6ucb Citations

Structures of the AMPA receptor in complex with its auxiliary subunit cornichon.

Science 366 1259-1263 (2019)
Related entries: 6peq, 6u5s, 6u6i, 6ud4, 6ud8

Cited: 33 times
EuropePMC logo PMID: 31806817

Abstract

In the brain, AMPA-type glutamate receptors (AMPARs) form complexes with their auxiliary subunits and mediate the majority of fast excitatory neurotransmission. Signals transduced by these complexes are critical for synaptic plasticity, learning, and memory. The two major categories of AMPAR auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs) and cornichon homologs (CNIHs); these subunits share little homology and play distinct roles in controlling ion channel gating and trafficking of AMPAR. Here, I report high-resolution cryo-electron microscopy structures of AMPAR in complex with CNIH3. Contrary to its predicted membrane topology, CNIH3 lacks an extracellular domain and instead contains four membrane-spanning helices. The protein-protein interaction interface that dictates channel modulation and the lipids surrounding the complex are revealed. These structures provide insights into the molecular mechanism for ion channel modulation and assembly of AMPAR/CNIH3 complexes.

Articles - 6ucb mentioned but not cited (1)

  1. Solution structure analysis of cytoplasmic domain of podocyte protein Neph1 using small/wide angle x-ray scattering (SWAXS). Mallik L, Arif E, Sharma P, Rathore YS, Wong HN, Holzman LB, Ashish, Nihalani D. J Biol Chem 287 9441-9453 (2012)


Reviews citing this publication (8)

  1. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Pharmacol Rev 73 298-487 (2021)
  2. AMPA receptor structure and auxiliary subunits. Kamalova A, Nakagawa T. J Physiol 599 453-469 (2021)
  3. Cryo-EM as a powerful tool for drug discovery. Van Drie JH, Tong L. Bioorg Med Chem Lett 30 127524 (2020)
  4. The Role of AMPARs Composition and Trafficking in Synaptic Plasticity and Diseases. Wu QL, Gao Y, Li JT, Ma WY, Chen NH. Cell Mol Neurobiol (2021)
  5. Interplay between Gating and Block of Ligand-Gated Ion Channels. Phillips MB, Nigam A, Johnson JW. Brain Sci 10 (2020)
  6. Looking for Novelty in an "Old" Receptor: Recent Advances Toward Our Understanding of GABAARs and Their Implications in Receptor Pharmacology. Castellano D, Shepard RD, Lu W. Front Neurosci 14 616298 (2020)
  7. Targeting receptor complexes: a new dimension in drug discovery. Rosenbaum MI, Clemmensen LS, Bredt DS, Bettler B, Strømgaard K. Nat Rev Drug Discov 19 884-901 (2020)
  8. Tetraspanins as Potential Modulators of Glutamatergic Synaptic Function. Becic A, Leifeld J, Shaukat J, Hollmann M. Front Mol Neurosci 14 801882 (2021)

Articles citing this publication (24)

  1. Gating and modulation of a hetero-octameric AMPA glutamate receptor. Zhang D, Watson JF, Matthews PM, Cais O, Greger IH. Nature 594 454-458 (2021)
  2. Hippocampal AMPA receptor assemblies and mechanism of allosteric inhibition. Yu J, Rao P, Clark S, Mitra J, Ha T, Gouaux E. Nature 594 448-453 (2021)
  3. Ca2+ -permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease. Cull-Candy SG, Farrant M. J Physiol 599 2655-2671 (2021)
  4. Structure of the Arabidopsis thaliana glutamate receptor-like channel GLR3.4. Green MN, Gangwar SP, Michard E, Simon AA, Portes MT, Barbosa-Caro J, Wudick MM, Lizzio MA, Klykov O, Yelshanskaya MV, Feijó JA, Sobolevsky AI. Mol Cell 81 3216-3226.e8 (2021)
  5. Architecture and structural dynamics of the heteromeric GluK2/K5 kainate receptor. Khanra N, Brown PM, Perozzo AM, Bowie D, Meyerson JR. Elife 10 e66097 (2021)
  6. Trans-synaptic assemblies link synaptic vesicles and neuroreceptors. Martinez-Sanchez A, Laugks U, Kochovski Z, Papantoniou C, Zinzula L, Baumeister W, Lučić V. Sci Adv 7 eabe6204 (2021)
  7. Structural determinants of cholesterol recognition in helical integral membrane proteins. Marlow B, Kuenze G, Li B, Sanders CR, Meiler J. Biophys J 120 1592-1604 (2021)
  8. Structure and desensitization of AMPA receptor complexes with type II TARP γ5 and GSG1L. Klykov O, Gangwar SP, Yelshanskaya MV, Yen L, Sobolevsky AI. Mol Cell 81 4771-4783.e7 (2021)
  9. Interaction and Subcellular Association of PRRT1/SynDIG4 With AMPA Receptors. Martin EE, Wleklinski E, Hoang HTM, Ahmad M. Front Synaptic Neurosci 13 705664 (2021)
  10. Sex Differences in the Role of CNIH3 on Spatial Memory and Synaptic Plasticity. Frye HE, Izumi Y, Harris AN, Williams SB, Trousdale CR, Sun MY, Sauerbeck AD, Kummer TT, Mennerick S, Zorumski CF, Nelson EC, Dougherty JD, Morón JA. Biol Psychiatry 90 766-780 (2021)
  11. A Noelin-organized extracellular network of proteins required for constitutive and context-dependent anchoring of AMPA-receptors. Boudkkazi S, Schwenk J, Nakaya N, Brechet A, Kollewe A, Harada H, Bildl W, Kulik A, Dong L, Sultana A, Zolles G, Schulte U, Tomarev S, Fakler B. Neuron 111 2544-2556.e9 (2023)
  12. A cornichon protein controls polar localization of the PINA auxin transporter in Physcomitrium patens. Yáñez-Domínguez C, Lagunas-Gómez D, Torres-Cifuentes DM, Bezanilla M, Pantoja O. Development 150 dev201635 (2023)
  13. Alternative Splicing of the Flip/Flop Cassette and TARP Auxiliary Subunits Engage in a Privileged Relationship That Fine-Tunes AMPA Receptor Gating. Perozzo AM, Brown PMGE, Bowie D. J Neurosci 43 2837-2849 (2023)
  14. Differential regulation of tetramerization of the AMPA receptor glutamate-gated ion channel by auxiliary subunits. Certain N, Gan Q, Bennett J, Hsieh H, Wollmuth LP. J Biol Chem 299 105227 (2023)
  15. GSG1L-containing AMPA receptor complexes are defined by their spatiotemporal expression, native interactome and allosteric sites. Perozzo AM, Schwenk J, Kamalova A, Nakagawa T, Fakler B, Bowie D. Nat Commun 14 6799 (2023)
  16. Genetic evidence of aberrant striatal synaptic maturation and secretory pathway alteration in a dystonia mouse model. Yellajoshyula D, Opeyemi S, Dauer WT, Pappas SS. Dystonia 1 10892 (2022)
  17. GluR2Q and GluR2R AMPA Subunits are not Targets of lypd2 Interaction. Lauriello A, McVeigh Q, Sung RJ. PLoS One 17 e0278278 (2022)
  18. Mechanisms underlying TARP modulation of the GluA1/2-γ8 AMPA receptor. Herguedas B, Kohegyi BK, Dohrke JN, Watson JF, Zhang D, Ho H, Shaikh SA, Lape R, Krieger JM, Greger IH. Nat Commun 13 734 (2022)
  19. Modulation of GluA2-γ5 synaptic complex desensitization, polyamine block and antiepileptic perampanel inhibition by auxiliary subunit cornichon-2. Gangwar SP, Yen LY, Yelshanskaya MV, Korman A, Jones DR, Sobolevsky AI. Nat Struct Mol Biol 30 1481-1494 (2023)
  20. Modulatory mechanisms of TARP γ8-selective AMPA receptor therapeutics. Zhang D, Lape R, Shaikh SA, Kohegyi BK, Watson JF, Cais O, Nakagawa T, Greger IH. Nat Commun 14 1659 (2023)
  21. Protein-lipid interplay at the neuromuscular junction. Unwin N. Microscopy (Oxf) 71 i66-i71 (2022)
  22. Purification and biochemical analysis of native AMPA receptors from three different mammalian species. Rao P, Gouaux E. PLoS One 18 e0275351 (2023)
  23. The C-terminus of the cargo receptor Erv14 affects COPII vesicle formation and cargo delivery. Lagunas-Gomez D, Yañez-Dominguez C, Zavala-Padilla G, Barlowe C, Pantoja O. J Cell Sci 136 jcs260527 (2023)
  24. Letter γ-2 and GSG1L bind with comparable affinities to the tetrameric GluA1 core. Yu C, Runge HFP, Mukhopadhyay A, Zolles G, Ulbrich MH. Cell Mol Biol Lett 28 54 (2023)