6pur Citations

Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel.

OpenAccess logo Elife 8 (2019)
Related entries: 6puo, 6pus, 6puu

Cited: 52 times
EuropePMC logo PMID: 31513012

Abstract

TRPM2 is critically involved in diverse physiological processes including core temperature sensing, apoptosis, and immune response. TRPM2's activation by Ca2+ and ADP ribose (ADPR), an NAD+-metabolite produced under oxidative stress and neurodegenerative conditions, suggests a role in neurological disorders. We provide a central concept between triple-site ligand binding and the channel gating of human TRPM2. We show consecutive structural rearrangements and channel activation of TRPM2 induced by binding of ADPR in two indispensable locations, and the binding of Ca2+ in the transmembrane domain. The 8-Br-cADPR-an antagonist of cADPR-binds only to the MHR1/2 domain and inhibits TRPM2 by stabilizing the channel in an apo-like conformation. We conclude that MHR1/2 acts as a orthostatic ligand-binding site for TRPM2. The NUDT9-H domain binds to a second ADPR to assist channel activation in vertebrates, but not necessary in invertebrates. Our work provides insights into the gating mechanism of human TRPM2 and its pharmacology.

Reviews - 6pur mentioned but not cited (4)

  1. A structural overview of the ion channels of the TRPM family. Huang Y, Fliegert R, Guse AH, Lü W, Du J. Cell Calcium 85 102111 (2020)
  2. Structural Pharmacology of TRP Channels. Zhao Y, McVeigh BM, Moiseenkova-Bell VY. J Mol Biol 433 166914 (2021)
  3. Structure-Function Relationship of TRPM2: Recent Advances, Contradictions, and Open Questions. Kühn FJP. Int J Mol Sci 21 E6481 (2020)
  4. Two Decades of Evolution of Our Understanding of the Transient Receptor Potential Melastatin 2 (TRPM2) Cation Channel. Szollosi A. Life (Basel) 11 397 (2021)

Articles - 6pur mentioned but not cited (2)

  1. Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel. Huang Y, Roth B, Lü W, Du J. Elife 8 e50175 (2019)
  2. Selective profiling of N- and C-terminal nucleotide-binding sites in a TRPM2 channel. Tóth B, Iordanov I, Csanády L. J Gen Physiol 152 e201912533 (2020)


Reviews citing this publication (18)

  1. TRPM2 channel-mediated cell death: An important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Malko P, Jiang LH. Redox Biol 37 101755 (2020)
  2. Molecular Regulations and Functions of the Transient Receptor Potential Channels of the Islets of Langerhans and Insulinoma Cells. Islam MS. Cells 9 E685 (2020)
  3. The Pancreatic β-Cell: The Perfect Redox System. Ježek P, Holendová B, Jabůrek M, Tauber J, Dlasková A, Plecitá-Hlavatá L. Antioxidants (Basel) 10 197 (2021)
  4. The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling. Stožer A, Paradiž Leitgeb E, Pohorec V, Dolenšek J, Križančić Bombek L, Gosak M, Skelin Klemen M. Cells 10 1658 (2021)
  5. Current View of Ligand and Lipid Recognition by the Menthol Receptor TRPM8. Yin Y, Lee SY. Trends Biochem Sci 45 806-819 (2020)
  6. Does Cyclic ADP-Ribose (cADPR) Activate the Non-selective Cation Channel TRPM2? Fliegert R, Riekehr WM, Guse AH. Front Immunol 11 2018 (2020)
  7. Structural and functional comparison of magnesium transporters throughout evolution. Franken GAC, Huynen MA, Martínez-Cruz LA, Bindels RJM, de Baaij JHF. Cell Mol Life Sci 79 418 (2022)
  8. Reactive Oxygen Species-Induced TRPM2-Mediated Ca2+ Signalling in Endothelial Cells. Ding R, Yin YL, Jiang LH. Antioxidants (Basel) 10 718 (2021)
  9. Evolving roles of CD38 metabolism in solid tumour microenvironment. Gao L, Du X, Li J, Qin FX. Br J Cancer 128 492-504 (2023)
  10. Roles of NAD+ and Its Metabolites Regulated Calcium Channels in Cancer. Yu P, Cai X, Liang Y, Wang M, Yang W. Molecules 25 E4826 (2020)
  11. The Role of TRPM2 in Endothelial Function and Dysfunction. Zielińska W, Zabrzyński J, Gagat M, Grzanka A. Int J Mol Sci 22 7635 (2021)
  12. On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Ciaglia T, Vestuto V, Bertamino A, González-Muñiz R, Gómez-Monterrey I. Front Oncol 12 1065935 (2022)
  13. TRPM channels in health and disease. Chubanov V, Köttgen M, Touyz RM, Gudermann T. Nat Rev Nephrol 20 175-187 (2024)
  14. Molecular determinants of TRPM8 function: key clues for a cool modulation. Pertusa M, Solorza J, Madrid R. Front Pharmacol 14 1213337 (2023)
  15. On the Connections between TRPM Channels and SOCE. Souza Bomfim GH, Niemeyer BA, Lacruz RS, Lis A. Cells 11 1190 (2022)
  16. Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: the roles and properties of TRPM2 and TRPM7. Okada Y, Numata T, Sabirov RZ, Kashio M, Merzlyak PG, Sato-Numata K. Front Cell Dev Biol 11 1246955 (2023)
  17. Targeting TRP channels: recent advances in structure, ligand binding, and molecular mechanisms. Huang J, Korsunsky A, Yazdani M, Chen J. Front Mol Neurosci 16 1334370 (2023)
  18. The transient receptor potential melastatin 2: a new therapeutical target for Parkinson's disease? Ferreira AFF, Britto LRG. Neural Regen Res 18 1652-1656 (2023)

Articles citing this publication (28)

  1. Antiviral activity of bacterial TIR domains via immune signalling molecules. Ofir G, Herbst E, Baroz M, Cohen D, Millman A, Doron S, Tal N, Malheiro DBA, Malitsky S, Amitai G, Sorek R. Nature 600 116-120 (2021)
  2. The structures and gating mechanism of human calcium homeostasis modulator 2. Choi W, Clemente N, Sun W, Du J, Lü W. Nature 576 163-167 (2019)
  3. Mechanism of praziquantel action at a parasitic flatworm ion channel. Park SK, Friedrich L, Yahya NA, Rohr CM, Chulkov EG, Maillard D, Rippmann F, Spangenberg T, Marchant JS. Sci Transl Med 13 eabj5832 (2021)
  4. Global alignment and assessment of TRP channel transmembrane domain structures to explore functional mechanisms. Huffer KE, Aleksandrova AA, Jara-Oseguera A, Forrest LR, Swartz KJ. Elife 9 e58660 (2020)
  5. Functional coupling of TRPM2 and extrasynaptic NMDARs exacerbates excitotoxicity in ischemic brain injury. Zong P, Feng J, Yue Z, Li Y, Wu G, Sun B, He Y, Miller B, Yu AS, Su Z, Xie J, Mori Y, Hao B, Yue L. Neuron 110 1944-1958.e8 (2022)
  6. Structures of the TRPM5 channel elucidate mechanisms of activation and inhibition. Ruan Z, Haley E, Orozco IJ, Sabat M, Myers R, Roth R, Du J, Lü W. Nat Struct Mol Biol 28 604-613 (2021)
  7. TRP channels in health and disease at a glance. Yue L, Xu H. J Cell Sci 134 jcs258372 (2021)
  8. Structures of a mammalian TRPM8 in closed state. Zhao C, Xie Y, Xu L, Ye F, Xu X, Yang W, Yang F, Guo J. Nat Commun 13 3113 (2022)
  9. TRPM2 in ischemic stroke: Structure, molecular mechanisms, and drug intervention. Wang Q, Liu N, Ni YS, Yang JM, Ma L, Lan XB, Wu J, Niu JG, Yu JQ. Channels (Austin) 15 136-154 (2021)
  10. Transient Receptor Potential (TRP) Channels in the Pacific Oyster (Crassostrea gigas): Genome-Wide Identification and Expression Profiling after Heat Stress between C. gigas and C. angulata. Fu H, Jiao Z, Li Y, Tian J, Ren L, Zhang F, Li Q, Liu S. Int J Mol Sci 22 3222 (2021)
  11. Structural mechanism of TRPM7 channel regulation by intracellular magnesium. Schmidt E, Narangoda C, Nörenberg W, Egawa M, Rössig A, Leonhardt M, Schaefer M, Zierler S, Kurnikova MG, Gudermann T, Chubanov V. Cell Mol Life Sci 79 225 (2022)
  12. Bilirubin gates the TRPM2 channel as a direct agonist to exacerbate ischemic brain damage. Liu HW, Gong LN, Lai K, Yu XF, Liu ZQ, Li MX, Yin XL, Liang M, Shi HS, Jiang LH, Yang W, Shi HB, Wang LY, Yin SK. Neuron 111 1609-1625.e6 (2023)
  13. Species-Specific Regulation of TRPM2 by PI(4,5)P2 via the Membrane Interfacial Cavity. Barth D, Lückhoff A, Kühn FJP. Int J Mol Sci 22 4637 (2021)
  14. The human ion channel TRPM2 modulates cell survival in neuroblastoma through E2F1 and FOXM1. Hirschler-Laszkiewicz I, Festa F, Huang S, Moldovan GL, Nicolae C, Dhoonmoon A, Bao L, Keefer K, Chen SJ, Wang HG, Cheung JY, Miller BA. Sci Rep 12 6311 (2022)
  15. Functional importance of NUDT9H domain and N-terminal ADPR-binding pocket in two species variants of vertebrate TRPM2 channels. Kühn FJP, Ehrlich W, Barth D, Kühn C, Lückhoff A. Sci Rep 9 19224 (2019)
  16. Modulation of TRPV2 by endogenous and exogenous ligands: A computational study. Feng S, Pumroy RA, Protopopova AD, Moiseenkova-Bell VY, Im W. Protein Sci 32 e4490 (2023)
  17. Synthesis of phosphonoacetate analogues of the second messenger adenosine 5'-diphosphate ribose (ADPR). Baszczyňski O, Watt JM, Rozewitz MD, Fliegert R, Guse AH, Potter BVL. RSC Adv 10 1776-1785 (2020)
  18. Dual amplification strategy turns TRPM2 channels into supersensitive central heat detectors. Bartók Á, Csanády L. Proc Natl Acad Sci U S A 119 e2212378119 (2022)
  19. Protein kinase C-mediated phosphorylation of transient receptor potential melastatin type 2 Thr738 counteracts the effect of cytosolic Ca2+ and elevates the temperature threshold. Kashio M, Masubuchi S, Tominaga M. J Physiol 600 4287-4302 (2022)
  20. The N-terminal domain in TRPM2 channel is a conserved nucleotide binding site. Lü W, Du J. J Gen Physiol 152 e201912555 (2020)
  21. The crystal structure of TRPM2 MHR1/2 domain reveals a conserved Zn2+ -binding domain essential for structural integrity and channel activity. Sander S, Pick J, Gattkowski E, Fliegert R, Tidow H. Protein Sci 31 e4320 (2022)
  22. The human ion channel TRPM2 modulates migration and invasion in neuroblastoma through regulation of integrin expression. Bao L, Festa F, Hirschler-Laszkiewicz I, Keefer K, Wang HG, Cheung JY, Miller BA. Sci Rep 12 20544 (2022)
  23. Use the force, fluke: Ligand-independent gating of Schistosoma mansoni ion channel TRPMPZQ. Chulkov EG, Isaeva E, Stucky CL, Marchant JS. Int J Parasitol 53 427-434 (2023)
  24. cADPR Does Not Activate TRPM2. Riekehr WM, Sander S, Pick J, Tidow H, Bauche A, Guse AH, Fliegert R. Int J Mol Sci 23 3163 (2022)
  25. Analysis of ligand binding and resulting conformational changes in pyrophosphatase NUDT9. Gattkowski E, Rutherford TJ, Möckl F, Bauche A, Sander S, Fliegert R, Tidow H. FEBS J 288 6769-6782 (2021)
  26. 2'-deoxy-ADPR activates human TRPM2 faster than ADPR and thereby induces higher currents at physiological Ca2+ concentrations. Pick J, Sander S, Etzold S, Rosche A, Tidow H, Guse AH, Fliegert R. Front Immunol 15 1294357 (2024)
  27. Functional characterization of the transient receptor potential melastatin 2 (TRPM2) cation channel from Nematostella vectensis reconstituted into lipid bilayer. Szollosi A, Almássy J. Sci Rep 13 11471 (2023)
  28. The identification of the key residues E829 and R845 involved in transient receptor potential melastatin 2 channel gating. Luo Y, Chen S, Wu F, Jiang C, Fang M. Front Aging Neurosci 14 1033434 (2022)