6sw9 Citations

Cryo-EM study of an archaeal 30S initiation complex gives insights into evolution of translation initiation.

OpenAccess logo Commun Biol 3 58 (2020)
Related entries: 6swc, 6swd, 6swe

Cited: 19 times
EuropePMC logo PMID: 32029867

Abstract

Archaeal translation initiation occurs within a macromolecular complex containing the small ribosomal subunit (30S) bound to mRNA, initiation factors aIF1, aIF1A and the ternary complex aIF2:GDPNP:Met-tRNAiMet. Here, we determine the cryo-EM structure of a 30S:mRNA:aIF1A:aIF2:GTP:Met-tRNAiMet complex from Pyrococcus abyssi at 3.2 Å resolution. It highlights archaeal features in ribosomal proteins and rRNA modifications. We find an aS21 protein, at the location of eS21 in eukaryotic ribosomes. Moreover, we identify an N-terminal extension of archaeal eL41 contacting the P site. We characterize 34 N4-acetylcytidines distributed throughout 16S rRNA, likely contributing to hyperthermostability. Without aIF1, the 30S head is stabilized and initiator tRNA is tightly bound to the P site. A network of interactions involving tRNA, mRNA, rRNA modified nucleotides and C-terminal tails of uS9, uS13 and uS19 is observed. Universal features and domain-specific idiosyncrasies of translation initiation are discussed in light of ribosomal structures from representatives of each domain of life.

Articles - 6sw9 mentioned but not cited (2)

  1. Cryo-EM study of an archaeal 30S initiation complex gives insights into evolution of translation initiation. Coureux PD, Lazennec-Schurdevin C, Bourcier S, Mechulam Y, Schmitt E. Commun Biol 3 58 (2020)
  2. Coupling of Transcription and Translation in Archaea: Cues From the Bacterial World. Weixlbaumer A, Grünberger F, Werner F, Grohmann D. Front Microbiol 12 661827 (2021)


Reviews citing this publication (5)

  1. Recent Advances in Archaeal Translation Initiation. Schmitt E, Coureux PD, Kazan R, Bourgeois G, Lazennec-Schurdevin C, Mechulam Y. Front Microbiol 11 584152 (2020)
  2. Ribosome Biogenesis in Archaea. Londei P, Ferreira-Cerca S. Front Microbiol 12 686977 (2021)
  3. The diversity of Shine-Dalgarno sequences sheds light on the evolution of translation initiation. Wen JD, Kuo ST, Chou HD. RNA Biol 18 1489-1500 (2021)
  4. A Comparative Perspective on Ribosome Biogenesis: Unity and Diversity Across the Tree of Life. Jüttner M, Ferreira-Cerca S. Methods Mol Biol 2533 3-22 (2022)
  5. Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure. Kisly I, Tamm T. Comput Struct Biotechnol J 21 1249-1261 (2023)

Articles citing this publication (12)

  1. Increased fidelity of protein synthesis extends lifespan. Martinez-Miguel VE, Lujan C, Espie-Caullet T, Martinez-Martinez D, Moore S, Backes C, Gonzalez S, Galimov ER, Brown AEX, Halic M, Tomita K, Rallis C, von der Haar T, Cabreiro F, Bjedov I. Cell Metab 33 2288-2300.e12 (2021)
  2. Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution. Bortolin-Cavaillé ML, Quillien A, Thalalla Gamage S, Thomas JM, Sas-Chen A, Sharma S, Plisson-Chastang C, Vandel L, Blader P, Lafontaine DLJ, Schwartz S, Meier JL, Cavaillé J. Nucleic Acids Res 50 6284-6299 (2022)
  3. Insights into synthesis and function of KsgA/Dim1-dependent rRNA modifications in archaea. Knüppel R, Trahan C, Kern M, Wagner A, Grünberger F, Hausner W, Quax TEF, Albers SV, Oeffinger M, Ferreira-Cerca S. Nucleic Acids Res 49 1662-1687 (2021)
  4. Role of aIF5B in archaeal translation initiation. Kazan R, Bourgeois G, Lazennec-Schurdevin C, Larquet E, Mechulam Y, Coureux PD, Schmitt E. Nucleic Acids Res 50 6532-6548 (2022)
  5. Elucidation of the Translation Initiation Factor Interaction Network of Haloferax volcanii Reveals Coupling of Transcription and Translation in Haloarchaea. Schramm F, Borst A, Linne U, Soppa J. Front Microbiol 12 742806 (2021)
  6. Sarecycline inhibits protein translation in Cutibacterium acnes 70S ribosome using a two-site mechanism. Lomakin IB, Devarkar SC, Patel S, Grada A, Bunick CG. Nucleic Acids Res 51 2915-2930 (2023)
  7. Cryo-electron microscopy structure and translocation mechanism of the crenarchaeal ribosome. Wang YH, Dai H, Zhang L, Wu Y, Wang J, Wang C, Xu CH, Hou H, Yang B, Zhu Y, Zhang X, Zhou J. Nucleic Acids Res 51 8909-8924 (2023)
  8. ABC2A: A Straightforward and Fast Method for the Accurate Backmapping of RNA Coarse-Grained Models to All-Atom Structures. Shi YZ, Wu H, Li SS, Li HZ, Zhang BG, Tan YL. Molecules 29 1244 (2024)
  9. Detection of ac4C in human mRNA is preserved upon data reassessment. Beiki H, Sturgill D, Arango D, Relier S, Schiffers S, Oberdoerffer S. Mol Cell 84 1611-1625.e3 (2024)
  10. Grid batch-dependent tuning of glow discharge parameters. Kazan R, Bourgeois G, Carisetti D, Florea I, Larquet E, Maurice JL, Mechulam Y, Ozanam F, Schmitt E, Coureux PD. Front Mol Biosci 9 910218 (2022)
  11. In vivo structure probing of RNA in <i>Archaea</i>: novel insights into the ribosome structure of <i>Methanosarcina acetivorans</i>. Williams AM, Jolley EA, Santiago-Martínez MG, Chan CX, Gutell RR, Ferry JG, Bevilacqua PC. RNA 29 1610-1620 (2023)
  12. Structural basis of translation inhibition by a valine tRNA-derived fragment. Wu Y, Ni MT, Wang YH, Wang C, Hou H, Zhang X, Zhou J. Life Sci Alliance 7 e202302488 (2024)