6tb4 Citations

Structure of SAGA and mechanism of TBP deposition on gene promoters.

Nature 577 711-716 (2020)
Cited: 49 times
EuropePMC logo PMID: 31969704

Abstract

SAGA (Spt-Ada-Gcn5-acetyltransferase) is a 19-subunit complex that stimulates transcription via two chromatin-modifying enzymatic modules and by delivering the TATA box binding protein (TBP) to nucleate the pre-initiation complex on DNA, a pivotal event in the expression of protein-encoding genes1. Here we present the structure of yeast SAGA with bound TBP. The core of the complex is resolved at 3.5 Å resolution (0.143 Fourier shell correlation). The structure reveals the intricate network of interactions that coordinate the different functional domains of SAGA and resolves an octamer of histone-fold domains at the core of SAGA. This deformed octamer deviates considerably from the symmetrical analogue in the nucleosome and is precisely tuned to establish a peripheral site for TBP, where steric hindrance represses binding of spurious DNA. Complementary biochemical analysis points to a mechanism for TBP delivery and release from SAGA that requires transcription factor IIA and whose efficiency correlates with the affinity of DNA to TBP. We provide the foundations for understanding the specific delivery of TBP to gene promoters and the multiple roles of SAGA in regulating gene expression.

Articles - 6tb4 mentioned but not cited (1)

  1. Structure of the human SAGA coactivator complex. Herbst DA, Esbin MN, Louder RK, Dugast-Darzacq C, Dailey GM, Fang Q, Darzacq X, Tjian R, Nogales E. Nat Struct Mol Biol 28 989-996 (2021)


Reviews citing this publication (15)

  1. Structure and mechanism of the RNA polymerase II transcription machinery. Schier AC, Taatjes DJ. Genes Dev 34 465-488 (2020)
  2. The SAGA chromatin-modifying complex: the sum of its parts is greater than the whole. Soffers JHM, Workman JL. Genes Dev 34 1287-1303 (2020)
  3. Dynamic modules of the coactivator SAGA in eukaryotic transcription. Cheon Y, Kim H, Park K, Kim M, Lee D. Exp Mol Med 52 991-1003 (2020)
  4. Now open: Evolving insights to the roles of lysine acetylation in chromatin organization and function. Chen YC, Koutelou E, Dent SYR. Mol Cell 82 716-727 (2022)
  5. Complex functions of Gcn5 and Pcaf in development and disease. Koutelou E, Farria AT, Dent SYR. Biochim Biophys Acta Gene Regul Mech 1864 194609 (2021)
  6. The Ada2/Ada3/Gcn5/Sgf29 histone acetyltransferase module. Espinola-Lopez JM, Tan S. Biochim Biophys Acta Gene Regul Mech 1864 194629 (2021)
  7. Assembly of RNA polymerase II transcription initiation complexes. Farnung L, Vos SM. Curr Opin Struct Biol 73 102335 (2022)
  8. Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion. Niewiadomska-Cimicka A, Hache A, Trottier Y. Front Neurosci 14 571 (2020)
  9. The biochemical and genetic discovery of the SAGA complex. Grant PA, Winston F, Berger SL. Biochim Biophys Acta Gene Regul Mech 1864 194669 (2021)
  10. Conservation and diversity of the eukaryotic SAGA coactivator complex across kingdoms. Chen YC, Dent SYR. Epigenetics Chromatin 14 26 (2021)
  11. The Histone Acetyltransferase GCN5 and the Associated Coactivators ADA2: From Evolution of the SAGA Complex to the Biological Roles in Plants. Vlachonasios K, Poulios S, Mougiou N. Plants (Basel) 10 308 (2021)
  12. The SAGA continues: The rise of cis- and trans-histone crosstalk pathways. Strahl BD, Briggs SD. Biochim Biophys Acta Gene Regul Mech 1864 194600 (2021)
  13. Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators. Malik S, Roeder RG. Nat Rev Genet 24 767-782 (2023)
  14. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Felício D, du Mérac TR, Amorim A, Martins S. Hum Genet 142 1651-1676 (2023)
  15. Insights into protein structure using cryogenic light microscopy. Mazal H, Wieser FF, Sandoghdar V. Biochem Soc Trans 51 2041-2059 (2023)

Articles citing this publication (33)

  1. Two roles for the yeast transcription coactivator SAGA and a set of genes redundantly regulated by TFIID and SAGA. Donczew R, Warfield L, Pacheco D, Erijman A, Hahn S. Elife 9 e50109 (2020)
  2. Structural analysis reveals TLR7 dynamics underlying antagonism. Tojo S, Zhang Z, Matsui H, Tahara M, Ikeguchi M, Kochi M, Kamada M, Shigematsu H, Tsutsumi A, Adachi N, Shibata T, Yamamoto M, Kikkawa M, Senda T, Isobe Y, Ohto U, Shimizu T. Nat Commun 11 5204 (2020)
  3. Acetylation-dependent SAGA complex dimerization promotes nucleosome acetylation and gene transcription. Huang J, Dai W, Xiao D, Xiong Q, Liu C, Hu J, Ge F, Yu X, Li S, Li S. Nat Struct Mol Biol 29 261-273 (2022)
  4. The Pol II preinitiation complex (PIC) influences Mediator binding but not promoter-enhancer looping. Sun F, Sun T, Kronenberg M, Tan X, Huang C, Carey MF. Genes Dev 35 1175-1189 (2021)
  5. Comparison of transcriptional initiation by RNA polymerase II across eukaryotic species. Petrenko N, Struhl K. Elife 10 e67964 (2021)
  6. KAT2A complexes ATAC and SAGA play unique roles in cell maintenance and identity in hematopoiesis and leukemia. Arede L, Foerner E, Wind S, Kulkarni R, Domingues AF, Giotopoulos G, Kleinwaechter S, Mollenhauer-Starkl M, Davison H, Chandru A, Asby R, Samarista R, Gupta S, Forte D, Curti A, Scheer E, Huntly BJP, Tora L, Pina C. Blood Adv 6 165-180 (2022)
  7. The related coactivator complexes SAGA and ATAC control embryonic stem cell self-renewal through acetyltransferase-independent mechanisms. Fischer V, Plassard D, Ye T, Reina-San-Martin B, Stierle M, Tora L, Devys D. Cell Rep 36 109598 (2021)
  8. The SAGA complex regulates early steps in transcription via its deubiquitylase module subunit USP22. Stanek TJ, Gennaro VJ, Tracewell MA, Di Marcantonio D, Pauley KL, Butt S, McNair C, Wang F, Kossenkov AV, Knudsen KE, Butt T, Sykes SM, McMahon SB. EMBO J 40 e102509 (2021)
  9. The TRRAP transcription cofactor represses interferon-stimulated genes in colorectal cancer cells. Detilleux D, Raynaud P, Pradet-Balade B, Helmlinger D. Elife 11 e69705 (2022)
  10. Crystal structure of GCN5 PCAF N-terminal domain reveals atypical ubiquitin ligase structure. Toma-Fukai S, Hibi R, Naganuma T, Sakai M, Saijo S, Shimizu N, Matsumoto M, Shimizu T. J Biol Chem 295 14630-14639 (2020)
  11. Prp5-Spt8/Spt3 interaction mediates a reciprocal coupling between splicing and transcription. Shao W, Ding Z, Zheng ZZ, Shen JJ, Shen YX, Pu J, Fan YJ, Query CC, Xu YZ. Nucleic Acids Res 48 5799-5813 (2020)
  12. Structure and flexibility of the yeast NuA4 histone acetyltransferase complex. Zukin SA, Marunde MR, Popova IK, Soczek KM, Nogales E, Patel AB. Elife 11 e81400 (2022)
  13. The Verticillium dahliae Spt-Ada-Gcn5 Acetyltransferase Complex Subunit Ada1 Is Essential for Conidia and Microsclerotia Production and Contributes to Virulence. Geng Q, Li H, Wang D, Sheng RC, Zhu H, Klosterman SJ, Subbarao KV, Chen JY, Chen FM, Zhang DD. Front Microbiol 13 852571 (2022)
  14. Conformational landscape of the yeast SAGA complex as revealed by cryo-EM. Vasyliuk D, Felt J, Zhong ED, Berger B, Davis JH, Yip CK. Sci Rep 12 12306 (2022)
  15. Mechanism of RNA polymerase I selection by transcription factor UAF. Baudin F, Murciano B, Fung HKH, Fromm SA, Mattei S, Mahamid J, Müller CW. Sci Adv 8 eabn5725 (2022)
  16. Programmable site-selective labeling of oligonucleotides based on carbene catalysis. Lee YH, Yu E, Park CM. Nat Commun 12 1681 (2021)
  17. Structure of the NuA4 histone acetyltransferase complex. Ji L, Zhao L, Xu K, Gao H, Zhou Y, Kornberg RD, Zhang H. Proc Natl Acad Sci U S A 119 e2214313119 (2022)
  18. Deciphering a hexameric protein complex with Angstrom optical resolution. Mazal H, Wieser FF, Sandoghdar V. Elife 11 e76308 (2022)
  19. An integrated SAGA and TFIID PIC assembly pathway selective for poised and induced promoters. Mittal C, Lang O, Lai WKM, Pugh BF. Genes Dev 36 985-1001 (2022)
  20. SAGA-CORE subunit Spt7 is required for correct Ubp8 localization, chromatin association and deubiquitinase activity. Nuño-Cabanes C, García-Molinero V, Martín-Expósito M, Gas ME, Oliete-Calvo P, García-Oliver E, de la Iglesia-Vayá M, Rodríguez-Navarro S. Epigenetics Chromatin 13 46 (2020)
  21. SUPT3H-less SAGA coactivator can assemble and function without significantly perturbing RNA polymerase II transcription in mammalian cells. Fischer V, Hisler V, Scheer E, Lata E, Morlet B, Plassard D, Helmlinger D, Devys D, Tora L, Vincent SD. Nucleic Acids Res 50 7972-7990 (2022)
  22. The structure of the NuA4-Tip60 complex reveals the mechanism and importance of long-range chromatin modification. Fréchard A, Faux C, Hexnerova R, Crucifix C, Papai G, Smirnova E, McKeon C, Ping FLY, Helmlinger D, Schultz P, Ben-Shem A. Nat Struct Mol Biol 30 1337-1345 (2023)
  23. Binding to nucleosome poises human SIRT6 for histone H3 deacetylation. Smirnova E, Bignon E, Schultz P, Papai G, Ben Shem A. Elife 12 RP87989 (2024)
  24. SAGA and SAGA-like SLIK transcriptional coactivators are structurally and biochemically equivalent. Adamus K, Reboul C, Voss J, Huang C, Schittenhelm RB, Le SN, Ellisdon AM, Elmlund H, Boudes M, Elmlund D. J Biol Chem 296 100671 (2021)
  25. Ume6 Acts as a Stable Platform To Coordinate Repression and Activation of Early Meiosis-Specific Genes in Saccharomyces cerevisiae. Raithatha SA, Vaza S, Islam MT, Greenwood B, Stuart DT. Mol Cell Biol 41 e0037820 (2021)
  26. ATAC and SAGA co-activator complexes utilize co-translational assembly, but their cellular localization properties and functions are distinct. Yayli G, Bernardini A, Mendoza Sanchez PK, Scheer E, Damilot M, Essabri K, Morlet B, Negroni L, Vincent SD, Timmers HTM, Tora L. Cell Rep 42 113099 (2023)
  27. Letter Cryo-EM structure of human SAGA transcriptional coactivator complex. Zhang Y, Yin C, Yin Y, Wei M, Jing W, Peng C, Chen Z, Huang J. Cell Discov 8 125 (2022)
  28. Involvement of the SAGA and TFIID coactivator complexes in transcriptional dysregulation caused by the separation of core and tail Mediator modules. Saleh MM, Hundley HA, Zentner GE. G3 (Bethesda) 12 jkac290 (2022)
  29. Spt3 and Spt8 Are Involved in the Formation of a Silencing Boundary by Interacting with TATA-Binding Protein. Kamata K, Ayano T, Oki M. Biomolecules 13 619 (2023)
  30. The NuA4 histone acetyltransferase: variations on a theme of SAGA. Cheung ACM. Nat Struct Mol Biol 30 1240-1241 (2023)
  31. The SAGA HAT module is tethered by its SWIRM domain and modulates activity of the SAGA DUB module. Haile ST, Rahman S, Fields JK, Orsburn BC, Bumpus NN, Wolberger C. Biochim Biophys Acta Gene Regul Mech 1866 194929 (2023)
  32. The SAGA core module is critical during Drosophila oogenesis and is broadly recruited to promoters. Soffers JHM, Alcantara SG, Li X, Shao W, Seidel CW, Li H, Zeitlinger J, Abmayr SM, Workman JL. PLoS Genet 17 e1009668 (2021)
  33. Transcriptome sequencing and screening of genes related to glucose availability in Schizosaccharomyces pombe by RNA-seq analysis. Tarhan Ç, Çakır Ö. Genet Mol Biol 44 e20200245 (2021)