6rd4 Citations

Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-Fo coupling.

Abstract

F1Fo-adenosine triphosphate (ATP) synthases make the energy of the proton-motive force available for energy-consuming processes in the cell. We determined the single-particle cryo-electron microscopy structure of active dimeric ATP synthase from mitochondria of Polytomella sp. at a resolution of 2.7 to 2.8 angstroms. Separation of 13 well-defined rotary substates by three-dimensional classification provides a detailed picture of the molecular motions that accompany c-ring rotation and result in ATP synthesis. Crucially, the F1 head rotates along with the central stalk and c-ring rotor for the first ~30° of each 120° primary rotary step to facilitate flexible coupling of the stoichiometrically mismatched F1 and Fo subcomplexes. Flexibility is mediated primarily by the interdomain hinge of the conserved OSCP subunit. A conserved metal ion in the proton access channel may synchronize c-ring protonation with rotation.

Reviews - 6rd4 mentioned but not cited (3)

  1. Diabetes Mellitus, Mitochondrial Dysfunction and Ca2+-Dependent Permeability Transition Pore. Belosludtsev KN, Belosludtseva NV, Dubinin MV. Int J Mol Sci 21 E6559 (2020)
  2. CryoEM Reveals the Complexity and Diversity of ATP Synthases. Courbon GM, Rubinstein JL. Front Microbiol 13 864006 (2022)
  3. The biogenesis and regulation of the plant oxidative phosphorylation system. Ghifari AS, Saha S, Murcha MW. Plant Physiol 192 728-747 (2023)

Articles - 6rd4 mentioned but not cited (3)



Reviews citing this publication (27)

  1. Structure and Mechanisms of F-Type ATP Synthases. Kühlbrandt W. Annu Rev Biochem 88 515-549 (2019)
  2. The mitochondrial permeability transition: Recent progress and open questions. Bernardi P, Carraro M, Lippe G. FEBS J 289 7051-7074 (2022)
  3. Mitochondrial OXPHOS Biogenesis: Co-Regulation of Protein Synthesis, Import, and Assembly Pathways. Tang JX, Thompson K, Taylor RW, Oláhová M. Int J Mol Sci 21 E3820 (2020)
  4. Therapeutic use of extracellular mitochondria in CNS injury and disease. Nakamura Y, Park JH, Hayakawa K. Exp Neurol 324 113114 (2020)
  5. Visualizing and trapping transient oligomers in amyloid assembly pathways. Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Biophys Chem 268 106505 (2021)
  6. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA. Cell Death Differ 30 1869-1885 (2023)
  7. ATP synthase: Evolution, energetics, and membrane interactions. Nirody JA, Budin I, Rangamani P. J Gen Physiol 152 e201912475 (2020)
  8. Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology. Nesci S, Trombetti F, Pagliarani A, Ventrella V, Algieri C, Tioli G, Lenaz G. Life (Basel) 11 242 (2021)
  9. The new role of F1Fo ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Mnatsakanyan N, Jonas EA. Exp Neurol 332 113400 (2020)
  10. From the Structural and (Dys)Function of ATP Synthase to Deficiency in Age-Related Diseases. Garone C, Pietra A, Nesci S. Life (Basel) 12 401 (2022)
  11. Understanding a protein fold: The physics, chemistry, and biology of α-helical coiled coils. Woolfson DN. J Biol Chem 299 104579 (2023)
  12. The importance of the membrane for biophysical measurements. Chorev DS, Robinson CV. Nat Chem Biol 16 1285-1292 (2020)
  13. Extracellular Mitochondria Signals in CNS Disorders. Park JH, Hayakawa K. Front Cell Dev Biol 9 642853 (2021)
  14. F1FO ATP synthase molecular motor mechanisms. Frasch WD, Bukhari ZA, Yanagisawa S. Front Microbiol 13 965620 (2022)
  15. The mystery of massive mitochondrial complexes: the apicomplexan respiratory chain. Maclean AE, Hayward JA, Huet D, van Dooren GG, Sheiner L. Trends Parasitol 38 1041-1052 (2022)
  16. Redesigned and reversed: architectural and functional oddities of the trypanosomal ATP synthase. Gahura O, Hierro-Yap C, Zíková A. Parasitology 148 1151-1160 (2021)
  17. ATP synthase FOF1 structure, function, and structure-based drug design. Vlasov AV, Osipov SD, Bondarev NA, Uversky VN, Borshchevskiy VI, Yanyushin MF, Manukhov IV, Rogachev AV, Vlasova AD, Ilyinsky NS, Kuklin AI, Dencher NA, Gordeliy VI. Cell Mol Life Sci 79 179 (2022)
  18. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Piper SJ, Johnson RM, Wootten D, Sexton PM. Chem Rev 122 13989-14017 (2022)
  19. Rotor subunits adaptations in ATP synthases from photosynthetic organisms. Cheuk A, Meier T. Biochem Soc Trans 49 541-550 (2021)
  20. The ATPase Inhibitory Factor 1 is a Tissue-Specific Physiological Regulator of the Structure and Function of Mitochondrial ATP Synthase: A Closer Look Into Neuronal Function. Domínguez-Zorita S, Romero-Carramiñana I, Cuezva JM, Esparza-Moltó PB. Front Physiol 13 868820 (2022)
  21. Rotational Mechanism of FO Motor in the F-Type ATP Synthase Driven by the Proton Motive Force. Kubo S, Takada S. Front Microbiol 13 872565 (2022)
  22. F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. Zharova TV, Grivennikova VG, Borisov VB. Int J Mol Sci 24 5417 (2023)
  23. Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules. Chang WH, Huang SH, Lin HH, Chung SC, Tu IP. Front Bioinform 1 788308 (2021)
  24. Directed proton transfer from Fo to F1 extends the multifaceted proton functions in ATP synthase. Nesterov SV, Yaguzhinsky LS. Biophys Rev 15 859-873 (2023)
  25. Reversible binding of divalent cations to Ductin protein assemblies-A putative new regulatory mechanism of membrane traffic processes. Sebők-Nagy K, Blastyák A, Juhász G, Páli T. Front Mol Biosci 10 1195010 (2023)
  26. Rotary mechanism of V/A-ATPases-how is ATP hydrolysis converted into a mechanical step rotation in rotary ATPases? Yokoyama K. Front Mol Biosci 10 1176114 (2023)
  27. Variants in Human ATP Synthase Mitochondrial Genes: Biochemical Dysfunctions, Associated Diseases, and Therapies. Del Dotto V, Musiani F, Baracca A, Solaini G. Int J Mol Sci 25 2239 (2024)

Articles citing this publication (51)