Protease PLpro of SARS-CoV-2. Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O'Donoghue AJ, da Silva Júnior EN, Ferreira RS. J Chem Inf Model 62 6553-6573 (2022)
  40. Structure-based virtual screening of bioactive compounds from Indonesian medical plants against severe acute respiratory syndrome coronavirus-2. Gani MA, Nurhan AD, Maulana S, Siswodihardjo S, Shinta DW, Khotib J. J Adv Pharm Technol Res 12 120-126 (2021)
  41. Antiviral phytocompounds "ellagic acid" and "(+)-sesamin" of Bridelia retusa identified as potential inhibitors of SARS-CoV-2 3CL pro using extensive molecular docking, molecular dynamics simulation studies, binding free energy calculations, and bioactivity prediction. Umar AK, Zothantluanga JH, Aswin K, Maulana S, Sulaiman Zubair M, Lalhlenmawia H, Rudrapal M, Chetia D. Struct Chem 33 1445-1465 (2022)
  42. Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro. Zapata-Cardona MI, Flórez-Álvarez L, Zapata-Builes W, Guerra-Sandoval AL, Guerra-Almonacid CM, Hincapié-García J, Rugeles MT, Hernandez JC. Front Microbiol 13 721103 (2022)
  43. In silico screening-based discovery of novel covalent inhibitors of the SARS-CoV-2 3CL protease. Xiong M, Nie T, Shao Q, Li M, Su H, Xu Y. Eur J Med Chem 231 114130 (2022)
  44. Prediction of Anti-COVID 19 Therapeutic Power of Medicinal Moroccan Plants Using Molecular Docking. Nouadi B, Ezaouine A, El Messal M, Blaghen M, Bennis F, Chegdani F. Bioinform Biol Insights 15 11779322211009199 (2021)
  45. Thiazole/Thiadiazole/Benzothiazole Based Thiazolidin-4-One Derivatives as Potential Inhibitors of Main Protease of SARS-CoV-2. Petrou A, Zagaliotis P, Theodoroula NF, Mystridis GA, Vizirianakis IS, Walsh TJ, Geronikaki A. Molecules 27 2180 (2022)
  46. Discovery of 4'-O-methylscutellarein as a potent SARS-CoV-2 main protease inhibitor. Wu Q, Yan S, Wang Y, Li M, Xiao Y, Li Y. Biochem Biophys Res Commun 604 76-82 (2022)
  47. Glossary of phytoconstituents: Can these be repurposed against SARS CoV-2? A quick in silico screening of various phytoconstituents from plant Glycyrrhiza glabra with SARS CoV-2 main protease. Hejazi II, Beg MA, Imam MA, Athar F, Islam A. Food Chem Toxicol 150 112057 (2021)
  48. Hypericin Inhibit Alpha-Coronavirus Replication by Targeting 3CL Protease. Zhang Y, Chen H, Zou M, Oerlemans R, Shao C, Ren Y, Zhang R, Huang X, Li G, Cong Y. Viruses 13 1825 (2021)
  49. Phytoconstituents, In Vitro Anti-Infective Activity of Buddleja indica Lam., and In Silico Evaluation of its SARS-CoV-2 Inhibitory Potential. Youssef FS, Altyar AE, Omar AM, Ashour ML. Front Pharmacol 12 619373 (2021)
  50. Potential mechanism of action of Jing Fang Bai Du San in the treatment of COVID-19 using docking and network pharmacology. Li J, Zhang K, Bao J, Yang J, Wu C. Int J Med Sci 19 213-224 (2022)
  51. Qualitative Estimation of Protein-Ligand Complex Stability through Thermal Titration Molecular Dynamics Simulations. Pavan M, Menin S, Bassani D, Sturlese M, Moro S. J Chem Inf Model 62 5715-5728 (2022)
  52. Target-Based Virtual Screening and LC/MS-Guided Isolation Procedure for Identifying Phloroglucinol-Terpenoid Inhibitors of SARS-CoV-2. Hou B, Zhang YM, Liao HY, Fu LF, Li DD, Zhao X, Qi JX, Yang W, Xiao GF, Yang L, Zuo ZY, Wang L, Zhang XL, Bai F, Yang L, Gao GF, Song H, Hu JM, Shang WJ, Zhou J. J Nat Prod 85 327-336 (2022)
  53. An online repository of solvation thermodynamic and structural maps of SARS-CoV-2 targets. Olson B, Cruz A, Chen L, Ghattas M, Ji Y, Huang K, Ayoub S, Luchko T, McKay DJ, Kurtzman T. J Comput Aided Mol Des 34 1219-1228 (2020)
  54. Current status of structure-based drug repurposing against COVID-19 by targeting SARS-CoV-2 proteins. Hijikata A, Shionyu C, Nakae S, Shionyu M, Ota M, Kanaya S, Shirai T. Biophys Physicobiol 18 226-240 (2021)
  55. An integrated virtual screening of compounds from Carica papaya leaves against multiple protein targets of SARS-Coronavirus-2. Hariyono P, Patramurti C, Candrasari DS, Hariono M. Results Chem 3 100113 (2021)
  56. Computational guided identification of potential leads from Acacia pennata (L.) Willd. as inhibitors for cellular entry and viral replication of SARS-CoV-2. Zothantluanga JH, Gogoi N, Shakya A, Chetia D, Lalthanzara H. Futur J Pharm Sci 7 201 (2021)
  57. DINC-COVID: A webserver for ensemble docking with flexible SARS-CoV-2 proteins. Hall-Swan S, Devaurs D, Rigo MM, Antunes DA, Kavraki LE, Zanatta G. Comput Biol Med 139 104943 (2021)
  58. High-throughput screening of SARS-CoV-2 main and papain-like protease inhibitors. Zang Y, Su M, Wang Q, Cheng X, Zhang W, Zhao Y, Chen T, Jiang Y, Shen Q, Du J, Tan Q, Wang P, Gao L, Jin Z, Zhang M, Li C, Zhu Y, Feng B, Tang B, Xie H, Wang MW, Zheng M, Pan X, Yang H, Xu Y, Wu B, Zhang L, Rao Z, Yang X, Jiang H, Xiao G, Zhao Q, Li J. Protein Cell 14 17-27 (2023)
  59. Merbromin is a mixed-type inhibitor of 3-chyomotrypsin like protease of SARS-CoV-2. Chen J, Zhang Y, Zeng D, Zhang B, Ye X, Zeng Z, Zhang XK, Wang Z, Zhou H. Biochem Biophys Res Commun 591 118-123 (2022)
  60. Synergistic Effects of Natural Compounds Toward Inhibition of SARS-CoV-2 3CL Protease. Mishra A, Khan WH, Rathore AS. J Chem Inf Model 61 5708-5718 (2021)
  61. Antimicrobial Alkaloids from Marine-Derived Fungi as Drug Leads versus COVID-19 Infection: A Computational Approach to Explore their Anti-COVID-19 Activity and ADMET Properties. Sweilam SH, Alqarni MH, Youssef FS. Evid Based Complement Alternat Med 2022 5403757 (2022)
  62. Crystal structure of SARS-CoV 3C-like protease with baicalein. Feng J, Li D, Zhang J, Yin X, Li J. Biochem Biophys Res Commun 611 190-194 (2022)
  63. Ligand-based design, molecular dynamics and ADMET studies of suggested SARS-CoV-2 Mpro inhibitors. Mohamed NM, Ali EMH, AboulMagd AM. RSC Adv 11 4523-4538 (2021)
  64. In-silico Computational Investigations of AntiViral Lignan Derivatives as Potent Inhibitors of SARS CoV-2. Sureja DK, Shah AP, Gajjar ND, Jadeja SB, Bodiwala KB, Dhameliya TM. ChemistrySelect 7 e202202069 (2022)
  65. Discovery of All-d-Peptide Inhibitors of SARS-CoV-2 3C-like Protease. Eberle RJ, Sevenich M, Gering I, Scharbert L, Strodel B, Lakomek NA, Santur K, Mohrlüder J, Coronado MA, Willbold D. ACS Chem Biol 18 315-330 (2023)
  66. Epitope-based peptide vaccine design and elucidation of novel compounds against 3C like protein of SARS-CoV-2. Sajid M, Marriam S, Mukhtar H, Sohail S, Sajid M, Sehgal SA. PLoS One 17 e0264700 (2022)
  67. Identification of 1H-purine-2,6-dione derivative as a potential SARS-CoV-2 main protease inhibitor: molecular docking, dynamic simulations, and energy calculations. Nada H, Elkamhawy A, Lee K. PeerJ 10 e14120 (2022)
  68. Identification of Darunavir Derivatives for Inhibition of SARS-CoV-2 3CLpro. Ma L, Xie Y, Zhu M, Yi D, Zhao J, Guo S, Zhang Y, Wang J, Li Q, Wang Y, Cen S. Int J Mol Sci 23 16011 (2022)
  69. Insights into the Antimicrobial, Antioxidant, Anti-SARS-CoV-2 and Cytotoxic Activities of Pistacia lentiscus Bark and Phytochemical Profile; In Silico and In Vitro Study. Selim S, Almuhayawi MS, Alharbi MT, Al Jaouni SK, Alharthi A, Abdel-Wahab BA, Ibrahim MAR, Alsuhaibani AM, Warrad M, Rashed K. Antioxidants (Basel) 11 930 (2022)
  70. Metabologenomics approach to the discovery of novel compounds from Streptomyces sp. GMR22 as anti-SARS-CoV-2 drugs. Melinda YN, Widada J, Wahyuningsih TD, Febriansah R, Damayanti E, Mustofa M. Heliyon 7 e08308 (2021)
  71. 2-Phenoxyacetamide derivatives as SARS-CoV-2 main protease inhibitor: In silico studies. Hariyono P, Dwiastuti R, Yusuf M, Salin NH, Hariono M. Results Chem 4 100263 (2022)
  72. A Computational Study of Carbazole Alkaloids from Murraya koenigii as Potential SARS-CoV-2 Main Protease Inhibitors. Wadanambi PM, Jayathilaka N, Seneviratne KN. Appl Biochem Biotechnol 195 573-596 (2023)
  73. An integrated metabolomic and proteomic approach for the identification of covalent inhibitors of the main protease (Mpro) of SARS-COV-2 from crude natural extracts. Baron G, Borella S, Della Vedova L, Vittorio S, Vistoli G, Carini M, Aldini G, Altomare A. Talanta 252 123824 (2023)
  74. Conserved protein targets for developing pan-coronavirus drugs based on sequence and 3D structure similarity analyses. Ma M, Yang Y, Wu L, Zhou L, Shi Y, Han J, Xu Z, Zhu W. Comput Biol Med 145 105455 (2022)
  75. Discovery of Polyphenolic Natural Products as SARS-CoV-2 Mpro Inhibitors for COVID-19. Krüger N, Kronenberger T, Xie H, Rocha C, Pöhlmann S, Su H, Xu Y, Laufer SA, Pillaiyar T. Pharmaceuticals (Basel) 16 190 (2023)
  76. Discovery of quinazolin-4-one-based non-covalent inhibitors targeting the severe acute respiratory syndrome coronavirus 2 main protease (SARS-CoV-2 Mpro). Zhang K, Wang T, Li M, Liu M, Tang H, Wang L, Ye K, Yang J, Jiang S, Xiao Y, Xie Y, Lu M, Zhang X. Eur J Med Chem 257 115487 (2023)
  77. In silico evaluation of flavonoids as potential inhibitors of SARS-CoV-2 main nonstructural proteins (Nsps)-amentoflavone as a multitarget candidate. Portilla-Martínez A, Ortiz-Flores M, Hidalgo I, Gonzalez-Ruiz C, Meaney E, Ceballos G, Nájera N. J Mol Model 28 404 (2022)
  78. In vitro and in silico evaluation of antiretrovirals against SARS-CoV-2: A drug repurposing approach. Zapata-Cardona MI, Florez-Alvarez L, Guerra-Sandoval AL, Chvatal-Medina M, Guerra-Almonacid CM, Hincapie-Garcia J, Hernandez JC, Rugeles MT, Zapata-Builes W. AIMS Microbiol 9 20-40 (2023)
  79. Interactive deciphering electron-shuttling characteristics of agricultural wastes with potential bioenergy-steered anti-COVID-19 activity via microbial fuel cells. Tsai PW, Hsueh CC, Yang HC, Tsai HY, Chen BY. J Taiwan Inst Chem Eng 136 104426 (2022)
  80. Molecular docking and simulation studies of synthetic protease inhibitors against COVID-19: a computational study. Gouhar SA, Elshahid ZA. J Biomol Struct Dyn 40 13976-13996 (2022)
  81. Novel ciprofloxacin and norfloxacin-tetrazole hybrids as potential antibacterial and antiviral agents: Targeting S. aureus topoisomerase and SARS-CoV-2-MPro. Cardoso-Ortiz J, Leyva-Ramos S, Baines KM, Gómez-Durán CFA, Hernández-López H, Palacios-Can FJ, Valcarcel-Gamiño JA, Leyva-Peralta MA, Razo-Hernández RS. J Mol Struct 1274 134507 (2023)
  82. Novel covalent and non-covalent complex-based pharmacophore models of SARS-CoV-2 main protease (Mpro) elucidated by microsecond MD simulations. Hayek-Orduz Y, Vásquez AF, Villegas-Torres MF, Caicedo PA, Achenie LEK, González Barrios AF. Sci Rep 12 14030 (2022)
  83. Synthesis and Biochemical Evaluation of 8H-Indeno[1,2-d]thiazole Derivatives as Novel SARS-CoV-2 3CL Protease Inhibitors. Wu J, Feng B, Gao LX, Zhang C, Li J, Xiang DJ, Zang Y, Wang WL. Molecules 27 3359 (2022)
  84. Synthesis and In Silico Investigation of Isatin-Based Schiff Bases as Potential Inhibitors for Promising Targets against SARS-CoV-2. Esam Z, Akhavan M, Lotfi M, Bekhradnia A. ChemistrySelect 7 e202201983 (2022)
  85. Withasomniferol C, a new potential SARS-CoV-2 main protease inhibitor from the Withania somnifera plant proposed by in silico approaches. Kandagalla S, Rimac H, Gurushankar K, Novak J, Grishina M, Potemkin V. PeerJ 10 e13374 (2022)
  86. In silico screening of potential compounds from begonia genus as 3CL protease (3Cl pro) SARS-CoV-2 inhibitors. Maulana S, Wahyuni TS, Widiyanti P, Zubair MS. J Public Health Afr 14 2508 (2023)
  87. research-article An Online Repository of Solvation Thermodynamic and Structural Maps of SARS-CoV-2 Targets. Olson B, Cruz A, Chen L, Ghattas M, Ji Y, Huang K, McKay DJ, Kurtzman T. ChemRxiv (2020)
  88. Research Support, Non-U.S. Gov't Covid-19: From structure to therapeutic targeting in studying approved drugs and local DNA vaccination. Wang Z, Hong X, Wang H, Liu J, Liu JP. Clin Exp Pharmacol Physiol 47 1771-1773 (2020)
  89. Design of Potent Inhibitors Targeting the Main Protease of SARS-CoV-2 Using QSAR Modeling, Molecular Docking, and Molecular Dynamics Simulations. Oubahmane M, Hdoufane I, Delaite C, Sayede A, Cherqaoui D, El Allali A. Pharmaceuticals (Basel) 16 608 (2023)
  90. Development and Evaluation of a Self-Nanoemulsifying Drug Delivery System for Sinapic Acid with Improved Antiviral Efficacy against SARS-CoV-2. Alhadrami HA, El-Din ASGS, Hassan HM, Sayed AM, Alhadrami AH, Rateb ME, Naguib DM. Pharmaceutics 15 2531 (2023)
  91. Discovery of Chalcone-Based Hybrid Structures as High Affinity and Site-Specific Inhibitors against SARS-CoV-2: A Comprehensive Structural Analysis Based on Various Host-Based and Viral Targets. Valipour M, Di Giacomo S, Di Sotto A, Irannejad H. Int J Mol Sci 24 8789 (2023)
  92. Discovery of putative inhibitors against main drivers of SARS-CoV-2 infection: Insight from quantum mechanical evaluation and molecular modeling. Balogun TA, Chukwudozie OS, Ogbodo UC, Junaid IO, Sunday OA, Ige OM, Aborode AT, Akintayo AD, Oluwarotimi EA, Oluwafemi IO, Saibu OA, Chuckwuemaka P, Omoboyowa DA, Alausa AO, Atasie NH, Ilesanmi A, Dairo G, Tiamiyu ZA, Batiha GE, Alkhuriji AF, Al-Megrin WAI, De Waard M, Sabatier JM. Front Chem 10 964446 (2022)
  93. Drug Potency Prediction of SARS-CoV-2 Main Protease Inhibitors Based on a Graph Generative Model. Fadlallah S, Julià C, García-Vallvé S, Pujadas G, Serratosa F. Int J Mol Sci 24 8779 (2023)
  94. Effects of diarylbutane lignans from Schisandra chinensis fruit on SARS-CoV-2 3CLpro and PLpro and their in vitro anti-inflammatory properties. Li B, Qiao L, Xiao Q, Zhang J, Liu J, Zhang B, Liu H. Phytomed Plus 3 100432 (2023)
  95. Exploration of SARS-CoV-2 Mpro Noncovalent Natural Inhibitors Using Structure-Based Approaches. Duong CQ, Nguyen PTV. ACS Omega 8 6679-6688 (2023)
  96. Fragment-based inhibitor design for SARS-CoV2 main protease. Andola P, Pagag J, Laxman D, Guruprasad L. Struct Chem 33 1467-1487 (2022)
  97. In Silico Multi-Target Approach Revealed Potential Lead Compounds as Scaffold for the Synthesis of Chemical Analogues Targeting SARS-CoV-2. Trezza A, Mugnaini C, Corelli F, Santucci A, Spiga O. Biology (Basel) 11 465 (2022)
  98. In Silico Screening of Natural Flavonoids against 3-Chymotrypsin-like Protease of SARS-CoV-2 Using Machine Learning and Molecular Modeling. Cai L, Han F, Ji B, He X, Wang L, Niu T, Zhai J, Wang J. Molecules 28 8034 (2023)
  99. Molecular docking of ethanol extracts of katuk leaf (Sauropus androgynus) on functional proteins of severe acute respiratory syndrome coronavirus 2. Makati AC, Ananda AN, Putri JA, Amellia SF, Setiawan B. S Afr J Bot 149 1-5 (2022)
  100. Natural Product-Based Screening for Lead Compounds Targeting SARS CoV-2 Mpro. Chen J, Zhou X, Fu L, Xu H. Pharmaceuticals (Basel) 16 767 (2023)
  101. Plant flavonoid inhibition of SARS-CoV-2 main protease and viral replication. Lin L, Chen DY, Scartelli C, Xie H, Merrill-Skoloff G, Yang M, Sun L, Saeed M, Flaumenhaft R. iScience 26 107602 (2023)
  102. Letter Reply to Behnam and Klein: Potential role of the His-tag in C-terminal His-tagged SARS-CoV-2 main protease. Li Z, Liu R, Zhan CG, Wang X, Luo HB. Proc Natl Acad Sci U S A 118 e2108209118 (2021)
  103. Structure-based development and preclinical evaluation of the SARS-CoV-2 3C-like protease inhibitor simnotrelvir. Jiang X, Su H, Shang W, Zhou F, Zhang Y, Zhao W, Zhang Q, Xie H, Jiang L, Nie T, Yang F, Xiong M, Huang X, Li M, Chen P, Peng S, Xiao G, Jiang H, Tang R, Zhang L, Shen J, Xu Y. Nat Commun 14 6463 (2023)
  104. The evaluation of in vitro antichagasic and anti-SARS-CoV-2 potential of inclusion complexes of β- and methyl-β-cyclodextrin with naphthoquinone. Oliveira VDS, Silva CC, de Freitas Oliveira JW, da Silva MS, Ferreira PG, da Siva FC, Ferreira VF, Barbosa EG, Barbosa CG, Moraes CB, Freitas-Junior LHG, Converti A, Lima ÁAN. J Drug Deliv Sci Technol 81 104229 (2023)
  105. Unsupervised deep learning for molecular dynamics simulations: a novel analysis of protein-ligand interactions in SARS-CoV-2 Mpro. Mustali J, Yasuda I, Hirano Y, Yasuoka K, Gautieri A, Arai N. RSC Adv 13 34249-34261 (2023)


Reviews citing this publication (62)

  1. Structural biology of SARS-CoV-2 and implications for therapeutic development. Yang H, Rao Z. Nat Rev Microbiol 19 685-700 (2021)
  2. Traditional Chinese medicine in COVID-19. Lyu M, Fan G, Xiao G, Wang T, Xu D, Gao J, Ge S, Li Q, Ma Y, Zhang H, Wang J, Cui Y, Zhang J, Zhu Y, Zhang B. Acta Pharm Sin B 11 3337-3363 (2021)
  3. Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Gioia M, Ciaccio C, Calligari P, De Simone G, Sbardella D, Tundo G, Fasciglione GF, Di Masi A, Di Pierro D, Bocedi A, Ascenzi P, Coletta M. Biochem Pharmacol 182 114225 (2020)
  4. The direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19. An X, Zhang Y, Duan L, Jin, Zhao S, Zhou R, Duan Y, Lian F, Tong X. Biomed Pharmacother 137 111267 (2021)
  5. A review of the latest research on Mpro targeting SARS-COV inhibitors. Yang H, Yang J. RSC Med Chem 12 1026-1036 (2021)
  6. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. Hu Q, Xiong Y, Zhu GH, Zhang YN, Zhang YW, Huang P, Ge GB. MedComm (2020) 3 e151 (2022)
  7. Cell Clearing Systems as Targets of Polyphenols in Viral Infections: Potential Implications for COVID-19 Pathogenesis. Limanaqi F, Busceti CL, Biagioni F, Lazzeri G, Forte M, Schiavon S, Sciarretta S, Frati G, Fornai F. Antioxidants (Basel) 9 E1105 (2020)
  8. Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition. Macip G, Garcia-Segura P, Mestres-Truyol J, Saldivar-Espinoza B, Ojeda-Montes MJ, Gimeno A, Cereto-Massagué A, Garcia-Vallvé S, Pujadas G. Med Res Rev 42 744-769 (2022)
  9. Phytopharmaceuticals mediated Furin and TMPRSS2 receptor blocking: can it be a potential therapeutic option for Covid-19? Palit P, Chattopadhyay D, Thomas S, Kundu A, Kim HS, Rezaei N. Phytomedicine 85 153396 (2021)
  10. Natural and Nature-Derived Products Targeting Human Coronaviruses. Vougogiannopoulou K, Corona A, Tramontano E, Alexis MN, Skaltsounis AL. Molecules 26 448 (2021)
  11. Antiviral Properties of Baicalin: a Concise Review. Li K, Liang Y, Cheng A, Wang Q, Li Y, Wei H, Zhou C, Wan X. Rev Bras Farmacogn 31 408-419 (2021)
  12. Natural products for infectious microbes and diseases: an overview of sources, compounds, and chemical diversities. Luo L, Yang J, Wang C, Wu J, Li Y, Zhang X, Li H, Zhang H, Zhou Y, Lu A, Chen S. Sci China Life Sci 65 1123-1145 (2022)
  13. Specific Flavonoids and Their Biosynthetic Pathway in Scutellaria baicalensis. Pei T, Yan M, Huang Y, Wei Y, Martin C, Zhao Q. Front Plant Sci 13 866282 (2022)
  14. The Potential Therapeutic Effect of RNA Interference and Natural Products on COVID-19: A Review of the Coronaviruses Infection. Kalhori MR, Saadatpour F, Arefian E, Soleimani M, Farzaei MH, Aneva IY, Echeverría J. Front Pharmacol 12 616993 (2021)
  15. Therapeutic Potential of Glycosyl Flavonoids as Anti-Coronaviral Agents. Godinho PIC, Soengas RG, Silva VLM. Pharmaceuticals (Basel) 14 546 (2021)
  16. Antiviral plant-derived natural products to combat RNA viruses: Targets throughout the viral life cycle. Owen L, Laird K, Shivkumar M. Lett Appl Microbiol 75 476-499 (2022)
  17. Clinical Progress on Management of Pneumonia Due to COVID-19 With Chinese Traditional Patent Medicines. Wu Y, Zhong P. Front Pharmacol 12 655063 (2021)
  18. Phytochemicals for the treatment of COVID-19. Españo E, Kim J, Lee K, Kim JK. J Microbiol 59 959-977 (2021)
  19. The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Jin Z, Wang H, Duan Y, Yang H. Biochem Biophys Res Commun 538 63-71 (2021)
  20. A review of natural products, their effects on SARS-CoV-2 and their utility as lead compounds in the discovery of drugs for the treatment of COVID-19. Chapman RL, Andurkar SV. Med Chem Res 31 40-51 (2022)
  21. An Update on Pharmacological Relevance and Chemical Synthesis of Natural Products and Derivatives with Anti SARS-CoV-2 Activity. Shagufta, Ahmad I. ChemistrySelect 6 11502-11527 (2021)
  22. DrugDevCovid19: An Atlas of Anti-COVID-19 Compounds Derived by Computer-Aided Drug Design. Liu Y, Gan J, Wang R, Yang X, Xiao Z, Cao Y. Molecules 27 683 (2022)
  23. Multimode participation of traditional Chinese medicine in the treatment of COVID-19. Dai T, Zhang L, Dai X, Zhang X, Lu B, Zheng Y, Shen D, Yan Y, Ji C, Yu J, Sun L. Integr Med Res 10 100781 (2021)
  24. Progress in Traditional Chinese Medicine Against Respiratory Viruses: A Review. Li BH, Li ZY, Liu MM, Tian JZ, Cui QH. Front Pharmacol 12 743623 (2021)
  25. Prevention, treatment and potential mechanism of herbal medicine for Corona viruses: A review. Liu YX, Zhou YH, Jiang CH, Liu J, Chen DQ. Bioengineered 13 5480-5508 (2022)
  26. Promising natural products against SARS-CoV-2: Structure, function, and clinical trials. Zhao Y, Deng S, Bai Y, Guo J, Kai G, Kai G, Huang X, Jia X. Phytother Res 36 3833-3858 (2022)
  27. The Main Protease of SARS-CoV-2 as a Target for Phytochemicals against Coronavirus. Issa SS, Sokornova SV, Zhidkin RR, Matveeva TV. Plants (Basel) 11 1862 (2022)
  28. Coronavirus enzyme inhibitors-experimentally proven natural compounds from plants. Park J, Park R, Jang M, Park YI, Park Y. J Microbiol 60 347-354 (2022)
  29. Leveraging knowledge of Asian herbal medicine and its active compounds as COVID-19 treatment and prevention. Liana D, Phanumartwiwath A. J Nat Med 76 20-37 (2022)
  30. Nuclear Medicine in Times of COVID-19: How Radiopharmaceuticals Could Help to Fight the Current and Future Pandemics. Neumaier F, Zlatopolskiy BD, Neumaier B. Pharmaceutics 12 E1247 (2020)
  31. Structural insights of key enzymes into therapeutic intervention against SARS-CoV-2. Shahid M, Shahzad-Ul-Hussan S. J Struct Biol 213 107690 (2021)
  32. Targeting phytoprotection in the COVID-19-induced lung damage and associated systemic effects-the evidence-based 3PM proposition to mitigate individual risks. Liskova A, Koklesova L, Samec M, Abdellatif B, Zhai K, Siddiqui M, Šudomová M, Hassan STS, Kudela E, Biringer K, Giordano FA, Büsselberg D, Golubnitschaja O, Kubatka P. EPMA J 12 325-347 (2021)
  33. The New Coronavirus (SARS-CoV-2): A Comprehensive Review on Immunity and the Application of Bioinformatics and Molecular Modeling to the Discovery of Potential Anti-SARS-CoV-2 Agents. Villas-Boas GR, Rescia VC, Paes MM, Lavorato SN, Magalhães-Filho MF, Cunha MS, Simões RDC, Lacerda RB, Freitas-Júnior RS, Ramos BHDS, Mapeli AM, Henriques MDST, Freitas WR, Lopes LAF, Oliveira LGR, Silva JGD, Silva-Filho SE, Silveira APSD, Leão KV, Matos MMS, Fernandes JS, Cuman RKN, Silva-Comar FMS, Comar JF, Brasileiro LDA, Santos JND, Oesterreich SA. Molecules 25 E4086 (2020)
  34. Antiviral effects of phytochemicals against severe acute respiratory syndrome coronavirus 2 and their mechanisms of action: A review. Jantan I, Arshad L, Septama AW, Haque MA, Mohamed-Hussein ZA, Govender NT. Phytother Res 37 1036-1056 (2023)
  35. Natural Bioactive Molecules as Potential Agents Against SARS-CoV-2. Chen W, Wang Z, Wang Y, Li Y. Front Pharmacol 12 702472 (2021)
  36. Pathomechanisms, therapeutic targets and potent inhibitors of some beta-coronaviruses from bench-to-bedside. Ayipo YO, Yahaya SN, Alananzeh WA, Babamale HF, Mordi MN. Infect Genet Evol 93 104944 (2021)
  37. Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19. Dinda B, Dinda M, Dinda S, Chakraborty M. Eur J Med Chem Rep 6 100079 (2022)
  38. Efficacy and potential mechanisms of Chinese herbal compounds in coronavirus disease 2019: advances of laboratory and clinical studies. Xiang MF, Jin CT, Sun LH, Zhang ZH, Yao JJ, Li LC. Chin Med 16 130 (2021)
  39. Search, Identification, and Design of Effective Antiviral Drugs Against Pandemic Human Coronaviruses. Huang T, Sun L, Kang D, Poongavanam V, Liu X, Zhan P, Menéndez-Arias L. Adv Exp Med Biol 1322 219-260 (2021)
  40. A Review of Potential Therapeutic Strategies for COVID-19. Meng J, Li R, Zhang Z, Wang J, Huang Q, Nie D, Fan K, Guo W, Zhao Z, Han Z. Viruses 14 2346 (2022)
  41. Emergence of Ethnomedical COVID-19 Treatment: A Literature Review. Aprilio K, Wilar G. Infect Drug Resist 14 4277-4289 (2021)
  42. Neurological disorders of COVID-19: insights to applications of natural products from plants and microorganisms. Almasi F, Dang W, Mohammadipanah F, Li N. Arch Pharm Res 45 909-937 (2022)
  43. Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies. Mousavi S, Zare S, Mirzaei M, Feizi A. Can J Infect Dis Med Microbiol 2022 2044282 (2022)
  44. Progress on COVID-19 Chemotherapeutics Discovery and Novel Technology. Zhou Y, Wang H, Yang L, Wang Q. Molecules 27 8257 (2022)
  45. A review on computational approaches that support the researches on traditional Chinese medicines (TCM) against COVID-19. Ruchawapol C, Fu WW, Xu HX. Phytomedicine 104 154324 (2022)
  46. COVID-19 Therapeutic Potential of Natural Products. Low Z, Lani R, Tiong V, Poh C, AbuBakar S, Hassandarvish P. Int J Mol Sci 24 9589 (2023)
  47. COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease. Kronenberger T, Laufer SA, Pillaiyar T. Drug Discov Today 28 103579 (2023)
  48. Chinese herbal injections for coronavirus disease 2019 (COVID-19): A narrative review. Zhu XB, Guo M, Zhang ZH, Sun LH, Liu L, Zhou LJ, Shan CL, Yang Y, Kan LD, Li LC. Integr Med Res 10 100778 (2021)
  49. Multifaceted roles of plant derived small molecule inhibitors on replication cycle of SARS-CoV-2. Uma Reddy B, Routhu NK, Kumar A. Microb Pathog 168 105512 (2022)
  50. Pharmacological effects of baicalin in lung diseases. Wang D, Li Y. Front Pharmacol 14 1188202 (2023)
  51. Supramolecular assemblies based on natural small molecules: Union would be effective. Hou Y, Zou L, Li Q, Chen M, Ruan H, Sun Z, Xu X, Yang J, Ma G. Mater Today Bio 15 100327 (2022)
  52. Extraction, Purification, Structural Characteristics, Health Benefits, and Application of the Polysaccharides from Lonicera japonica Thunb.: A Review. Yang X, Yu A, Hu W, Zhang Z, Ruan Y, Kuang H, Wang M. Molecules 28 4828 (2023)
  53. Natural Products as a Potential Source of Promising Therapeutics for COVID-19 and Viral Diseases. Bafandeh S, Khodadadi E, Ganbarov K, Asgharzadeh M, Köse Ş, Samadi Kafil H. Evid Based Complement Alternat Med 2023 5525165 (2023)
  54. Potential bangle (Zingiber montanum J.König) rhizome extract as a supplement to prevent and reduce symptoms of Covid-19. Musdja MY. Saudi J Biol Sci 28 2245-2253 (2021)
  55. Practice and principle of traditional Chinese medicine for the prevention and treatment of COVID-19. Zhao L, Tian C, Yang Y, Guan H, Wei Y, Zhang Y, Kang X, Zhou L, Li Q, Ma J, Wan L, Zheng Y, Tong X. Front Med (2023)
  56. Recent advances towards natural plants as potential inhibitors of SARS-Cov-2 targets. He Z, Yuan J, Zhang Y, Li R, Mo M, Wang Y, Ti H. Pharm Biol 61 1186-1210 (2023)
  57. Repurposing clinically available drugs and therapies for pathogenic targets to combat SARS-CoV-2. Xue Y, Mei H, Chen Y, Griffin JD, Liu Q, Weisberg E, Yang J. MedComm (2020) 4 e254 (2023)
  58. Stand Up to Stand Out: Natural Dietary Polyphenols Curcumin, Resveratrol, and Gossypol as Potential Therapeutic Candidates against Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Wang Z, Song XQ, Xu W, Lei S, Zhang H, Yang L. Nutrients 15 3885 (2023)
  59. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Li X, Song Y. Eur J Med Chem 260 115772 (2023)
  60. The Potential of Flavonoids and Flavonoid Metabolites in the Treatment of Neurodegenerative Pathology in Disorders of Cognitive Decline. Melrose J. Antioxidants (Basel) 12 663 (2023)
  61. The research progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022. Pang X, Xu W, Liu Y, Li H, Chen L. Eur J Med Chem 257 115491 (2023)
  62. Traditional Chinese Medicine in Treatment of COVID-19 and Viral Disease: Efficacies and Clinical Evidence. Ding X, Fan LL, Zhang SX, Ma XX, Meng PF, Li LP, Huang MY, Guo JL, Zhong PZ, Xu LR. Int J Gen Med 15 8353-8363 (2022)

Articles citing this publication (84)

  1. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. Liu H, Ye F, Sun Q, Liang H, Li C, Li S, Lu R, Huang B, Tan W, Lai L. J Enzyme Inhib Med Chem 36 497-503 (2021)
  2. Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts. Wang Z, Yang L. J Ethnopharmacol 270 113869 (2021)
  3. Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Su H, Yao S, Zhao W, Zhang Y, Liu J, Shao Q, Wang Q, Li M, Xie H, Shang W, Ke C, Feng L, Jiang X, Shen J, Xiao G, Jiang H, Zhang L, Ye Y, Xu Y. Nat Commun 12 3623 (2021)
  4. Structural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variants. Greasley SE, Noell S, Plotnikova O, Ferre R, Liu W, Bolanos B, Fennell K, Nicki J, Craig T, Zhu Y, Stewart AE, Steppan CM. J Biol Chem 298 101972 (2022)
  5. Baicalein and Baicalin Inhibit SARS-CoV-2 RNA-Dependent-RNA Polymerase. Zandi K, Musall K, Oo A, Cao D, Liang B, Hassandarvish P, Lan S, Slack RL, Kirby KA, Bassit L, Amblard F, Kim B, AbuBakar S, Sarafianos SG, Schinazi RF. Microorganisms 9 893 (2021)
  6. Structure-Based Optimization of ML300-Derived, Noncovalent Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus 3CL Protease (SARS-CoV-2 3CLpro). Han SH, Goins CM, Arya T, Shin WJ, Maw J, Hooper A, Sonawane DP, Porter MR, Bannister BE, Crouch RD, Lindsey AA, Lakatos G, Martinez SR, Alvarado J, Akers WS, Wang NS, Jung JU, Macdonald JD, Stauffer SR. J Med Chem 65 2880-2904 (2022)
  7. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. Gorgulla C, Padmanabha Das KM, Leigh KE, Cespugli M, Fischer PD, Wang ZF, Tesseyre G, Pandita S, Shnapir A, Calderaio A, Gechev M, Rose A, Lewis N, Hutcheson C, Yaffe E, Luxenburg R, Herce HD, Durmaz V, Halazonetis TD, Fackeldey K, Patten JJ, Chuprina A, Dziuba I, Plekhova A, Moroz Y, Radchenko D, Tarkhanova O, Yavnyuk I, Gruber C, Yust R, Payne D, Näär AM, Namchuk MN, Davey RA, Wagner G, Kinney J, Arthanari H. iScience 24 102021 (2021)
  8. Validation and invalidation of SARS-CoV-2 main protease inhibitors using the Flip-GFP and Protease-Glo luciferase assays. Ma C, Tan H, Choza J, Wang Y, Wang J. Acta Pharm Sin B 12 1636-1651 (2022)
  9. A traditional Chinese medicine formula NRICM101 to target COVID-19 through multiple pathways: A bedside-to-bench study. Tsai KC, Huang YC, Liaw CC, Tsai CI, Chiou CT, Lin CJ, Wei WC, Lin SJ, Tseng YH, Yeh KM, Lin YL, Jan JT, Liang JJ, Liao CC, Chiou WF, Kuo YH, Lee SM, Lee MY, Su YC. Biomed Pharmacother 133 111037 (2021)
  10. Catalytic Dyad Residues His41 and Cys145 Impact the Catalytic Activity and Overall Conformational Fold of the Main SARS-CoV-2 Protease 3-Chymotrypsin-Like Protease. Ferreira JC, Fadl S, Villanueva AJ, Rabeh WM. Front Chem 9 692168 (2021)
  11. Epigallocatechin Gallate Inhibits the Uridylate-Specific Endoribonuclease Nsp15 and Efficiently Neutralizes the SARS-CoV-2 Strain. Hong S, Seo SH, Woo SJ, Kwon Y, Song M, Ha NC. J Agric Food Chem 69 5948-5954 (2021)
  12. Design, Synthesis, and Biological Evaluation of Peptidomimetic Aldehydes as Broad-Spectrum Inhibitors against Enterovirus and SARS-CoV-2. Dai W, Jochmans D, Xie H, Yang H, Li J, Su H, Chang D, Wang J, Peng J, Zhu L, Nian Y, Hilgenfeld R, Jiang H, Chen K, Zhang L, Xu Y, Neyts J, Liu H. J Med Chem 65 2794-2808 (2022)
  13. Promising Antiviral Activities of Natural Flavonoids against SARS-CoV-2 Targets: Systematic Review. Kaul R, Paul P, Kumar S, Büsselberg D, Dwivedi VD, Chaari A. Int J Mol Sci 22 11069 (2021)
  14. Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria. Yang G, Hong S, Yang P, Sun Y, Wang Y, Zhang P, Jiang W, Gu Y. Nat Commun 12 790 (2021)
  15. Olive-Derived Triterpenes Suppress SARS COV-2 Main Protease: A Promising Scaffold for Future Therapeutics. Alhadrami HA, Sayed AM, Sharif AM, Azhar EI, Rateb ME. Molecules 26 2654 (2021)
  16. Sinapic Acid Suppresses SARS CoV-2 Replication by Targeting Its Envelope Protein. Orfali R, Rateb ME, Hassan HM, Alonazi M, Gomaa MR, Mahrous N, GabAllah M, Kandeil A, Perveen S, Abdelmohsen UR, Sayed AM. Antibiotics (Basel) 10 420 (2021)
  17. Chemical composition and pharmacological mechanism of ephedra-glycyrrhiza drug pair against coronavirus disease 2019 (COVID-19). Li X, Qiu Q, Li M, Lin H, Cao S, Wang Q, Chen Z, Jiang W, Zhang W, Huang Y, Luo H, Luo L. Aging (Albany NY) 13 4811-4830 (2021)
  18. Effects of Shuanghuanglian oral liquids on patients with COVID-19: a randomized, open-label, parallel-controlled, multicenter clinical trial. Ni L, Wen Z, Hu X, Tang W, Wang H, Zhou L, Wu L, Wang H, Xu C, Xu X, Xiao Z, Li Z, Li C, Liu Y, Duan J, Chen C, Li D, Zhang R, Li J, Yi Y, Huang W, Chen Y, Zhao J, Zuo J, Weng J, Jiang H, Wang DW. Front Med 15 704-717 (2021)
  19. Structural Basis of the Main Proteases of Coronavirus Bound to Drug Candidate PF-07321332. Li J, Lin C, Zhou X, Zhong F, Zeng P, Yang Y, Zhang Y, Yu B, Fan X, McCormick PJ, Fu R, Fu Y, Jiang H, Zhang J. J Virol 96 e0201321 (2022)
  20. Evaluating cepharanthine analogues as natural drugs against SARS-CoV-2. Hijikata A, Shionyu-Mitsuyama C, Nakae S, Shionyu M, Ota M, Kanaya S, Hirokawa T, Nakajima S, Watashi K, Shirai T. FEBS Open Bio 12 285-294 (2022)
  21. Flavonoids in Ampelopsis grossedentata as covalent inhibitors of SARS-CoV-2 3CLpro: Inhibition potentials, covalent binding sites and inhibitory mechanisms. Xiong Y, Zhu GH, Zhang YN, Hu Q, Wang HN, Yu HN, Qin XY, Guan XQ, Xiang YW, Tang H, Ge GB. Int J Biol Macromol 187 976-987 (2021)
  22. Discovery of novel inhibitors against main protease (Mpro) of SARS-CoV-2 via virtual screening and biochemical evaluation. Guo S, Xie H, Lei Y, Liu B, Zhang L, Xu Y, Zuo Z. Bioorg Chem 110 104767 (2021)
  23. Machine Learning Models Identify Inhibitors of SARS-CoV-2. Gawriljuk VO, Zin PPK, Puhl AC, Zorn KM, Foil DH, Lane TR, Hurst B, Tavella TA, Costa FTM, Lakshmanane P, Bernatchez J, Godoy AS, Oliva G, Siqueira-Neto JL, Madrid PB, Ekins S. J Chem Inf Model 61 4224-4235 (2021)
  24. Possible Therapeutic Use of Natural Compounds Against COVID-19. Khan N, Chen X, Geiger JD. J Cell Signal 2 63-79 (2021)
  25. Cnicin as an Anti-SARS-CoV-2: An Integrated In Silico and In Vitro Approach for the Rapid Identification of Potential COVID-19 Therapeutics. Alhadrami HA, Sayed AM, Hassan HM, Youssif KA, Gaber Y, Moatasim Y, Kutkat O, Mostafa A, Ali MA, Rateb ME, Abdelmohsen UR, Gamaleldin NM. Antibiotics (Basel) 10 542 (2021)
  26. Discovery of SARS-CoV-2-E channel inhibitors as antiviral candidates. Wang Y, Fang S, Wu Y, Cheng X, Zhang LK, Shen XR, Li SQ, Xu JR, Shang WJ, Gao ZB, Xia BQ. Acta Pharmacol Sin 43 781-787 (2022)
  27. Scutellaria barbata D. Don Inhibits the Main Proteases (Mpro and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. Huang ST, Chen Y, Chang WC, Chen HF, Lai HC, Lin YC, Wang WJ, Wang YC, Yang CS, Wang SC, Hung MC. Viruses 13 826 (2021)
  28. A transferable deep learning approach to fast screen potential antiviral drugs against SARS-CoV-2. Wang S, Sun Q, Xu Y, Pei J, Lai L. Brief Bioinform 22 bbab211 (2021)
  29. Efficient discovery of potential inhibitors for SARS-CoV-2 3C-like protease from herbal extracts using a native MS-based affinity-selection method. Zhu D, Su H, Ke C, Tang C, Witt M, Quinn RJ, Xu Y, Liu J, Ye Y. J Pharm Biomed Anal 209 114538 (2022)
  30. Identification of Vitamin K3 and its analogues as covalent inhibitors of SARS-CoV-2 3CLpro. Wang R, Hu Q, Wang H, Zhu G, Wang M, Zhang Q, Zhao Y, Li C, Zhang Y, Ge G, Chen H, Chen L. Int J Biol Macromol 183 182-192 (2021)
  31. New insights into the catalytic mechanism of the SARS-CoV-2 main protease: an ONIOM QM/MM approach. Fernandes HS, Sousa SF, Cerqueira NMFSA. Mol Divers 26 1373-1381 (2022)
  32. Sub-Micromolar Inhibition of SARS-CoV-2 3CLpro by Natural Compounds. Rizzuti B, Ceballos-Laita L, Ortega-Alarcon D, Jimenez-Alesanco A, Vega S, Grande F, Conforti F, Abian O, Velazquez-Campoy A. Pharmaceuticals (Basel) 14 892 (2021)
  33. Systems pharmacology-based drug discovery and active mechanism of natural products for coronavirus pneumonia (COVID-19): An example using flavonoids. Wang B, Ding Y, Zhao P, Li W, Li M, Zhu J, Ye S. Comput Biol Med 143 105241 (2022)
  34. The discovery of herbal drugs and natural compounds as inhibitors of SARS-CoV-2 infection in vitro. Ngwe Tun MM, Toume K, Luvai E, Nwe KM, Mizukami S, Hirayama K, Komatsu K, Morita K. J Nat Med 76 402-409 (2022)
  35. Native metabolomics identifies the rivulariapeptolide family of protease inhibitors. Reher R, Aron AT, Fajtová P, Stincone P, Wagner B, Pérez-Lorente AI, Liu C, Shalom IYB, Bittremieux W, Wang M, Jeong K, Matos-Hernandez ML, Alexander KL, Caro-Diaz EJ, Naman CB, Scanlan JHW, Hochban PMM, Diederich WE, Molina-Santiago C, Romero D, Selim KA, Sass P, Brötz-Oesterhelt H, Hughes CC, Dorrestein PC, O'Donoghue AJ, Gerwick WH, Petras D. Nat Commun 13 4619 (2022)
  36. Structure-based virtual screening suggests inhibitors of 3-Chymotrypsin-Like Protease of SARS-CoV-2 from Vernonia amygdalina and Occinum gratissimum. Gyebi GA, Elfiky AA, Ogunyemi OM, Ibrahim IM, Adegunloye AP, Adebayo JO, Olaiya CO, Ocheje JO, Fabusiwa MM. Comput Biol Med 136 104671 (2021)
  37. A traditional medicine, respiratory detox shot (RDS), inhibits the infection of SARS-CoV, SARS-CoV-2, and the influenza A virus in vitro. Hetrick B, Yu D, Olanrewaju AA, Chilin LD, He S, Dabbagh D, Alluhaibi G, Ma YC, Hofmann LA, Hakami RM, Wu Y. Cell Biosci 11 100 (2021)
  38. Computational Study of SARS-CoV-2 RNA Dependent RNA Polymerase Allosteric Site Inhibition. Faisal S, Badshah SL, Kubra B, Sharaf M, Emwas AH, Jaremko M, Abdalla M. Molecules 27 223 (2021)
  39. Identification of Cysteine 270 as a Novel Site for Allosteric Modulators of SARS-CoV-2 Papain-Like Protease. Hu H, Wang Q, Su H, Shao Q, Zhao W, Chen G, Li M, Xu Y. Angew Chem Int Ed Engl 61 e202212378 (2022)
  40. Key dimer interface residues impact the catalytic activity of 3CLpro, the main protease of SARS-CoV-2. Ferreira JC, Fadl S, Rabeh WM. J Biol Chem 298 102023 (2022)
  41. A Study of 3CLpros as Promising Targets against SARS-CoV and SARS-CoV-2. Jo S, Kim S, Yoo J, Kim MS, Shin DH. Microorganisms 9 756 (2021)
  42. Bioguided Isolation of Cyclopenin Analogues as Potential SARS-CoV-2 Mpro Inhibitors from Penicillium citrinum TDPEF34. Thissera B, Sayed AM, Hassan MHA, Abdelwahab SF, Amaeze N, Semler VT, Alenezi FN, Yaseen M, Alhadrami HA, Belbahri L, Rateb ME. Biomolecules 11 1366 (2021)
  43. Cocktail polysaccharides isolated from Ecklonia kurome against the SARS-CoV-2 infection. Zhang S, Pei R, Li M, Su H, Sun H, Ding Y, Su M, Huang C, Chen X, Du Z, Jin C, Zang Y, Li J, Xu Y, Chen X, Zhang B, Ding K. Carbohydr Polym 275 118779 (2022)
  44. Exploration of molecular targets and mechanisms of Chinese medicinal formula Acacia Catechu -Scutellariae Radix in the treatment of COVID-19 by a systems pharmacology strategy. Feng T, Zhang M, Xu Q, Song F, Wang L, Gai S, Tang H, Wang S, Zhou L, Li H. Phytother Res 36 4210-4229 (2022)
  45. Recent efforts for drug identification from phytochemicals against SARS-CoV-2: Exploration of the chemical space to identify druggable leads. Joshi G, Sindhu J, Thakur S, Rana A, Sharma G, Mayank, Poduri R. Food Chem Toxicol 152 112160 (2021)
  46. Discovery of novel SARS-CoV-2 3CL protease covalent inhibitors using deep learning-based screen. Wang L, Yu Z, Wang S, Guo Z, Sun Q, Lai L. Eur J Med Chem 244 114803 (2022)
  47. A highly sensitive cell-based luciferase assay for high-throughput automated screening of SARS-CoV-2 nsp5/3CLpro inhibitors. Chen KY, Krischuns T, Varga LO, Harigua-Souiai E, Paisant S, Zettor A, Chiaravalli J, Delpal A, Courtney D, O'Brien A, Baker SC, Decroly E, Isel C, Agou F, Jacob Y, Blondel A, Naffakh N. Antiviral Res 201 105272 (2022)
  48. Identification of Natural Products Inhibiting SARS-CoV-2 by Targeting Viral Proteases: A Combined in Silico and in Vitro Approach. Wasilewicz A, Kirchweger B, Bojkova D, Abi Saad MJ, Langeder J, Bütikofer M, Adelsberger S, Grienke U, Cinatl J, Petermann O, Scapozza L, Orts J, Kirchmair J, Rabenau HF, Rollinger JM. J Nat Prod 86 264-275 (2023)
  49. Searching for potential inhibitors of SARS-COV-2 main protease using supervised learning and perturbation calculations. Nguyen TH, Tam NM, Tuan MV, Zhan P, Vu VV, Quang DT, Ngo ST. Chem Phys 564 111709 (2023)
  50. In vitro Suppression of SARS-CoV-2 Infection by Existing Kampo Formulas and Crude Constituent Drugs Used for Treatment of Common Cold Respiratory Symptoms. Kakimoto M, Nomura T, Nazmul T, Kitagawa H, Kanno K, Ogawa-Ochiai K, Ohge H, Ito M, Sakaguchi T. Front Pharmacol 13 804103 (2022)
  51. Acriflavine and proflavine hemisulfate as potential antivirals by targeting Mpro. Liang J, Zheng M, Xu W, Chen Y, Tang P, Wu G, Zou P, Li H, Chen L. Bioorg Chem 129 106185 (2022)
  52. Discovery of 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 main protease. Dou X, Sun Q, Xu G, Liu Y, Zhang C, Wang B, Lu Y, Guo Z, Su L, Huo T, Zhao X, Wang C, Yu Z, Song S, Zhang L, Liu Z, Lai L, Jiao N. Eur J Med Chem 238 114508 (2022)
  53. Early Diffusion of SARS-CoV-2 Infection in the Inner Area of the Italian Sardinia Island. Piras G, Grandi N, Monne M, Asproni R, Fancello T, Fiamma M, Mameli G, Casu G, Lo Maglio I, Palmas AD, Tramontano E. Front Microbiol 11 628194 (2020)
  54. Identification of potential edible mushroom as SARS-CoV-2 main protease inhibitor using rational drug designing approach. Sen D, Debnath B, Debnath P, Debnath S, Zaki MEA, Masand VH. Sci Rep 12 1503 (2022)
  55. Identification of repurposing therapeutics toward SARS-CoV-2 main protease by virtual screening. Sanachai K, Somboon T, Wilasluck P, Deetanya P, Wolschann P, Langer T, Lee VS, Wangkanont K, Rungrotmongkol T, Hannongbua S. PLoS One 17 e0269563 (2022)
  56. In Silico Studies on Zinc Oxide Based Nanostructured Oil Carriers with Seed Extracts of Nigella sativa and Pimpinella anisum as Potential Inhibitors of 3CL Protease of SARS-CoV-2. Hendi AA, Virk P, Awad MA, Elobeid M, Ortashi KMO, Alanazi MM, Alkallas FH, Almoneef MM, Abdou MA. Molecules 27 4301 (2022)
  57. Investigation of changes in protein stability and substrate affinity of 3CL-protease of SARS-CoV-2 caused by mutations. Akbulut E. Genet Mol Biol 45 e20210404 (2022)
  58. Searching and designing potential inhibitors for SARS-CoV-2 Mpro from natural sources using atomistic and deep-learning calculations. Tam NM, Pham DH, Hiep DM, Tran PT, Quang DT, Ngo ST. RSC Adv 11 38495-38504 (2021)
  59. The inhibitory activity of methoxyl flavonoids derived from Inula britannica flowers on SARS-CoV-2 3CLpro. Kim JH, Park YI, Hur M, Park WT, Moon YH, Koo SC, Yun-Chan H, Lee IS, Park J. Int J Biol Macromol 222 2098-2104 (2022)
  60. A novel property of hexokinase inhibition by Favipiravir and proposed advantages over Molnupiravir and 2 Deoxy D glucose in treating COVID-19. Kulkarni P, Padmanabhan S. Biotechnol Lett 44 831-843 (2022)
  61. Available drugs and supplements for rapid deployment for treatment of COVID-19. Cicka D, Sukhatme VP. J Mol Cell Biol 13 232-236 (2021)
  62. Dimerization Tendency of 3CLpros of Human Coronaviruses Based on the X-ray Crystal Structure of the Catalytic Domain of SARS-CoV-2 3CLpro. Jo S, Kim HY, Shin DH, Kim MS. Int J Mol Sci 23 5268 (2022)
  63. Discovery and mechanism of action of Thonzonium bromide from an FDA-approved drug library with potent and broad-spectrum inhibitory activity against main proteases of human coronaviruses. Wang R, Zhai G, Zhu G, Wang M, Gong X, Zhang W, Ge G, Chen H, Chen L. Bioorg Chem 130 106264 (2023)
  64. Exploring the pharmacological mechanisms of Shuanghuanglian against T-cell acute lymphoblastic leukaemia through network pharmacology combined with molecular docking and experimental validation. Yang Y, Yang Y, Shen Y, Liu J, Zeng Y, Wei C, Liu C, Pan Y, Guo Q, Zhong F, Guo L, Liu W. Pharm Biol 61 259-270 (2023)
  65. Identification of phytochemicals in Qingfei Paidu decoction for the treatment of coronavirus disease 2019 by targeting the virus-host interactome. Li Y, Wu Y, Li S, Li Y, Zhang X, Shou Z, Gu S, Zhou C, Xu D, Zhao K, Tan S, Qiu J, Pan X, Li L. Biomed Pharmacother 156 113946 (2022)
  66. Inhibition of SARS-CoV-2 main protease: a repurposing study that targets the dimer interface of the protein. Pekel H, Ilter M, Sensoy O. J Biomol Struct Dyn 40 7167-7182 (2022)
  67. Label-free duplex SAMDI-MS screen reveals novel SARS-CoV-2 3CLpro inhibitors. Scholle MD, O'Kane PT, Dib S, Gurard-Levin ZA. Antiviral Res 200 105279 (2022)
  68. Ligand-based and structure-based studies to develop predictive models for SARS-CoV-2 main protease inhibitors through the 3d-qsar.com portal. Proia E, Ragno A, Antonini L, Sabatino M, Mladenovič M, Capobianco R, Ragno R. J Comput Aided Mol Des 36 483-505 (2022)
  69. Multi-ligand molecular docking, simulation, free energy calculations and wavelet analysis of the synergistic effects between natural compounds baicalein and cubebin for the inhibition of the main protease of SARS-CoV-2. Li H, Komori A, Li M, Chen X, Yang AWH, Sun X, Liu Y, Hung A, Zhao X, Zhou L. J Mol Liq 374 121253 (2023)
  70. Systematic identification of chemical components in Fufang Shuanghua oral liquid and screening of potential active components against SARS-CoV-2 protease. Jiang H, Chen J, Li X, Zhong YT, Kang LP, Wang G, Yu M, Fu LF, Wang P, Xu HY. J Pharm Biomed Anal 223 115118 (2023)
  71. Systematic Review A Five-Dimensional Network Meta-Analysis of Chinese Herbal Injections for Treating Acute Tonsillitis Combined With Western Medicine. Huang P, Li Y, Huang B, Zhao S, Chen L, Guan H, Chen Y, Feng Y, Huang X, Deng Y, Lei S, Wu Q, Zhang H, Zeng Z, Zeng L, Chen B. Front Pharmacol 13 888073 (2022)
  72. A Study of Drug Repurposing to Identify SARS-CoV-2 Main Protease (3CLpro) Inhibitors. Jo S, Signorile L, Kim S, Kim MS, Huertas O, Insa R, Reig N, Shin DH. Int J Mol Sci 23 6468 (2022)
  73. A cross-sectional survey of self-medication with Traditional Chinese Medicine for treatment and prevention of COVID-19. Lin Y, Cai CZ, Alias H, Wong LP, Hu Z. Complement Ther Med 71 102898 (2022)
  74. Anaphylactoid reactions induced by Shuanghuanglian injection and Shenmai injection and metabolomics analysis. Zhang C, Ouyang L, Zhang X, Wen W, Xu Y, Li S, Li Y, He F, Liu W, Liu H. Front Pharmacol 14 1200199 (2023)
  75. Discovery, synthesis and mechanism study of 2,3,5-substituted [1,2,4]-thiadiazoles as covalent inhibitors targeting 3C-Like protease of SARS-CoV-2. Ren P, Yu C, Zhang R, Nie T, Hu Q, Li H, Zhang X, Zhang X, Li S, Liu L, Dai W, Li J, Xu Y, Su H, Zhang L, Liu H, Bai F. Eur J Med Chem 249 115129 (2023)
  76. Dock-able linear and homodetic di, tri, tetra and pentapeptide library from canonical amino acids: SARS-CoV-2 Mpro as a case study. Ahmad S, Mirza MU, Trant JF. J Pharm Anal 13 523-534 (2023)
  77. Docking and Electronic Structure of Rutin, Myricetin, and Baicalein Targeting 3CLpro. Farias SAS, Rocha KML, Nascimento ÉCM, de Jesus RDCC, Neres PR, Martins JBL. Int J Mol Sci 24 15113 (2023)
  78. Electrostimulation improves plant growth and modulates the flavonoid profile in aeroponic culture of Scutellaria baicalensis Georgi. Grzelka K, Matkowski A, Ślusarczyk S. Front Plant Sci 14 1142624 (2023)
  79. Flavonoids from the roots and rhizomes of Sophoratonkinensis and their in vitro anti-SARS-CoV-2 activity. Li Z, Xie H, Tang C, Feng L, Ke C, Xu Y, Su H, Yao S, Ye Y. Chin J Nat Med 21 65-80 (2023)
  80. Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro. Ruatta SM, Prada Gori DN, Fló Díaz M, Lorenzelli F, Perelmuter K, Alberca LN, Bellera CL, Medeiros A, López GV, Ingold M, Porcal W, Dibello E, Ihnatenko I, Kunick C, Incerti M, Luzardo M, Colobbio M, Ramos JC, Manta E, Minini L, Lavaggi ML, Hernández P, Šarlauskas J, Huerta García CS, Castillo R, Hernández-Campos A, Ribaudo G, Zagotto G, Carlucci R, Medrán NS, Labadie GR, Martinez-Amezaga M, Delpiccolo CML, Mata EG, Scarone L, Posada L, Serra G, Calogeropoulou T, Prousis K, Detsi A, Cabrera M, Alvarez G, Aicardo A, Araújo V, Chavarría C, Mašič LP, Gantner ME, Llanos MA, Rodríguez S, Gavernet L, Park S, Heo J, Lee H, Paul Park KH, Bollati-Fogolín M, Pritsch O, Shum D, Talevi A, Comini MA. Front Pharmacol 14 1193282 (2023)
  81. Long Time Scale Ensemble Methods in Molecular Dynamics: Ligand-Protein Interactions and Allostery in SARS-CoV-2 Targets. Bhati AP, Hoti A, Potterton A, Bieniek MK, Coveney PV. J Chem Theory Comput 19 3359-3378 (2023)
  82. Molecular docking and identification of G-protein-coupled receptor 120 (GPR120) agonists as SARS COVID-19 MPro inhibitors. Mohan S, Dharani J, Natarajan R, Nagarajan A. J Genet Eng Biotechnol 20 108 (2022)
  83. Structure Activity Relationship and Molecular Docking of Some Quinazolines Bearing Sulfamerazine Moiety as New 3CLpro, cPLA2, sPLA2 Inhibitors. Hussein MA, Borik RM, Nafie MS, Abo-Salem HM, Boshra SA, Mohamed ZN. Molecules 28 6052 (2023)
  84. The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion. Chen TH, Tsai MJ, Chang CS, Xu L, Fu YS, Weng CF. J Infect Public Health 16 42-54 (2023)