6xm4 Citations

Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains.

Abstract

The SARS-CoV-2 spike employs mobile receptor-binding domains (RBDs) to engage the human ACE2 receptor and to facilitate virus entry, which can occur through low-pH-endosomal pathways. To understand how ACE2 binding and low pH affect spike conformation, we determined cryo-electron microscopy structures-at serological and endosomal pH-delineating spike recognition of up to three ACE2 molecules. RBDs freely adopted "up" conformations required for ACE2 interaction, primarily through RBD movement combined with smaller alterations in neighboring domains. In the absence of ACE2, single-RBD-up conformations dominated at pH 5.5, resolving into a solitary all-down conformation at lower pH. Notably, a pH-dependent refolding region (residues 824-858) at the spike-interdomain interface displayed dramatic structural rearrangements and mediated RBD positioning through coordinated movements of the entire trimer apex. These structures provide a foundation for understanding prefusion-spike mechanics governing endosomal entry; we suggest that the low pH all-down conformation potentially facilitates immune evasion from RBD-up binding antibody.

Reviews - 6xm4 mentioned but not cited (5)

  1. COVID-19 and Hyperimmune sera: A feasible plan B to fight against coronavirus. da Costa CBP, Martins FJ, da Cunha LER, Ratcliffe NA, Cisne de Paula R, Castro HC. Int Immunopharmacol 90 107220 (2021)
  2. Man-Specific, GalNAc/T/Tn-Specific and Neu5Ac-Specific Seaweed Lectins as Glycan Probes for the SARS-CoV-2 (COVID-19) Coronavirus. Barre A, Damme EJMV, Simplicien M, Benoist H, Rougé P. Mar Drugs 18 E543 (2020)
  3. Potential treatments of COVID-19: Drug repurposing and therapeutic interventions. Raghav PK, Mann Z, Ahluwalia SK, Rajalingam R. J Pharmacol Sci 152 1-21 (2023)
  4. The Physical Basis for pH Sensitivity in Biomolecular Structure and Function, With Application to the Spike Protein of SARS-CoV-2. Warwicker J. Front Mol Biosci 9 834011 (2022)
  5. Virus structure and structure-based antivirals. Plavec Z, Pöhner I, Poso A, Butcher SJ. Curr Opin Virol 51 16-24 (2021)

Articles - 6xm4 mentioned but not cited (26)

  1. Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Zhou T, Tsybovsky Y, Gorman J, Rapp M, Cerutti G, Chuang GY, Katsamba PS, Sampson JM, Schön A, Bimela J, Boyington JC, Nazzari A, Olia AS, Shi W, Sastry M, Stephens T, Stuckey J, Teng IT, Wang P, Wang S, Zhang B, Friesner RA, Ho DD, Mascola JR, Shapiro L, Kwong PD. Cell Host Microbe 28 867-879.e5 (2020)
  2. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Dong J, Zost SJ, Greaney AJ, Starr TN, Dingens AS, Chen EC, Chen RE, Case JB, Sutton RE, Gilchuk P, Rodriguez J, Armstrong E, Gainza C, Nargi RS, Binshtein E, Xie X, Zhang X, Shi PY, Logue J, Weston S, McGrath ME, Frieman MB, Brady T, Tuffy KM, Bright H, Loo YM, McTamney PM, Esser MT, Carnahan RH, Diamond MS, Bloom JD, Crowe JE. Nat Microbiol 6 1233-1244 (2021)
  3. Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers. Rujas E, Kucharska I, Tan YZ, Benlekbir S, Cui H, Zhao T, Wasney GA, Budylowski P, Guvenc F, Newton JC, Sicard T, Semesi A, Muthuraman K, Nouanesengsy A, Aschner CB, Prieto K, Bueler SA, Youssef S, Liao-Chan S, Glanville J, Christie-Holmes N, Mubareka S, Gray-Owen SD, Rubinstein JL, Treanor B, Julien JP. Nat Commun 12 3661 (2021)
  4. Multimerization- and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins. Bouwman KM, Tomris I, Turner HL, van der Woude R, Shamorkina TM, Bosman GP, Rockx B, Herfst S, Snijder J, Haagmans BL, Ward AB, Boons GJ, de Vries RP. PLoS Pathog 17 e1009282 (2021)
  5. Evolution, correlation, structural impact and dynamics of emerging SARS-CoV-2 variants. Spratt AN, Kannan SR, Woods LT, Weisman GA, Quinn TP, Lorson CL, Sönnerborg A, Byrareddy SN, Singh K. Comput Struct Biotechnol J 19 3799-3809 (2021)
  6. A model for pH coupling of the SARS-CoV-2 spike protein open/closed equilibrium. Warwicker J. Brief Bioinform 22 1499-1507 (2021)
  7. Cross-Neutralization of Emerging SARS-CoV-2 Variants of Concern by Antibodies Targeting Distinct Epitopes on Spike. Changrob S, Fu Y, Guthmiller JJ, Halfmann PJ, Li L, Stamper CT, Dugan HL, Accola M, Rehrauer W, Zheng NY, Huang M, Wang J, Erickson SA, Utset HA, Graves HM, Amanat F, Sather DN, Krammer F, Kawaoka Y, Wilson PC. mBio 12 e0297521 (2021)
  8. Human neutralizing antibodies to cold linear epitopes and subdomain 1 of the SARS-CoV-2 spike glycoprotein. Bianchini F, Crivelli V, Abernathy ME, Guerra C, Palus M, Muri J, Marcotte H, Piralla A, Pedotti M, De Gasparo R, Simonelli L, Matkovic M, Toscano C, Biggiogero M, Calvaruso V, Svoboda P, Cervantes Rincón T, Fava T, Podešvová L, Shanbhag AA, Celoria A, Sgrignani J, Stefanik M, Hönig V, Pranclova V, Michalcikova T, Prochazka J, Guerrini G, Mehn D, Ciabattini A, Abolhassani H, Jarrossay D, Uguccioni M, Medaglini D, Pan-Hammarström Q, Calzolai L, Fernandez D, Baldanti F, Franzetti-Pellanda A, Garzoni C, Sedlacek R, Ruzek D, Varani L, Cavalli A, Barnes CO, Robbiani DF. Sci Immunol 8 eade0958 (2023)
  9. Mutagenic Distinction between the Receptor-Binding and Fusion Subunits of the SARS-CoV-2 Spike Glycoprotein and Its Upshot. Penner RC. Vaccines (Basel) 9 1509 (2021)
  10. Engineered disulfide reveals structural dynamics of locked SARS-CoV-2 spike. Qu K, Chen Q, Ciazynska KA, Liu B, Zhang X, Wang J, He Y, Guan J, He J, Liu T, Zhang X, Carter AP, Xiong X, Briggs JAG. PLoS Pathog 18 e1010583 (2022)
  11. Force-tuned avidity of spike variant-ACE2 interactions viewed on the single-molecule level. Zhu R, Canena D, Sikora M, Klausberger M, Seferovic H, Mehdipour AR, Hain L, Laurent E, Monteil V, Wirnsberger G, Wieneke R, Tampé R, Kienzl NF, Mach L, Mirazimi A, Oh YJ, Penninger JM, Hummer G, Hinterdorfer P. Nat Commun 13 7926 (2022)
  12. Microsecond simulations and CD spectroscopy reveals the intrinsically disordered nature of SARS-CoV-2 spike-C-terminal cytoplasmic tail (residues 1242-1273) in isolation. Kumar P, Bhardwaj T, Garg N, Giri R. Virology 566 42-55 (2022)
  13. Structure and Mutations of SARS-CoV-2 Spike Protein: A Focused Overview. Mehra R, Kepp KP. ACS Infect Dis 8 29-58 (2022)
  14. research-article A pseudovirus system enables deep mutational scanning of the full SARS-CoV-2 spike. Dadonaite B, Crawford KHD, Radford CE, Farrell AG, Yu TC, Hannon WW, Zhou P, Andrabi R, Burton DR, Liu L, Ho DD, Neher RA, Bloom JD. bioRxiv 2022.10.13.512056 (2022)
  15. A pseudovirus system enables deep mutational scanning of the full SARS-CoV-2 spike. Dadonaite B, Crawford KHD, Radford CE, Farrell AG, Yu TC, Hannon WW, Zhou P, Andrabi R, Burton DR, Liu L, Ho DD, Chu HY, Neher RA, Bloom JD. Cell 186 1263-1278.e20 (2023)
  16. research-article Cross neutralization of emerging SARS-CoV-2 variants of concern by antibodies targeting distinct epitopes on spike. Wilson P, Changrob S, Fu Y, Guthmiller J, Halfmann P, Li L, Stamper C, Dugan H, Accola M, Rehrauer W, Zheng NY, Huang M, Wang J, Erickson S, Utset H, Graves H, Amanat F, Sather DN, Krammer F, Kawaoka Y. Res Sq rs.3.rs-678247 (2021)
  17. Design of Three Residues Peptides against SARS-CoV-2 Infection. Zannella C, Chianese A, Greco G, Santella B, Squillaci G, Monti A, Doti N, Sanna G, Manzin A, Morana A, De Filippis A, D'Angelo G, Palmieri F, Franci G, Galdiero M. Viruses 14 2103 (2022)
  18. Human antibody BD-218 has broad neutralizing activity against concerning variants of SARS-CoV-2. Wang B, Xu H, Liang ZT, Zhao TN, Zhang X, Peng TB, Wang YC, Su XD. Int J Biol Macromol 227 896-902 (2023)
  19. research-article Human neutralizing antibodies to cold linear epitopes and to subdomain 1 of SARS-CoV-2. Bianchini F, Crivelli V, Abernathy ME, Guerra C, Palus M, Muri J, Marcotte H, Piralla A, Pedotti M, Gasparo R, Simonelli L, Matkovic M, Toscano C, Biggiogero M, Calvaruso V, Svoboda P, Rincón TC, Fava T, Podešvová L, Shanbhag AA, Celoria A, Sgrignani J, Stefanik M, Hönig V, Pranclova V, Michalcikova T, Prochazka J, Guerrini G, Mehn D, Ciabattini A, Abolhassani H, Jarrossay D, Uguccioni M, Medaglini D, Pan-Hammarström Q, Calzolai L, Fernandez D, Baldanti F, Franzetti-Pellanda A, Garzoni C, Sedlacek R, Ruzek D, Varani L, Cavalli A, Barnes CO, Robbiani DF. bioRxiv 2022.11.24.515932 (2022)
  20. Multi-Targeting Approach in Selection of Potential Molecule for COVID-19 Treatment. Velagacherla V, Suresh A, Mehta CH, Nayak UY, Nayak Y. Viruses 15 213 (2023)
  21. Prediction of suitable T and B cell epitopes for eliciting immunogenic response against SARS-CoV-2 and its mutant. Agarwal V, Tiwari A, Varadwaj P. Netw Model Anal Health Inform Bioinform 11 1 (2022)
  22. Progressive membrane-binding mechanism of SARS-CoV-2 variant spike proteins. Overduin M, Kervin TA, Tran A. iScience 25 104722 (2022)
  23. SARS-CoV-2 Fusion Peptide Conjugated to a Tetravalent Dendrimer Selectively Inhibits Viral Infection. Zannella C, Chianese A, Monti A, Giugliano R, Morone MV, Secci F, Sanna G, Manzin A, De Filippis A, Doti N, Galdiero M. Pharmaceutics 15 2791 (2023)
  24. Structural basis of nanobodies neutralizing SARS-CoV-2 variants. Shi Z, Li X, Wang L, Sun Z, Zhang H, Chen X, Cui Q, Qiao H, Lan Z, Zhang X, Li X, Li L, Xu J, Gong R, Fan C, Geng Y. Structure 30 707-720.e5 (2022)
  25. Thiol-based chemical probes exhibit antiviral activity against SARS-CoV-2 via allosteric disulfide disruption in the spike glycoprotein. Shi Y, Zeida A, Edwards CE, Mallory ML, Sastre S, Machado MR, Pickles RJ, Fu L, Liu K, Yang J, Baric RS, Boucher RC, Radi R, Carroll KS. Proc Natl Acad Sci U S A 119 e2120419119 (2022)
  26. saRNA vaccine expressing membrane-anchored RBD elicits broad and durable immunity against SARS-CoV-2 variants of concern. Komori M, Nogimori T, Morey AL, Sekida T, Ishimoto K, Hassett MR, Masuta Y, Ode H, Tamura T, Suzuki R, Alexander J, Kido Y, Matsuda K, Fukuhara T, Iwatani Y, Yamamoto T, Smith JF, Akahata W. Nat Commun 14 2810 (2023)


Reviews citing this publication (39)

  1. COVID-19 and Cardiovascular Disease: From Bench to Bedside. Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding CV, Kwon DH, Singh T, Tilton JC, Tsai EJ, Tucker NR, Barnard J, Loscalzo J. Circ Res 128 1214-1236 (2021)
  2. Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Finkelstein MT, Mermelstein AG, Parker Miller E, Seth PC, Stancofski ED, Fera D. Viruses 13 (2021)
  3. Better, Faster, Cheaper: Recent Advances in Cryo-Electron Microscopy. Chua EYD, Mendez JH, Rapp M, Ilca SL, Tan YZ, Maruthi K, Kuang H, Zimanyi CM, Cheng A, Eng ET, Noble AJ, Potter CS, Carragher B. Annu Rev Biochem 91 1-32 (2022)
  4. Cell entry by SARS-CoV-2. Peng R, Wu LA, Wang Q, Qi J, Gao GF. Trends Biochem Sci 46 848-860 (2021)
  5. Role of SARS-CoV-2 and ACE2 variations in COVID-19. Antony P, Vijayan R. Biomed J 44 235-244 (2021)
  6. A Biochemical Perspective of the Nonstructural Proteins (NSPs) and the Spike Protein of SARS CoV-2. Yoshimoto FK. Protein J 40 260-295 (2021)
  7. Structural Plasticity and Immune Evasion of SARS-CoV-2 Spike Variants. Ghimire D, Han Y, Lu M. Viruses 14 1255 (2022)
  8. Role of host factors in SARS-CoV-2 entry. Evans JP, Liu SL. J Biol Chem 297 100847 (2021)
  9. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Rotondo JC, Martini F, Maritati M, Mazziotta C, Di Mauro G, Lanzillotti C, Barp N, Gallerani A, Tognon M, Contini C. Viruses 13 (2021)
  10. Advanced microscopy technologies enable rapid response to SARS-CoV-2 pandemic. Cortese M, Laketa V. Cell Microbiol 23 e13319 (2021)
  11. Broad strategies for neutralizing SARS-CoV-2 and other human coronaviruses with monoclonal antibodies. Ling Z, Yi C, Sun X, Yang Z, Sun B. Sci China Life Sci 66 658-678 (2023)
  12. Protons to Patients: targeting endosomal Na+ /H+ exchangers against COVID-19 and other viral diseases. Prasad H. FEBS J 288 5071-5088 (2021)
  13. Single-Molecule FRET Imaging of Virus Spike-Host Interactions. Lu M. Viruses 13 (2021)
  14. A snapshot of protein trafficking in SARS-CoV-2 infection. Prasad V, Bartenschlager R. Biol Cell 115 e2200073 (2023)
  15. Antibody-mediated immunity to SARS-CoV-2 spike. Errico JM, Adams LJ, Fremont DH. Adv Immunol 154 1-69 (2022)
  16. Contributions of single-particle cryoelectron microscopy toward fighting COVID-19. Rapp M, Shapiro L, Frank J. Trends Biochem Sci 47 117-123 (2022)
  17. Imaging and visualizing SARS-CoV-2 in a new era for structural biology. Leigh KE, Modis Y. Interface Focus 11 20210019 (2021)
  18. The atomic portrait of SARS-CoV-2 as captured by cryo-electron microscopy. Fertig TE, Chitoiu L, Terinte-Balcan G, Peteu VE, Marta D, Gherghiceanu M. J Cell Mol Med 26 25-34 (2022)
  19. The impact of high-resolution structural data on stemming the COVID-19 pandemic. Cox RM, Plemper RK. Curr Opin Virol 49 127-138 (2021)
  20. ACE2-based decoy receptors for SARS coronavirus 2. Jing W, Procko E. Proteins 89 1065-1078 (2021)
  21. D614G mutation and SARS-CoV-2: impact on S-protein structure, function, infectivity, and immunity. Bhattacharya M, Chatterjee S, Sharma AR, Agoramoorthy G, Chakraborty C. Appl Microbiol Biotechnol (2021)
  22. Degenerate CD8 Epitopes Mapping to Structurally Constrained Regions of the Spike Protein: A T Cell-Based Way-Out From the SARS-CoV-2 Variants Storm. Boni C, Cavazzini D, Bolchi A, Rossi M, Vecchi A, Tiezzi C, Barili V, Fisicaro P, Ferrari C, Ottonello S. Front Immunol 12 730051 (2021)
  23. Electrostatics in Computational Biophysics and Its Implications for Disease Effects. Sun S, Poudel P, Alexov E, Li L. Int J Mol Sci 23 10347 (2022)
  24. Expression and characterization of SARS-CoV-2 spike proteins. Schaub JM, Chou CW, Kuo HC, Javanmardi K, Hsieh CL, Goldsmith J, DiVenere AM, Le KC, Wrapp D, Byrne PO, Hjorth CK, Johnson NV, Ludes-Meyers J, Nguyen AW, Wang N, Lavinder JJ, Ippolito GC, Maynard JA, McLellan JS, Finkelstein IJ. Nat Protoc 16 5339-5356 (2021)
  25. Identification of host receptors for viral entry and beyond: a perspective from the spike of SARS-CoV-2. Xia X. Front Microbiol 14 1188249 (2023)
  26. Interactions of angiotensin-converting enzyme-2 (ACE2) and SARS-CoV-2 spike receptor-binding domain (RBD): a structural perspective. Borkotoky S, Dey D, Hazarika Z. Mol Biol Rep 50 2713-2721 (2023)
  27. Mechanisms of Lung Injury Induced by SARS-CoV-2 Infection. Upadhya S, Rehman J, Malik AB, Chen S. Physiology (Bethesda) 37 88-100 (2022)
  28. Mechanisms of SARS-CoV-2 entry into cells. Jackson CB, Farzan M, Chen B, Choe H. Nat Rev Mol Cell Biol (2021)
  29. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Chen P, Wu M, He Y, Jiang B, He ML. Signal Transduct Target Ther 8 237 (2023)
  30. Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity. Mengist HM, Kombe Kombe AJ, Mekonnen D, Abebaw A, Getachew M, Jin T. Semin Immunol 101533 (2021)
  31. SARS-CoV-2 S Glycoprotein Stabilization Strategies. Pedenko B, Sulbaran G, Guilligay D, Effantin G, Weissenhorn W. Viruses 15 558 (2023)
  32. SARS-CoV-2 Variants: Mutations and Effective Changes. Park G, Hwang BH. Biotechnol Bioprocess Eng 26 859-870 (2021)
  33. SARS-CoV-2 Virus-Host Interaction: Currently Available Structures and Implications of Variant Emergence on Infectivity and Immune Response. Queirós-Reis L, Gomes da Silva P, Gonçalves J, Brancale A, Bassetto M, Mesquita JR. Int J Mol Sci 22 (2021)
  34. Structural Framework for Analysis of CD4+ T-Cell Epitope Dominance in Viral Fusion Proteins. Landry SJ, Mettu RR, Kolls JK, Aberle JH, Norton E, Zwezdaryk K, Robinson J. Biochemistry 62 2517-2529 (2023)
  35. Structure of SARS-CoV-2 spike protein. Zhang J, Xiao T, Cai Y, Chen B. Curr Opin Virol 50 173-182 (2021)
  36. The Role of Acidosis in the Pathogenesis of Severe Forms of COVID-19. Nechipurenko YD, Semyonov DA, Lavrinenko IA, Lagutkin DA, Generalov EA, Zaitceva AY, Matveeva OV, Yegorov YE. Biology (Basel) 10 (2021)
  37. The journey of SARS-CoV-2 in human hosts: a review of immune responses, immunosuppression, and their consequences. Alshammary AF, Al-Sulaiman AM. Virulence 12 1771-1794 (2021)
  38. Therapeutic strategies for COVID-19: progress and lessons learned. Li G, Hilgenfeld R, Whitley R, De Clercq E. Nat Rev Drug Discov (2023)
  39. Two years of SARS-CoV-2 infection (2019-2021): structural biology, vaccination, and current global situation. Ahmad W, Shabbiri K. Egypt J Intern Med 34 5 (2022)

Articles citing this publication (155)

  1. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeldt CJ, Cerikan B, Lu JM, Peukes J, Xiong X, Kräusslich HG, Scheres SHW, Bartenschlager R, Briggs JAG. Nature 588 498-502 (2020)
  2. SARS-CoV-2 evolution during treatment of chronic infection. Kemp SA, Collier DA, Datir RP, Ferreira IATM, Gayed S, Jahun A, Hosmillo M, Rees-Spear C, Mlcochova P, Lumb IU, Roberts DJ, Chandra A, Temperton N, CITIID-NIHR BioResource COVID-19 Collaboration, COVID-19 Genomics UK (COG-UK) Consortium, Sharrocks K, Blane E, Modis Y, Leigh KE, Briggs JAG, van Gils MJ, Smith KGC, Bradley JR, Smith C, Doffinger R, Ceron-Gutierrez L, Barcenas-Morales G, Pollock DD, Goldstein RA, Smielewska A, Skittrall JP, Gouliouris T, Goodfellow IG, Gkrania-Klotsas E, Illingworth CJR, McCoy LE, Gupta RK. Nature 592 277-282 (2021)
  3. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Wang P, Casner RG, Nair MS, Wang M, Yu J, Cerutti G, Liu L, Kwong PD, Huang Y, Shapiro L, Ho DD. Cell Host Microbe 29 747-751.e4 (2021)
  4. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Gobeil SM, Janowska K, McDowell S, Mansouri K, Parks R, Stalls V, Kopp MF, Manne K, Li D, Wiehe K, Saunders KO, Edwards RJ, Korber B, Haynes BF, Henderson R, Acharya P. Science 373 eabi6226 (2021)
  5. D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction. Gobeil SM, Janowska K, McDowell S, Mansouri K, Parks R, Manne K, Stalls V, Kopp MF, Henderson R, Edwards RJ, Haynes BF, Acharya P. Cell Rep 34 108630 (2021)
  6. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cerutti G, Guo Y, Zhou T, Gorman J, Lee M, Rapp M, Reddem ER, Yu J, Bahna F, Bimela J, Huang Y, Katsamba PS, Liu L, Nair MS, Rawi R, Olia AS, Wang P, Zhang B, Chuang GY, Ho DD, Sheng Z, Kwong PD, Shapiro L. Cell Host Microbe 29 819-833.e7 (2021)
  7. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM, Walsh RM, Rits-Volloch S, Zhu H, Woosley AN, Yang W, Sliz P, Chen B. Science 372 525-530 (2021)
  8. Cryo-electron microscopy structures of the N501Y SARS-CoV-2 spike protein in complex with ACE2 and 2 potent neutralizing antibodies. Zhu X, Mannar D, Srivastava SS, Berezuk AM, Demers JP, Saville JW, Leopold K, Li W, Dimitrov DS, Tuttle KS, Zhou S, Chittori S, Subramaniam S. PLoS Biol 19 e3001237 (2021)
  9. Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Nabel KG, Clark SA, Shankar S, Pan J, Clark LE, Yang P, Coscia A, McKay LGA, Varnum HH, Brusic V, Tolan NV, Zhou G, Desjardins M, Turbett SE, Kanjilal S, Sherman AC, Dighe A, LaRocque RC, Ryan ET, Tylek C, Cohen-Solal JF, Darcy AT, Tavella D, Clabbers A, Fan Y, Griffiths A, Correia IR, Seagal J, Baden LR, Charles RC, Abraham J. Science 375 eabl6251 (2022)
  10. Real-Time Conformational Dynamics of SARS-CoV-2 Spikes on Virus Particles. Lu M, Uchil PD, Li W, Zheng D, Terry DS, Gorman J, Shi W, Zhang B, Zhou T, Ding S, Gasser R, Prévost J, Beaudoin-Bussières G, Anand SP, Laumaea A, Grover JR, Liu L, Ho DD, Mascola JR, Finzi A, Kwong PD, Blanchard SC, Mothes W. Cell Host Microbe 28 880-891.e8 (2020)
  11. Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2. Bracken CJ, Lim SA, Solomon P, Rettko NJ, Nguyen DP, Zha BS, Schaefer K, Byrnes JR, Zhou J, Lui I, Liu J, Pance K, QCRG Structural Biology Consortium, Zhou XX, Leung KK, Wells JA. Nat Chem Biol 17 113-121 (2021)
  12. Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Graham C, Seow J, Huettner I, Khan H, Kouphou N, Acors S, Winstone H, Pickering S, Galao RP, Dupont L, Lista MJ, Jimenez-Guardeño JM, Laing AG, Wu Y, Joseph M, Muir L, van Gils MJ, Ng WM, Duyvesteyn HME, Zhao Y, Bowden TA, Shankar-Hari M, Rosa A, Cherepanov P, McCoy LE, Hayday AC, Neil SJD, Malim MH, Doores KJ. Immunity 54 1276-1289.e6 (2021)
  13. The Polybasic Cleavage Site in SARS-CoV-2 Spike Modulates Viral Sensitivity to Type I Interferon and IFITM2. Winstone H, Lista MJ, Reid AC, Bouton C, Pickering S, Galao RP, Kerridge C, Doores KJ, Swanson CM, Neil SJD. J Virol 95 (2021)
  14. A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent. Xiao T, Lu J, Zhang J, Johnson RI, McKay LGA, Storm N, Lavine CL, Peng H, Cai Y, Rits-Volloch S, Lu S, Quinlan BD, Farzan M, Seaman MS, Griffiths A, Chen B. Nat Struct Mol Biol 28 202-209 (2021)
  15. Characterization of the SARS-CoV-2 S Protein: Biophysical, Biochemical, Structural, and Antigenic Analysis. Herrera NG, Morano NC, Celikgil A, Georgiev GI, Malonis RJ, Lee JH, Tong K, Vergnolle O, Massimi AB, Yen LY, Noble AJ, Kopylov M, Bonanno JB, Garrett-Thomson SC, Hayes DB, Bortz RH, Wirchnianski AS, Florez C, Laudermilch E, Haslwanter D, Fels JM, Dieterle ME, Jangra RK, Barnhill J, Mengotto A, Kimmel D, Daily JP, Pirofski LA, Chandran K, Brenowitz M, Garforth SJ, Eng ET, Lai JR, Almo SC. ACS Omega 6 85-102 (2021)
  16. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cui Z, Liu P, Wang N, Wang L, Fan K, Zhu Q, Wang K, Chen R, Feng R, Jia Z, Yang M, Xu G, Zhu B, Fu W, Chu T, Feng L, Wang Y, Pei X, Yang P, Xie XS, Cao L, Cao Y, Wang X. Cell 185 860-871.e13 (2022)
  17. SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity. Rosa A, Pye VE, Graham C, Muir L, Seow J, Ng KW, Cook NJ, Rees-Spear C, Parker E, Dos Santos MS, Rosadas C, Susana A, Rhys H, Nans A, Masino L, Roustan C, Christodoulou E, Ulferts R, Wrobel AG, Short CE, Fertleman M, Sanders RW, Heaney J, Spyer M, Kjær S, Riddell A, Malim MH, Beale R, MacRae JI, Taylor GP, Nastouli E, van Gils MJ, Rosenthal PB, Pizzato M, McClure MO, Tedder RS, Kassiotis G, McCoy LE, Doores KJ, Cherepanov P. Sci Adv 7 (2021)
  18. Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Xu J, Xu K, Jung S, Conte A, Lieberman J, Muecksch F, Lorenzi JCC, Park S, Schmidt F, Wang Z, Huang Y, Luo Y, Nair MS, Wang P, Schulz JE, Tessarollo L, Bylund T, Chuang GY, Olia AS, Stephens T, Teng IT, Tsybovsky Y, Zhou T, Munster V, Ho DD, Hatziioannou T, Bieniasz PD, Nussenzweig MC, Kwong PD, Casellas R. Nature 595 278-282 (2021)
  19. Shifting mutational constraints in the SARS-CoV-2 receptor-binding domain during viral evolution. Starr TN, Greaney AJ, Hannon WW, Loes AN, Hauser K, Dillen JR, Ferri E, Farrell AG, Dadonaite B, McCallum M, Matreyek KA, Corti D, Veesler D, Snell G, Bloom JD. Science 377 420-424 (2022)
  20. Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Yin W, Xu Y, Xu P, Cao X, Wu C, Gu C, He X, Wang X, Huang S, Yuan Q, Wu K, Hu W, Huang Z, Liu J, Wang Z, Jia F, Xia K, Liu P, Wang X, Song B, Zheng J, Jiang H, Cheng X, Jiang Y, Deng SJ, Xu HE. Science 375 1048-1053 (2022)
  21. Cold sensitivity of the SARS-CoV-2 spike ectodomain. Edwards RJ, Mansouri K, Stalls V, Manne K, Watts B, Parks R, Janowska K, Gobeil SMC, Kopp M, Li D, Lu X, Mu Z, Deyton M, Oguin TH, Sprenz J, Williams W, Saunders KO, Montefiori D, Sempowski GD, Henderson R, Munir Alam S, Haynes BF, Acharya P. Nat Struct Mol Biol 28 128-131 (2021)
  22. ACE2 receptor usage reveals variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species. Yan H, Jiao H, Liu Q, Zhang Z, Xiong Q, Wang BJ, Wang X, Guo M, Wang LF, Lan K, Chen Y, Zhao H. Nat Ecol Evol 5 600-608 (2021)
  23. Bat and pangolin coronavirus spike glycoprotein structures provide insights into SARS-CoV-2 evolution. Zhang S, Qiao S, Yu J, Zeng J, Shan S, Tian L, Lan J, Zhang L, Wang X. Nat Commun 12 1607 (2021)
  24. Single-component, self-assembling, protein nanoparticles presenting the receptor binding domain and stabilized spike as SARS-CoV-2 vaccine candidates. He L, Lin X, Wang Y, Abraham C, Sou C, Ngo T, Zhang Y, Wilson IA, Zhu J. Sci Adv 7 (2021)
  25. Insights on the mutational landscape of the SARS-CoV-2 Omicron variant receptor-binding domain. Miller NL, Clark T, Raman R, Sasisekharan R. Cell Rep Med 3 100527 (2022)
  26. TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. Koch J, Uckeley ZM, Doldan P, Stanifer M, Boulant S, Lozach PY. EMBO J 40 e107821 (2021)
  27. Conformational dynamics of the Beta and Kappa SARS-CoV-2 spike proteins and their complexes with ACE2 receptor revealed by cryo-EM. Wang Y, Xu C, Wang Y, Hong Q, Zhang C, Li Z, Xu S, Zuo Q, Liu C, Huang Z, Cong Y. Nat Commun 12 7345 (2021)
  28. Mutations in the B.1.1.7 SARS-CoV-2 Spike Protein Reduce Receptor-Binding Affinity and Induce a Flexible Link to the Fusion Peptide. Socher E, Conrad M, Heger L, Paulsen F, Sticht H, Zunke F, Arnold P. Biomedicines 9 (2021)
  29. SARS-CoV-2 Omicron spike glycoprotein receptor binding domain exhibits super-binder ability with ACE2 but not convalescent monoclonal antibody. Omotuyi O, Olubiyi O, Nash O, Afolabi E, Oyinloye B, Fatumo S, Femi-Oyewo M, Bogoro S. Comput Biol Med 142 105226 (2022)
  30. An engineered 5-helix bundle derived from SARS-CoV-2 S2 pre-binds sarbecoviral spike at both serological- and endosomal-pH to inhibit virus entry. Lin X, Guo L, Lin S, Chen Z, Yang F, Yang J, Wang L, Wen A, Duan Y, Zhang X, Dai Y, Yin K, Yuan X, Yu C, He B, Cao Y, Dong H, Li J, Zhao Q, Lu G. Emerg Microbes Infect 11 1920-1935 (2022)
  31. Conformational flexibility and structural variability of SARS-CoV2 S protein. Pramanick I, Sengupta N, Mishra S, Pandey S, Girish N, Das A, Dutta S. Structure 29 834-845.e5 (2021)
  32. Fast Prediction of Binding Affinities of the SARS-CoV-2 Spike Protein Mutant N501Y (UK Variant) with ACE2 and Miniprotein Drug Candidates. Williams AH, Zhan CG. J Phys Chem B 125 4330-4336 (2021)
  33. Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape. Zhao Z, Zhou J, Tian M, Huang M, Liu S, Xie Y, Han P, Bai C, Han P, Zheng A, Fu L, Gao Y, Peng Q, Li Y, Chai Y, Zhang Z, Zhao X, Song H, Qi J, Wang Q, Wang P, Gao GF. Nat Commun 13 4958 (2022)
  34. Paired heavy- and light-chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses. Banach BB, Cerutti G, Fahad AS, Shen CH, Oliveira De Souza M, Katsamba PS, Tsybovsky Y, Wang P, Nair MS, Huang Y, Francino-Urdániz IM, Steiner PJ, Gutiérrez-González M, Liu L, López Acevedo SN, Nazzari AF, Wolfe JR, Luo Y, Olia AS, Teng IT, Yu J, Zhou T, Reddem ER, Bimela J, Pan X, Madan B, Laflin AD, Nimrania R, Yuen KY, Whitehead TA, Ho DD, Kwong PD, Shapiro L, DeKosky BJ. Cell Rep 37 109771 (2021)
  35. Structural Study of SARS-CoV-2 Antibodies Identifies a Broad-Spectrum Antibody That Neutralizes the Omicron Variant by Disassembling the Spike Trimer. Zhan W, Tian X, Zhang X, Xing S, Song W, Liu Q, Hao A, Hu Y, Zhang M, Ying T, Chen Z, Lan F, Sun L. J Virol 96 e0048022 (2022)
  36. A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Logette E, Lorin C, Favreau C, Oshurko E, Coggan JS, Casalegno F, Sy MF, Monney C, Bertschy M, Delattre E, Fonta PA, Krepl J, Schmidt S, Keller D, Kerrien S, Scantamburlo E, Kaufmann AK, Markram H. Front Public Health 9 695139 (2021)
  37. Chemical Evolution of Rhinovirus Identifies Capsid-Destabilizing Mutations Driving Low-pH-Independent Genome Uncoating. Murer L, Petkidis A, Vallet T, Vignuzzi M, Greber UF. J Virol 96 e0106021 (2022)
  38. Cryo-EM structure of S-Trimer, a subunit vaccine candidate for COVID-19. Ma J, Su D, Sun Y, Huang X, Liang Y, Fang L, Ma Y, Li W, Liang P, Zheng S. J Virol (2021)
  39. Modeling SARS-CoV-2 spike/ACE2 protein-protein interactions for predicting the binding affinity of new spike variants for ACE2, and novel ACE2 structurally related human protein targets, for COVID-19 handling in the 3PM context. Tragni V, Preziusi F, Laera L, Onofrio A, Mercurio I, Todisco S, Volpicella M, De Grassi A, Pierri CL. EPMA J 13 149-175 (2022)
  40. Multifaceted membrane binding head of the SARS-CoV-2 spike protein. Tran A, Kervin TA, Overduin M. Curr Res Struct Biol 4 146-157 (2022)
  41. NeutrobodyPlex-monitoring SARS-CoV-2 neutralizing immune responses using nanobodies. Wagner TR, Ostertag E, Kaiser PD, Gramlich M, Ruetalo N, Junker D, Haering J, Traenkle B, Becker M, Dulovic A, Schweizer H, Nueske S, Scholz A, Zeck A, Schenke-Layland K, Nelde A, Strengert M, Walz JS, Zocher G, Stehle T, Schindler M, Schneiderhan-Marra N, Rothbauer U. EMBO Rep 22 e52325 (2021)
  42. Signatures in SARS-CoV-2 spike protein conferring escape to neutralizing antibodies. Alenquer M, Ferreira F, Lousa D, Valério M, Medina-Lopes M, Bergman ML, Gonçalves J, Demengeot J, Leite RB, Lilue J, Ning Z, Penha-Gonçalves C, Soares H, Soares CM, Amorim MJ. PLoS Pathog 17 e1009772 (2021)
  43. Structural Characterization of a Neutralizing Nanobody With Broad Activity Against SARS-CoV-2 Variants. Li T, Zhou B, Luo Z, Lai Y, Huang S, Zhou Y, Li Y, Gautam A, Bourgeau S, Wang S, Bao J, Tan J, Lavillette D, Li D. Front Microbiol 13 875840 (2022)
  44. Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies. Wang Y, Liu C, Zhang C, Wang Y, Hong Q, Xu S, Li Z, Yang Y, Huang Z, Cong Y. Nat Commun 13 871 (2022)
  45. A Single-Administration Microneedle Skin Patch for Multi-Burst Release of Vaccine against SARS-CoV-2. Tran KTM, Gavitt TD, Le TT, Graichen A, Lin F, Liu Y, Tulman ER, Szczepanek SM, Nguyen TD. Adv Mater Technol 2200905 (2022)
  46. A bispecific nanobody dimer broadly neutralizes SARS-CoV-1 & 2 variants of concern and offers substantial protection against Omicron via low-dose intranasal administration. Ma H, Zhang X, Zeng W, Zhou J, Chi X, Chen S, Zheng P, Wang M, Wu Y, Zhao D, Gong F, Lin H, Sun H, Yu C, Shi Z, Hu X, Zhang H, Jin T, Chiu S. Cell Discov 8 132 (2022)
  47. Analysis of Glycosylation and Disulfide Bonding of Wild-Type SARS-CoV-2 Spike Glycoprotein. Zhang S, Go EP, Ding H, Anang S, Kappes JC, Desaire H, Sodroski JG. J Virol 96 e0162621 (2022)
  48. Antibody screening at reduced pH enables preferential selection of potently neutralizing antibodies targeting SARS-CoV-2. Madan B, Reddem ER, Wang P, Casner RG, Nair MS, Huang Y, Fahad AS, de Souza MO, Banach BB, López Acevedo SN, Pan X, Nimrania R, Teng IT, Bahna F, Zhou T, Zhang B, Yin MT, Ho DD, Kwong PD, Shapiro L, DeKosky BJ. AIChE J 67 e17440 (2021)
  49. Cytoplasmic Tail Truncation of SARS-CoV-2 Spike Protein Enhances Titer of Pseudotyped Vectors but Masks the Effect of the D614G Mutation. Chen HY, Huang C, Tian L, Huang X, Zhang C, Llewellyn GN, Rogers GL, Andresen K, O'Gorman MRG, Chen YW, Cannon PM. J Virol 95 e0096621 (2021)
  50. D614G mutation in the SARS-CoV-2 spike protein enhances viral fitness by desensitizing it to temperature-dependent denaturation. Yang TJ, Yu PY, Chang YC, Hsu SD. J Biol Chem 297 101238 (2021)
  51. How to correct relative voxel scale factors for calculations of vector-difference Fourier maps in cryo-EM. Wang J, Liu J, Gisriel CJ, Wu S, Maschietto F, Flesher DA, Lolis E, Lisi GP, Brudvig GW, Xiong Y, Batista VS. J Struct Biol 214 107902 (2022)
  52. Identification of a conserved S2 epitope present on spike proteins from all highly pathogenic coronaviruses. Silva RP, Huang Y, Nguyen AW, Hsieh CL, Olaluwoye OS, Kaoud TS, Wilen RE, Qerqez AN, Park JG, Khalil AM, Azouz LR, Le KC, Bohanon AL, DiVenere AM, Liu Y, Lee AG, Amengor DA, Shoemaker SR, Costello SM, Padlan EA, Marqusee S, Martinez-Sobrido L, Dalby KN, D'Arcy S, McLellan JS, Maynard JA. Elife 12 e83710 (2023)
  53. Impact of temperature on the affinity of SARS-CoV-2 Spike glycoprotein for host ACE2. Prévost J, Richard J, Gasser R, Ding S, Fage C, Anand SP, Adam D, Gupta Vergara N, Tauzin A, Benlarbi M, Gong SY, Goyette G, Privé A, Moreira S, Charest H, Roger M, Mothes W, Pazgier M, Brochiero E, Boivin G, Abrams CF, Schön A, Finzi A. J Biol Chem 297 101151 (2021)
  54. Mass photometry reveals SARS-CoV-2 spike stabilisation to impede ACE2 binding through altered conformational dynamics. Burnap SA, Struwe WB. Chem Commun (Camb) 58 12939-12942 (2022)
  55. Mechanical activation of spike fosters SARS-CoV-2 viral infection. Hu W, Zhang Y, Fei P, Zhang T, Yao D, Gao Y, Liu J, Chen H, Lu Q, Mudianto T, Zhang X, Xiao C, Ye Y, Sun Q, Zhang J, Xie Q, Wang PH, Wang J, Li Z, Lou J, Chen W. Cell Res 31 1047-1060 (2021)
  56. Millisecond dynamic of SARS-CoV-2 spike and its interaction with ACE2 receptor and small extracellular vesicles. Lim K, Nishide G, Yoshida T, Watanabe-Nakayama T, Kobayashi A, Hazawa M, Hanayama R, Ando T, Wong RW. J Extracell Vesicles 10 e12170 (2021)
  57. Neutralization of SARS-CoV-2 by highly potent, hyperthermostable, and mutation-tolerant nanobodies. Güttler T, Aksu M, Dickmanns A, Stegmann KM, Gregor K, Rees R, Taxer W, Rymarenko O, Schünemann J, Dienemann C, Gunkel P, Mussil B, Krull J, Teichmann U, Groß U, Cordes VC, Dobbelstein M, Görlich D. EMBO J 40 e107985 (2021)
  58. Neutralizing antibody 5-7 defines a distinct site of vulnerability in SARS-CoV-2 spike N-terminal domain. Cerutti G, Guo Y, Wang P, Nair MS, Wang M, Huang Y, Yu J, Liu L, Katsamba PS, Bahna F, Reddem ER, Kwong PD, Ho DD, Sheng Z, Shapiro L. Cell Rep 37 109928 (2021)
  59. One Week of Oral Camostat Versus Placebo in Nonhospitalized Adults With Mild-to-Moderate Coronavirus Disease 2019: A Randomized Controlled Phase 2 Trial. Jilg N, Chew KW, Giganti MJ, Daar ES, Wohl DA, Javan AC, Kantor A, Moser C, Coombs RW, Neytman G, Hoover K, Jana A, Hart PA, Greninger AL, Szurgot B, Eron JJ, Currier JS, Hughes MD, Smith DM, Li JZ, ACTIV-2/A5401 Study Team. Clin Infect Dis 77 941-949 (2023)
  60. SARS-CoV-2 variants impact RBD conformational dynamics and ACE2 accessibility. Valério M, Borges-Araújo L, Melo MN, Lousa D, Soares CM. Front Med Technol 4 1009451 (2022)
  61. Self-assembling SARS-CoV-2 spike-HBsAg nanoparticles elicit potent and durable neutralizing antibody responses via genetic delivery. Liu C, Wang L, Merriam JS, Shi W, Yang ES, Zhang Y, Chen M, Kong WP, Cheng C, Tsybovsky Y, Stephens T, Verardi R, Leung K, Stein C, Olia AS, Harris DR, Choe M, Zhang B, Graham BS, Kwong PD, Koup RA, Pegu A, Mascola JR. NPJ Vaccines 8 111 (2023)
  62. Spike Protein and the Various Cell-Surface Carbohydrates: An Interaction Study. Jayaprakash NG, Surolia A. ACS Chem Biol 17 103-117 (2022)
  63. Structure-Based Development of SARS-CoV-2 Spike Interactors. Squeglia F, Romano M, Esposito L, Barra G, Campiglia P, Sala M, Scala MC, Ruggiero A, Berisio R. Int J Mol Sci 23 5601 (2022)
  64. Synthetic Peptides That Antagonize the Angiotensin-Converting Enzyme-2 (ACE-2) Interaction with SARS-CoV-2 Receptor Binding Spike Protein. Sadremomtaz A, Al-Dahmani ZM, Ruiz-Moreno AJ, Monti A, Wang C, Azad T, Bell JC, Doti N, Velasco-Velázquez MA, de Jong D, de Jonge J, Smit J, Dömling A, van Goor H, Groves MR. J Med Chem (2021)
  65. Synthetic proteins for COVID-19 diagnostics. Schein CH, Levine CB, McLellan SLF, Negi SS, Braun W, Dreskin SC, Anaya ES, Schmidt J. Peptides 143 170583 (2021)
  66. The SARS-CoV-2 spike reversibly samples an open-trimer conformation exposing novel epitopes. Costello SM, Shoemaker SR, Hobbs HT, Nguyen AW, Hsieh CL, Maynard JA, McLellan JS, Pak JE, Marqusee S. Nat Struct Mol Biol 29 229-238 (2022)
  67. The pivotal roles of the host immune response in the fine-tuning the infection and the development of the vaccines for SARS-CoV-2. Alturaiki W, Mubarak A, Al Jurayyan A, Hemida MG. Hum Vaccin Immunother 17 3297-3309 (2021)
  68. Up State of the SARS-COV-2 Spike Homotrimer Favors an Increased Virulence for New Variants. Giron CC, Laaksonen A, Barroso da Silva FL. Front Med Technol 3 694347 (2021)
  69. Valproate-coenzyme A conjugate blocks opening of receptor binding domains in the spike trimer of SARS-CoV-2 through an allosteric mechanism. Maschietto F, Qiu T, Wang J, Shi Y, Allen B, Lisi GP, Lolis E, Batista VS. Comput Struct Biotechnol J 21 1066-1076 (2023)
  70. Virus-specific editing identification approach reveals the landscape of A-to-I editing and its impacts on SARS-CoV-2 characteristics and evolution. Song Y, He X, Yang W, Wu Y, Cui J, Tang T, Zhang R. Nucleic Acids Res 50 2509-2521 (2022)
  71. De novo design of a stapled peptide targeting SARS-CoV-2 spike protein receptor-binding domain. Thakkar R, Agarwal DK, Ranaweera CB, Ishiguro S, Conda-Sheridan M, Gaudreault NN, Richt JA, Tamura M, Comer J. RSC Med Chem 14 1722-1733 (2023)
  72. A SARS-CoV-2 Spike Receptor Binding Motif Peptide Induces Anti-Spike Antibodies in Mice andIs Recognized by COVID-19 Patients. Pratesi F, Errante F, Pacini L, Peña-Moreno IC, Quiceno S, Carotenuto A, Balam S, Konaté D, Diakité MM, Arévalo-Herrera M, Kajava AV, Rovero P, Corradin G, Migliorini P, Papini AM, Herrera S. Front Immunol 13 879946 (2022)
  73. A dimeric proteomimetic prevents SARS-CoV-2 infection by dimerizing the spike protein. Khatri B, Pramanick I, Malladi SK, Rajmani RS, Kumar S, Ghosh P, Sengupta N, Rahisuddin R, Kumar N, Kumaran S, Ringe RP, Varadarajan R, Dutta S, Chatterjee J. Nat Chem Biol 18 1046-1055 (2022)
  74. A nanobody recognizes a unique conserved epitope and potently neutralizes SARS-CoV-2 omicron variants. Modhiran N, Lauer SM, Amarilla AA, Hewins P, Lopes van den Broek SI, Low YS, Thakur N, Liang B, Nieto GV, Jung J, Paramitha D, Isaacs A, Sng JDJ, Song D, Jørgensen JT, Cheuquemilla Y, Bürger J, Andersen IV, Himelreichs J, Jara R, MacLoughlin R, Miranda-Chacon Z, Chana-Cuevas P, Kramer V, Spahn C, Mielke T, Khromykh AA, Munro T, Jones ML, Young PR, Chappell K, Bailey D, Kjaer A, Herth MM, Jurado KA, Schwefel D, Rojas-Fernandez A, Watterson D. iScience 26 107085 (2023)
  75. Accelerating drug target inhibitor discovery with a deep generative foundation model. Chenthamarakshan V, Hoffman SC, Owen CD, Lukacik P, Strain-Damerell C, Fearon D, Malla TR, Tumber A, Schofield CJ, Duyvesteyn HME, Dejnirattisai W, Carrique L, Walter TS, Screaton GR, Matviiuk T, Mojsilovic A, Crain J, Walsh MA, Stuart DI, Das P. Sci Adv 9 eadg7865 (2023)
  76. Activation Pathways and Free Energy Landscapes of the SARS-CoV-2 Spike Protein. Wu Y, Qian R, Yang Y, Sheng Y, Li W, Wang W. ACS Omega 6 23432-23441 (2021)
  77. Adsorption of SARS CoV-2 spike proteins on various functionalized surfaces correlates with the high transmissibility of Delta and Omicron variants. Dobrynin D, Polishchuk I, Portal L, Zlotver I, Sosnik A, Pokroy B. Mater Today Bio 14 100265 (2022)
  78. An Unusual Aspartic Acid Cluster in the Reovirus Attachment Fiber σ1 Mediates Stability at Low pH and Preserves Trimeric Organization. Glorani G, Ruwolt M, Holton N, Loll B, Neu U. J Virol 96 e0033122 (2022)
  79. Anti-SARS-CoV-2 Activity of Ampelozizyphus amazonicus (Saracura-Mirá): Focus on the Modulation of the Spike-ACE2 Interaction by Chemically Characterized Bark Extracts by LC-DAD-APCI-MS/MS. Campos MF, Mendonça SC, Peñaloza EMC, de Oliveira BAC, Rosa AS, Leitão GG, Tucci AR, Ferreira VNS, Oliveira TKF, Miranda MD, Allonso D, Leitão SG. Molecules 28 3159 (2023)
  80. Antibodies targeting a quaternary site on SARS-CoV-2 spike glycoprotein prevent viral receptor engagement by conformational locking. Liu L, Casner RG, Guo Y, Wang Q, Iketani S, Chan JF, Yu J, Dadonaite B, Nair MS, Mohri H, Reddem ER, Yuan S, Poon VK, Chan CC, Yuen KY, Sheng Z, Huang Y, Bloom JD, Shapiro L, Ho DD. Immunity 56 2442-2455.e8 (2023)
  81. Aptamer-, heparin- or cocktail-based inhibition of S1-ACE2 protein complexes. Giroux E, Oake A, Lewis T, Martic S. Anal Biochem 676 115223 (2023)
  82. Assessing the Mobility of Severe Acute Respiratory Syndrome Coronavirus-2 Spike Protein Glycans by Structural and Computational Methods. Stagnoli S, Peccati F, Connell SR, Martinez-Castillo A, Charro D, Millet O, Bruzzone C, Palazon A, Ardá A, Jiménez-Barbero J, Ereño-Orbea J, Abrescia NGA, Jiménez-Osés G. Front Microbiol 13 870938 (2022)
  83. Biosensor-Enabled Deconvolution of the Avidity-Induced Affinity Enhancement for the SARS-CoV-2 Spike Protein and ACE2 Interaction. Gutgsell AR, Gunnarsson A, Forssén P, Gordon E, Fornstedt T, Geschwindner S. Anal Chem 94 1187-1194 (2022)
  84. Biparatopic nanobodies targeting the receptor binding domain efficiently neutralize SARS-CoV-2. Pymm P, Redmond SJ, Dolezal O, Mordant F, Lopez E, Cooney JP, Davidson KC, Haycroft ER, Tan CW, Seneviratna R, Grimley SL, Purcell DFJ, Kent SJ, Wheatley AK, Wang LF, Leis A, Glukhova A, Pellegrini M, Chung AW, Subbarao K, Uldrich AP, Tham WH, Godfrey DI, Gherardin NA. iScience 25 105259 (2022)
  85. Bis-Benzylisoquinoline Alkaloids Inhibit Porcine Epidemic Diarrhea Virus by Disrupting Virus Entry. Zhang C, Chen H, Sun L, Zhao P, Qi C, Yang Y, Si A, Qian Y, Jung YS. Pathogens 12 845 (2023)
  86. Broadly neutralizing SARS-CoV-2 antibodies through epitope-based selection from convalescent patients. Rouet R, Henry JY, Johansen MD, Sobti M, Balachandran H, Langley DB, Walker GJ, Lenthall H, Jackson J, Ubiparipovic S, Mazigi O, Schofield P, Burnett DL, Brown SHJ, Martinello M, Hudson B, Gilroy N, Post JJ, Kelleher A, Jäck HM, Goodnow CC, Turville SG, Rawlinson WD, Bull RA, Stewart AG, Hansbro PM, Christ D. Nat Commun 14 687 (2023)
  87. Capturing a Crucial 'Disorder-to-Order Transition' at the Heart of the Coronavirus Molecular Pathology-Triggered by Highly Persistent, Interchangeable Salt-Bridges. Roy S, Ghosh P, Bandyopadhyay A, Basu S. Vaccines (Basel) 10 301 (2022)
  88. Carlina oxide inhibits the interaction of SARS-CoV-2 S glycoprotein with angiotensin-converting enzyme 2. Wnorowska S, Targowska-Duda K, Kurzepa J, Wnorowski A, Strzemski M. Ind Crops Prod 187 115338 (2022)
  89. Cationic Chitosan Derivatives for the Inactivation of HIV-1 and SARS-CoV-2 Enveloped Viruses. Cele ZED, Matshe W, Mdlalose L, Setshedi K, Malatji K, Mkhwanazi NP, Ntombela T, Balogun M. ACS Omega 8 31714-31724 (2023)
  90. ChAdOx1 nCoV-19 vaccine elicits monoclonal antibodies with cross-neutralizing activity against SARS-CoV-2 viral variants. Seow J, Graham C, Hallett SR, Lechmere T, Maguire TJA, Huettner I, Cox D, Khan H, Pickering S, Roberts R, Waters A, Ward CC, Mant C, Pitcher MJ, Spencer J, Fox J, Malim MH, Doores KJ. Cell Rep 39 110757 (2022)
  91. Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75. Cao Y, Song W, Wang L, Liu P, Yue C, Jian F, Yu Y, Yisimayi A, Wang P, Wang Y, Zhu Q, Deng J, Fu W, Yu L, Zhang N, Wang J, Xiao T, An R, Wang J, Liu L, Yang S, Niu X, Gu Q, Shao F, Hao X, Meng B, Gupta RK, Jin R, Wang Y, Xie XS, Wang X. Cell Host Microbe 30 1527-1539.e5 (2022)
  92. Cholesterol and Ceramide Facilitate Membrane Fusion Mediated by the Fusion Peptide of the SARS-CoV-2 Spike Protein. Niort K, Dancourt J, Boedec E, Al Amir Dache Z, Lavieu G, Tareste D. ACS Omega 8 32729-32739 (2023)
  93. Combination of Recombinant Proteins S1/N and RBD/N as Potential Vaccine Candidates. Mendoza-Ramírez NJ, García-Cordero J, Martínez-Frías SP, Roa-Velázquez D, Luria-Pérez R, Bustos-Arriaga J, Hernández-Lopez J, Cabello-Gutiérrez C, Zúñiga-Ramos JA, Morales-Ríos E, Pérez-Tapia SM, Espinosa-Cantellano M, Cedillo-Barrón L. Vaccines (Basel) 11 864 (2023)
  94. Computational pipeline provides mechanistic understanding of Omicron variant of concern neutralizing engineered ACE2 receptor traps. Remesh SG, Merz GE, Brilot AF, Chio US, Rizo AN, Pospiech TH, Lui I, Laurie MT, Glasgow J, Le CQ, Zhang Y, Diwanji D, Hernandez E, Lopez J, Mehmood H, Pawar KI, Pourmal S, Smith AM, Zhou F, QCRG Structural Biology Consortium, DeRisi J, Kortemme T, Rosenberg OS, Glasgow A, Leung KK, Wells JA, Verba KA. Structure 31 253-264.e6 (2023)
  95. Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike. Díaz-Salinas MA, Li Q, Ejemel M, Yurkovetskiy L, Luban J, Shen K, Wang Y, Munro JB. Elife 11 e75433 (2022)
  96. Cryo-EM structures and binding of mouse and human ACE2 to SARS-CoV-2 variants of concern indicate that mutations enabling immune escape could expand host range. Ni D, Turelli P, Beckert B, Nazarov S, Uchikawa E, Myasnikov A, Pojer F, Trono D, Stahlberg H, Lau K. PLoS Pathog 19 e1011206 (2023)
  97. Decoy peptides effectively inhibit the binding of SARS-CoV-2 to ACE2 on oral epithelial cells. Loi LK, Yang CC, Lin YC, Su YF, Juan YC, Chen YH, Chang HC. Heliyon 9 e22614 (2023)
  98. Defining neutralization and allostery by antibodies against COVID-19 variants. Tulsian NK, Palur RV, Qian X, Gu Y, D/O Shunmuganathan B, Samsudin F, Wong YH, Lin J, Purushotorman K, Kozma MM, Wang B, Lescar J, Wang CI, Gupta RK, Bond PJ, MacAry PA. Nat Commun 14 6967 (2023)
  99. Design of the SARS-CoV-2 RBD vaccine antigen improves neutralizing antibody response. Dickey TH, Tang WK, Butler B, Ouahes T, Orr-Gonzalez S, Salinas ND, Lambert LE, Tolia NH. Sci Adv 8 eabq8276 (2022)
  100. Detergent modulates the conformational equilibrium of SARS-CoV-2 Spike during cryo-EM structural determination. Egri SB, Wang X, Díaz-Salinas MA, Luban J, Dudkina NV, Munro JB, Shen K. Nat Commun 14 2527 (2023)
  101. Disulfide stabilization reveals conserved dynamic features between SARS-CoV-1 and SARS-CoV-2 spikes. Zhang X, Li Z, Zhang Y, Liu Y, Wang J, Liu B, Chen Q, Wang Q, Fu L, Wang P, Zhong X, Jin L, Yan Q, Chen L, He J, Zhao J, Xiong X. Life Sci Alliance 6 e202201796 (2023)
  102. Dynamic Ca2+ sensitivity stimulates the evolved SARS-CoV-2 spike strain-mediated membrane fusion for enhanced entry. Singh P, Mukherji S, Basak S, Hoffmann M, Das DK. Cell Rep 39 110694 (2022)
  103. Entrectinib-A SARS-CoV-2 Inhibitor in Human Lung Tissue (HLT) Cells. Peralta-Garcia A, Torrens-Fontanals M, Stepniewski TM, Grau-Expósito J, Perea D, Ayinampudi V, Waldhoer M, Zimmermann M, Buzón MJ, Genescà M, Selent J. Int J Mol Sci 22 13592 (2021)
  104. Evaluation of Inhibitory Activity In Silico of In-House Thiomorpholine Compounds between the ACE2 Receptor and S1 Subunit of SARS-CoV-2 Spike. Vázquez-Valadez VH, Hernández-Serda A, Jiménez-Cabiedes MF, Aguirre-Vidal P, González-Tapia I, Carreño-Vargas L, Alarcón-López YA, Espejel-Fuentes A, Martínez-Soriano P, Lugo Álvarez M, Velázquez-Sánchez AM, Markarian NM, Angeles E, Abrahamyan L. Pathogens 10 (2021)
  105. Evaluation of protein descriptors in computer-aided rational protein engineering tasks and its application in property prediction in SARS-CoV-2 spike glycoprotein. Lim H, Jeon HN, Lim S, Jang Y, Kim T, Cho H, Pan JG, No KT. Comput Struct Biotechnol J 20 788-798 (2022)
  106. Evolutionary trajectory of receptor binding specificity and promiscuity of the spike protein of SARS-CoV-2. Planchais C, Reyes-Ruiz A, Lacombe R, Zarantonello A, Lecerf M, Revel M, Roumenina LT, Atanasov BP, Mouquet H, Dimitrov JD. Protein Sci 31 e4447 (2022)
  107. Evolving antibody evasion and receptor affinity of the Omicron BA.2.75 sublineage of SARS-CoV-2. Wang Q, Li Z, Guo Y, Mellis IA, Iketani S, Liu M, Yu J, Valdez R, Lauring AS, Sheng Z, Gordon A, Liu L, Ho DD. iScience 26 108254 (2023)
  108. Fingerprinting trimeric SARS-CoV-2 RBD by capillary isoelectric focusing with whole-column imaging detection. Du J, Wu G, Chen Q, Yu C, Xu G, Liu A, Wang L. Anal Biochem 663 115034 (2023)
  109. Full-Length Computational Model of the SARS-CoV-2 Spike Protein and Its Implications for a Viral Membrane Fusion Mechanism. Nishima W, Kulik M. Viruses 13 (2021)
  110. Fusion Peptide of SARS-CoV-2 Spike Rearranges into a Wedge Inserted in Bilayered Micelles. Koppisetti RK, Fulcher YG, Van Doren SR. J Am Chem Soc 143 13205-13211 (2021)
  111. Generalized Methodology for the Quick Prediction of Variant SARS-CoV-2 Spike Protein Binding Affinities with Human Angiotensin-Converting Enzyme II. Williams AH, Zhan CG. J Phys Chem B 126 2353-2360 (2022)
  112. Genomic epidemiology reveals early transmission of SARS-CoV-2 and mutational dynamics in Nanning, China. Bi D, Luo X, Chen Z, Xie Z, Zang N, Mo L, Liu Z, Lin Y, Qin Y, Tang X, Lin L, Wang Y, Cao L, Zhao F, Zhou J, Wei S, Xi S, Ma Q, Lin J. Heliyon 9 e23029 (2023)
  113. Host Cell Entry and Neutralization Sensitivity of SARS-CoV-2 Lineages B.1.620 and R.1. Sidarovich A, Krüger N, Rocha C, Graichen L, Kempf A, Nehlmeier I, Lier M, Cossmann A, Stankov MV, Schulz SR, Behrens GMN, Jäck HM, Pöhlmann S, Hoffmann M. Viruses 14 2475 (2022)
  114. Identification and mechanistic basis of non-ACE2 blocking neutralizing antibodies from COVID-19 patients with deep RNA sequencing and molecular dynamics simulations. Fredericks AM, East KW, Shi Y, Liu J, Maschietto F, Ayala A, Cioffi WG, Cohen M, Fairbrother WG, Lefort CT, Nau GJ, Levy MM, Wang J, Batista VS, Lisi GP, Monaghan SF. Front Mol Biosci 9 1080964 (2022)
  115. Identification of Niemann-Pick C1 protein as a potential novel SARS-CoV-2 intracellular target. García-Dorival I, Cuesta-Geijo MÁ, Barrado-Gil L, Galindo I, Garaigorta U, Urquiza J, Puerto AD, Campillo NE, Martínez A, Gastaminza P, Gil C, Alonso C. Antiviral Res 194 105167 (2021)
  116. Identification of SARS-CoV-2 Spike Palmitoylation Inhibitors That Results in Release of Attenuated Virus with Reduced Infectivity. Ramadan AA, Mayilsamy K, McGill AR, Ghosh A, Giulianotti MA, Donow HM, Mohapatra SS, Mohapatra S, Chandran B, Deschenes RJ, Roy A. Viruses 14 531 (2022)
  117. Identifying Distinct Structural Features of the SARS-CoV-2 Spike Protein Fusion Domain Essential for Membrane Interaction. Birtles D, Lee J. Biochemistry 60 2978-2986 (2021)
  118. Inferring selection effects in SARS-CoV-2 with Bayesian Viral Allele Selection. Jankowiak M, Obermeyer FH, Lemieux JE. PLoS Genet 18 e1010540 (2022)
  119. Insulin may promote SARS-CoV-2 cell entry and replication in diabetes patients. Sun W. Med Hypotheses 170 110997 (2023)
  120. Ionization of D571 Is Coupled with SARS-CoV-2 Spike Up/Down Equilibrium Revealing the pH-Dependent Allosteric Mechanism of Receptor-Binding Domains. Li T, Yu L, Sun J, Liu J, He X. J Phys Chem B 126 4828-4839 (2022)
  121. Modeling coronavirus spike protein dynamics: implications for immunogenicity and immune escape. Kunkel G, Madani M, White SJ, Verardi PH, Tarakanova A. Biophys J 120 5592-5618 (2021)
  122. Modelling SARS-CoV-2 spike-protein mutation effects on ACE2 binding. Thakur S, Verma RK, Kepp KP, Mehra R. J Mol Graph Model 119 108379 (2023)
  123. Molecular dynamic study of SARS-CoV-2 with various S protein mutations and their effect on thermodynamic properties. Abdalla M, Eltayb WA, El-Arabey AA, Singh K, Jiang X. Comput Biol Med 105025 (2021)
  124. Molecular dynamics simulations of the delta and omicron SARS-CoV-2 spike - ACE2 complexes reveal distinct changes between both variants. Socher E, Heger L, Paulsen F, Zunke F, Arnold P. Comput Struct Biotechnol J 20 1168-1176 (2022)
  125. Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. Peng L, Hu Y, Mankowski MC, Ren P, Chen RE, Wei J, Zhao M, Li T, Tripler T, Ye L, Chow RD, Fang Z, Wu C, Dong MB, Cook M, Wang G, Clark P, Nelson B, Klein D, Sutton R, Diamond MS, Wilen CB, Xiong Y, Chen S. Nat Commun 13 1638 (2022)
  126. Mutation in a SARS-CoV-2 Haplotype from Sub-Antarctic Chile Reveals New Insights into the Spike's Dynamics. González-Puelma J, Aldridge J, Montes de Oca M, Pinto M, Uribe-Paredes R, Fernández-Goycoolea J, Alvarez-Saravia D, Álvarez H, Encina G, Weitzel T, Muñoz R, Olivera-Nappa Á, Pantano S, Navarrete MA. Viruses 13 (2021)
  127. Mutation-Induced Long-Range Allosteric Interactions in the Spike Protein Determine the Infectivity of SARS-CoV-2 Emerging Variants. Das JK, Thakuri B, MohanKumar K, Roy S, Sljoka A, Sun GQ, Chakraborty A. ACS Omega 6 31312-31327 (2021)
  128. Mutational scanning of spike RBD protein for enhanced ACE2 affinity emerging Southeast Asia in the late transmission phase. Kodchakorn K, Chokepaichitkool T, Kongtawelert P. Sci Rep 12 5896 (2022)
  129. Nanobodies Protecting From Lethal SARS-CoV-2 Infection Target Receptor Binding Epitopes Preserved in Virus Variants Other Than Omicron. Casasnovas JM, Margolles Y, Noriega MA, Guzmán M, Arranz R, Melero R, Casanova M, Corbera JA, Jiménez-de-Oya N, Gastaminza P, Garaigorta U, Saiz JC, Martín-Acebes MÁ, Fernández LÁ. Front Immunol 13 863831 (2022)
  130. Nanoscopic Assessment of Anti-SARS-CoV-2 Spike Neutralizing Antibody Using High-Speed AFM. Lim K, Nishide G, Sajidah ES, Yamano T, Qiu Y, Yoshida T, Kobayashi A, Hazawa M, Ando T, Hanayama R, Wong RW. Nano Lett 23 619-628 (2023)
  131. Novel Polymyxin-Inspired Peptidomimetics Targeting the SARS-CoV-2 Spike:hACE2 Interface. Bugatti K, Sartori A, Battistini L, Coppa C, Vanhulle E, Noppen S, Provinciael B, Naesens L, Stevaert A, Contini A, Vermeire K, Zanardi F. Int J Mol Sci 24 8765 (2023)
  132. Omicron mutations increase interdomain interactions and reduce epitope exposure in the SARS-CoV-2 spike. Wieczór M, Tang PK, Orozco M, Cossio P. iScience 26 105981 (2023)
  133. Omicron-included mutation-induced changes in epitopes of SARS-CoV-2 spike protein and effectiveness assessments of current antibodies. Guo D, Duan H, Cheng Y, Wang Y, Hu J, Shi H. Mol Biomed 3 12 (2022)
  134. Peptide Platform as a Powerful Tool in the Fight against COVID-19. Murdocca M, Citro G, Romeo I, Lupia A, Miersch S, Amadio B, Bonomo A, Rossi A, Sidhu SS, Pandolfi PP, Alcaro S, Sangiuolo FC, Novelli G. Viruses 13 (2021)
  135. Predicted pH-dependent stability of SARS-CoV-2 spike protein trimer from interfacial acidic groups. Lobo VR, Warwicker J. Comput Struct Biotechnol J 19 5140-5148 (2021)
  136. Prefusion spike protein conformational changes are slower in SARS-CoV-2 than in SARS-CoV-1. Govind Kumar V, Ogden DS, Isu UH, Polasa A, Losey J, Moradi M. J Biol Chem 298 101814 (2022)
  137. Proton-Binding Motifs of Membrane-Bound Proteins: From Bacteriorhodopsin to Spike Protein S. Bondar AN. Front Chem 9 685761 (2021)
  138. Rapid Degradation of SARS-CoV-2 Spike S Protein by A Specific Serine Protease. Liu J, Kan M, Zhang L, Yue Y, Wang S, Hong M, Hong X. Molecules 27 1882 (2022)
  139. Rapid and Efficient Detection of the SARS-CoV-2 Spike Protein Using an Electrochemical Aptamer-Based Sensor. Idili A, Parolo C, Alvarez-Diduk R, Merkoçi A. ACS Sens 6 3093-3101 (2021)
  140. SARS-CoV-2 S2P spike ages through distinct states with altered immunogenicity. Olia AS, Tsybovsky Y, Chen SJ, Liu C, Nazzari AF, Ou L, Wang L, Kong WP, Leung K, Liu T, Stephens T, Teng IT, Wang S, Yang ES, Zhang B, Zhang Y, Zhou T, Mascola JR, Kwong PD. J Biol Chem 297 101127 (2021)
  141. SARS-CoV-2, Zika viruses and mycoplasma: Structure, pathogenesis and some treatment options in these emerging viral and bacterial infectious diseases. Ferreira G, Santander A, Savio F, Guirado M, Sobrevia L, Nicolson GL. Biochim Biophys Acta Mol Basis Dis 1867 166264 (2021)
  142. SM-COLSARSPROT: Highly Immunogenic Supramutational Synthetic Peptides Covering the World's Population. Patarroyo MA, Patarroyo ME, Pabón L, Alba MP, Bermudez A, Rugeles MT, Díaz-Arevalo D, Zapata-Builes W, Zapata MI, Reyes C, Suarez CF, Agudelo W, López C, Aza-Conde J, Melo M, Escamilla L, Oviedo J, Guzmán F, Silva Y, Forero M, Flórez-Álvarez L, Aguilar-Jimenez W, Moreno-Vranich A, Garry J, Avendaño C. Front Immunol 13 859905 (2022)
  143. Secondary Structures of MERS-CoV, SARS-CoV, and SARS-CoV-2 Spike Proteins Revealed by Infrared Vibrational Spectroscopy. D'Arco A, Di Fabrizio M, Mancini T, Mosetti R, Macis S, Tranfo G, Della Ventura G, Marcelli A, Petrarca M, Lupi S. Int J Mol Sci 24 9550 (2023)
  144. Single-Virus Fusion Measurements Reveal Multiple Mechanistically Equivalent Pathways for SARS-CoV-2 Entry. Sengar A, Cervantes M, Bondalapati ST, Hess T, Kasson PM. J Virol 97 e0199222 (2023)
  145. SpySwitch enables pH- or heat-responsive capture and release for plug-and-display nanoassembly. Vester SK, Rahikainen R, Khairil Anuar INA, Hills RA, Tan TK, Howarth M. Nat Commun 13 3714 (2022)
  146. Strikingly Different Roles of SARS-CoV-2 Fusion Peptides Uncovered by Neutron Scattering. Santamaria A, Batchu KC, Matsarskaia O, Prévost SF, Russo D, Natali F, Seydel T, Hoffmann I, Laux V, Haertlein M, Darwish TA, Russell RA, Corucci G, Fragneto G, Maestro A, Zaccai NR. J Am Chem Soc 144 2968-2979 (2022)
  147. Structural bases for the higher adherence to ACE2 conferred by the SARS-CoV-2 spike Q498Y substitution. Erausquin E, Glaser F, Fernández-Recio J, López-Sagaseta J. Acta Crystallogr D Struct Biol 78 1156-1170 (2022)
  148. Structural effects of spike protein D614G mutation in SARS-CoV-2. Dokainish HM, Sugita Y. Biophys J S0006-3495(22)00941-9 (2022)
  149. Letter Structures of SARS-CoV-2 spike protein alert noteworthy sites for the potential approaching variants. Xing X, Wang L, Cui Z, Fu W, Zheng T, Qin L, Ge P, Qian A, Wang N, Yuan S. Virol Sin 37 938-941 (2022)
  150. The ACE2 receptor accelerates but is not biochemically required for SARS-CoV-2 membrane fusion. Cervantes M, Hess T, Morbioli GG, Sengar A, Kasson PM. Chem Sci 14 6997-7004 (2023)
  151. The Different Immune Responses by Age Are due to the Ability of the Fetal Immune System to Secrete Primal Immunoglobulins Responding to Unexperienced Antigens. Lee J, Cho K, Kook H, Kang S, Lee Y, Lee J. Int J Biol Sci 18 617-636 (2022)
  152. The influence of single-point mutation D614G on the binding process between human angiotensin-converting enzyme 2 and the SARS-CoV-2 spike protein-an atomistic simulation study. Shi C, Jiao Y, Yang C, Sun Y. RSC Adv 13 9800-9810 (2023)
  153. Trends and characteristics of COVID-19 and cardiovascular disease related studies. Cheng A, Ren H, Ma Z, Alam N, Jia L, Liu E. Front Pharmacol 14 1105459 (2023)
  154. Virucidal Activities of Acidic Electrolyzed Water Solutions with Different pH Values against Multiple Strains of SARS-CoV-2. Takeda Y, Nikaido M, Jamsransuren D, Matsuda S, Ogawa H. Appl Environ Microbiol 89 e0169922 (2023)
  155. Zirconium-Based Metal-Organic Frameworks as Acriflavine Cargos in the Battle against Coronaviruses─A Theoretical and Experimental Approach. Jodłowski PJ, Dymek K, Kurowski G, Jaśkowska J, Bury W, Pander M, Wnorowska S, Targowska-Duda K, Piskorz W, Wnorowski A, Boguszewska-Czubara A. ACS Appl Mater Interfaces 14 28615-28627 (2022)


Related citations provided by authors (1)

  1. Cryo-EM Structures Delineate a pH-Dependent Switch that Mediates Endosomal Positioning of SARS-CoV-2 Spike Receptor-Binding Domains.. Zhou T, Tsybovsky Y, Olia AS, Gorman J, Rapp MA, Cerutti G, Chuang GY, Katsamba PS, Nazzari A, Sampson JM, Schon A, Wang PD, Bimela J, Shi W, Teng IT, Zhang B, Boyington JC, Sastry M, Stephens T, Stuckey J, Wang S, Friesner RA, Ho DD, Mascola JR, Shapiro L, Kwong PD bioRxiv (2020)