6x9q Citations

Structural basis of transcription-translation coupling.

Science 369 1359-1365 (2020)
Related entries: 6vu3, 6vyq, 6vyr, 6vys, 6vyt, 6vyu, 6vyw, 6vyx, 6vyy, 6vyz, 6vz2, 6vz3, 6vz5, 6vz7, 6vzj, 6x6t, 6x7f, 6x7k, 6xdq, 6xdr, 6xgf, 6xii, 6xij

Cited: 78 times
EuropePMC logo PMID: 32820061

Abstract

In bacteria, transcription and translation are coupled processes in which the movement of RNA polymerase (RNAP)-synthesizing messenger RNA (mRNA) is coordinated with the movement of the first ribosome-translating mRNA. Coupling is modulated by the transcription factors NusG (which is thought to bridge RNAP and the ribosome) and NusA. Here, we report cryo-electron microscopy structures of Escherichia coli transcription-translation complexes (TTCs) containing different-length mRNA spacers between RNAP and the ribosome active-center P site. Structures of TTCs containing short spacers show a state incompatible with NusG bridging and NusA binding (TTC-A, previously termed "expressome"). Structures of TTCs containing longer spacers reveal a new state compatible with NusG bridging and NusA binding (TTC-B) and reveal how NusG bridges and NusA binds. We propose that TTC-B mediates NusG- and NusA-dependent transcription-translation coupling.

Articles - 6x9q mentioned but not cited (2)

  1. Structural basis of transcription-translation coupling. Wang C, Molodtsov V, Firlar E, Kaelber JT, Blaha G, Su M, Ebright RH. Science 369 1359-1365 (2020)
  2. A genetic circuit on a single DNA molecule as an autonomous dissipative nanodevice. Greiss F, Lardon N, Schütz L, Barak Y, Daube SS, Weinhold E, Noireaux V, Bar-Ziv R. Nat Commun 15 883 (2024)


Reviews citing this publication (20)

  1. Coupled Transcription-Translation in Prokaryotes: An Old Couple With New Surprises. Irastortza-Olaziregi M, Amster-Choder O. Front Microbiol 11 624830 (2020)
  2. Translational Control by Ribosome Pausing in Bacteria: How a Non-uniform Pace of Translation Affects Protein Production and Folding. Samatova E, Daberger J, Liutkute M, Rodnina MV. Front Microbiol 11 619430 (2020)
  3. Ribosome Rescue Pathways in Bacteria. Müller C, Crowe-McAuliffe C, Wilson DN. Front Microbiol 12 652980 (2021)
  4. NusG, an Ancient Yet Rapidly Evolving Transcription Factor. Wang B, Artsimovitch I. Front Microbiol 11 619618 (2020)
  5. Electron microscopy holdings of the Protein Data Bank: the impact of the resolution revolution, new validation tools, and implications for the future. Burley SK, Berman HM, Chiu W, Dai W, Flatt JW, Hudson BP, Kaelber JT, Khare SD, Kulczyk AW, Lawson CL, Pintilie GD, Sali A, Vallat B, Westbrook JD, Young JY, Zardecki C. Biophys Rev 14 1281-1301 (2022)
  6. Transcription Regulation Through Nascent RNA Folding. Schärfen L, Neugebauer KM. J Mol Biol 433 166975 (2021)
  7. The molecular basis of translation initiation and its regulation in eukaryotes. Brito Querido J, Díaz-López I, Ramakrishnan V. Nat Rev Mol Cell Biol 25 168-186 (2024)
  8. How does RNA fold dynamically? Bushhouse DZ, Choi EK, Hertz LM, Lucks JB. J Mol Biol 434 167665 (2022)
  9. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Gerovac M, Vogel J, Smirnov A. Front Mol Biosci 8 661448 (2021)
  10. How structural biology transformed studies of transcription regulation. Wolberger C. J Biol Chem 296 100741 (2021)
  11. Seeing the PDB. Richardson JS, Richardson DC, Goodsell DS. J Biol Chem 296 100742 (2021)
  12. Composition of Transcription Machinery and Its Crosstalk with Nucleoid-Associated Proteins and Global Transcription Factors. Muskhelishvili G, Sobetzko P, Mehandziska S, Travers A. Biomolecules 11 924 (2021)
  13. Macromolecular assemblies supporting transcription-translation coupling. Webster MW, Weixlbaumer A. Transcription 12 103-125 (2021)
  14. Structural advances in transcription elongation. Mohamed AA, Vazquez Nunez R, Vos SM. Curr Opin Struct Biol 75 102422 (2022)
  15. Bacterial transcription during growth arrest. Bergkessel M. Transcription 12 232-249 (2021)
  16. Exploring the Structural Variability of Dynamic Biological Complexes by Single-Particle Cryo-Electron Microscopy. DiIorio MC, Kulczyk AW. Micromachines (Basel) 14 118 (2022)
  17. RNA polymerases from low G+C gram-positive bacteria. Miller M, Oakley AJ, Lewis PJ. Transcription 12 92-102 (2021)
  18. RNA polymerase collisions and their role in transcription. Wang L. Transcription 15 38-47 (2024)
  19. Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression. Hustmyer CM, Landick R. Mol Microbiol 122 81-112 (2024)
  20. The yin and yang of the universal transcription factor NusG. Delbeau M, Froom R, Landick R, Darst SA, Campbell EA. Curr Opin Microbiol 81 102540 (2024)

Articles citing this publication (56)