6xm5 Citations

Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains.

Abstract

The SARS-CoV-2 spike employs mobile receptor-binding domains (RBDs) to engage the human ACE2 receptor and to facilitate virus entry, which can occur through low-pH-endosomal pathways. To understand how ACE2 binding and low pH affect spike conformation, we determined cryo-electron microscopy structures-at serological and endosomal pH-delineating spike recognition of up to three ACE2 molecules. RBDs freely adopted "up" conformations required for ACE2 interaction, primarily through RBD movement combined with smaller alterations in neighboring domains. In the absence of ACE2, single-RBD-up conformations dominated at pH 5.5, resolving into a solitary all-down conformation at lower pH. Notably, a pH-dependent refolding region (residues 824-858) at the spike-interdomain interface displayed dramatic structural rearrangements and mediated RBD positioning through coordinated movements of the entire trimer apex. These structures provide a foundation for understanding prefusion-spike mechanics governing endosomal entry; we suggest that the low pH all-down conformation potentially facilitates immune evasion from RBD-up binding antibody.

Reviews - 6xm5 mentioned but not cited (1)

Articles - 6xm5 mentioned but not cited (15)



Reviews citing this publication (41)

  1. Mechanisms of SARS-CoV-2 entry into cells. Jackson CB, Farzan M, Chen B, Choe H. Nat Rev Mol Cell Biol 23 3-20 (2022)
  2. COVID-19 and Cardiovascular Disease: From Bench to Bedside. Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding CV, Kwon DH, Singh T, Tilton JC, Tsai EJ, Tucker NR, Barnard J, Loscalzo J. Circ Res 128 1214-1236 (2021)
  3. Therapeutic strategies for COVID-19: progress and lessons learned. Li G, Hilgenfeld R, Whitley R, De Clercq E. Nat Rev Drug Discov 22 449-475 (2023)
  4. Cell entry by SARS-CoV-2. Peng R, Wu LA, Wang Q, Qi J, Gao GF. Trends Biochem Sci 46 848-860 (2021)
  5. Structure of SARS-CoV-2 spike protein. Zhang J, Xiao T, Cai Y, Chen B. Curr Opin Virol 50 173-182 (2021)
  6. Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity. Mengist HM, Kombe Kombe AJ, Mekonnen D, Abebaw A, Getachew M, Jin T. Semin Immunol 55 101533 (2021)
  7. Role of host factors in SARS-CoV-2 entry. Evans JP, Liu SL. J Biol Chem 297 100847 (2021)
  8. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Rotondo JC, Martini F, Maritati M, Mazziotta C, Di Mauro G, Lanzillotti C, Barp N, Gallerani A, Tognon M, Contini C. Viruses 13 1687 (2021)
  9. Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Finkelstein MT, Mermelstein AG, Parker Miller E, Seth PC, Stancofski ED, Fera D. Viruses 13 134 (2021)
  10. D614G mutation and SARS-CoV-2: impact on S-protein structure, function, infectivity, and immunity. Bhattacharya M, Chatterjee S, Sharma AR, Agoramoorthy G, Chakraborty C. Appl Microbiol Biotechnol 105 9035-9045 (2021)
  11. The Role of Acidosis in the Pathogenesis of Severe Forms of COVID-19. Nechipurenko YD, Semyonov DA, Lavrinenko IA, Lagutkin DA, Generalov EA, Zaitceva AY, Matveeva OV, Yegorov YE. Biology (Basel) 10 852 (2021)
  12. Better, Faster, Cheaper: Recent Advances in Cryo-Electron Microscopy. Chua EYD, Mendez JH, Rapp M, Ilca SL, Tan YZ, Maruthi K, Kuang H, Zimanyi CM, Cheng A, Eng ET, Noble AJ, Potter CS, Carragher B. Annu Rev Biochem 91 1-32 (2022)
  13. Expression and characterization of SARS-CoV-2 spike proteins. Schaub JM, Chou CW, Kuo HC, Javanmardi K, Hsieh CL, Goldsmith J, DiVenere AM, Le KC, Wrapp D, Byrne PO, Hjorth CK, Johnson NV, Ludes-Meyers J, Nguyen AW, Wang N, Lavinder JJ, Ippolito GC, Maynard JA, McLellan JS, Finkelstein IJ. Nat Protoc 16 5339-5356 (2021)
  14. Structural Plasticity and Immune Evasion of SARS-CoV-2 Spike Variants. Ghimire D, Han Y, Lu M. Viruses 14 1255 (2022)
  15. Role of SARS-CoV-2 and ACE2 variations in COVID-19. Antony P, Vijayan R. Biomed J 44 235-244 (2021)
  16. ACE2-based decoy receptors for SARS coronavirus 2. Jing W, Procko E. Proteins 89 1065-1078 (2021)
  17. Interactions of angiotensin-converting enzyme-2 (ACE2) and SARS-CoV-2 spike receptor-binding domain (RBD): a structural perspective. Borkotoky S, Dey D, Hazarika Z. Mol Biol Rep 50 2713-2721 (2023)
  18. SARS-CoV-2 Virus-Host Interaction: Currently Available Structures and Implications of Variant Emergence on Infectivity and Immune Response. Queirós-Reis L, Gomes da Silva P, Gonçalves J, Brancale A, Bassetto M, Mesquita JR. Int J Mol Sci 22 10836 (2021)
  19. A Biochemical Perspective of the Nonstructural Proteins (NSPs) and the Spike Protein of SARS CoV-2. Yoshimoto FK. Protein J 40 260-295 (2021)
  20. Mechanisms of Lung Injury Induced by SARS-CoV-2 Infection. Upadhya S, Rehman J, Malik AB, Chen S. Physiology (Bethesda) 37 88-100 (2022)
  21. Single-Molecule FRET Imaging of Virus Spike-Host Interactions. Lu M. Viruses 13 332 (2021)
  22. Antibody-mediated immunity to SARS-CoV-2 spike. Errico JM, Adams LJ, Fremont DH. Adv Immunol 154 1-69 (2022)
  23. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Chen P, Wu M, He Y, Jiang B, He ML. Signal Transduct Target Ther 8 237 (2023)
  24. The journey of SARS-CoV-2 in human hosts: a review of immune responses, immunosuppression, and their consequences. Alshammary AF, Al-Sulaiman AM. Virulence 12 1771-1794 (2021)
  25. A snapshot of protein trafficking in SARS-CoV-2 infection. Prasad V, Bartenschlager R. Biol Cell 115 e2200073 (2023)
  26. Advanced microscopy technologies enable rapid response to SARS-CoV-2 pandemic. Cortese M, Laketa V. Cell Microbiol 23 e13319 (2021)
  27. Degenerate CD8 Epitopes Mapping to Structurally Constrained Regions of the Spike Protein: A T Cell-Based Way-Out From the SARS-CoV-2 Variants Storm. Boni C, Cavazzini D, Bolchi A, Rossi M, Vecchi A, Tiezzi C, Barili V, Fisicaro P, Ferrari C, Ottonello S. Front Immunol 12 730051 (2021)
  28. Imaging and visualizing SARS-CoV-2 in a new era for structural biology. Leigh KE, Modis Y. Interface Focus 11 20210019 (2021)
  29. Protons to Patients: targeting endosomal Na+ /H+ exchangers against COVID-19 and other viral diseases. Prasad H. FEBS J 288 5071-5088 (2021)
  30. Virus structure and structure-based antivirals. Plavec Z, Pöhner I, Poso A, Butcher SJ. Curr Opin Virol 51 16-24 (2021)
  31. Broad strategies for neutralizing SARS-CoV-2 and other human coronaviruses with monoclonal antibodies. Ling Z, Yi C, Sun X, Yang Z, Sun B. Sci China Life Sci 66 658-678 (2023)
  32. Contributions of single-particle cryoelectron microscopy toward fighting COVID-19. Rapp M, Shapiro L, Frank J. Trends Biochem Sci 47 117-123 (2022)
  33. The atomic portrait of SARS-CoV-2 as captured by cryo-electron microscopy. Fertig TE, Chitoiu L, Terinte-Balcan G, Peteu VE, Marta D, Gherghiceanu M. J Cell Mol Med 26 25-34 (2022)
  34. Electrostatics in Computational Biophysics and Its Implications for Disease Effects. Sun S, Poudel P, Alexov E, Li L. Int J Mol Sci 23 10347 (2022)
  35. The Physical Basis for pH Sensitivity in Biomolecular Structure and Function, With Application to the Spike Protein of SARS-CoV-2. Warwicker J. Front Mol Biosci 9 834011 (2022)
  36. SARS-CoV-2 S Glycoprotein Stabilization Strategies. Pedenko B, Sulbaran G, Guilligay D, Effantin G, Weissenhorn W. Viruses 15 558 (2023)
  37. Two years of SARS-CoV-2 infection (2019-2021): structural biology, vaccination, and current global situation. Ahmad W, Shabbiri K. Egypt J Intern Med 34 5 (2022)
  38. Identification of host receptors for viral entry and beyond: a perspective from the spike of SARS-CoV-2. Xia X. Front Microbiol 14 1188249 (2023)
  39. The impact of high-resolution structural data on stemming the COVID-19 pandemic. Cox RM, Plemper RK. Curr Opin Virol 49 127-138 (2021)
  40. Cryo-electron microscopy in the study of virus entry and infection. Dutta M, Acharya P. Front Mol Biosci 11 1429180 (2024)
  41. Structural Framework for Analysis of CD4+ T-Cell Epitope Dominance in Viral Fusion Proteins. Landry SJ, Mettu RR, Kolls JK, Aberle JH, Norton E, Zwezdaryk K, Robinson J. Biochemistry 62 2517-2529 (2023)

Articles citing this publication (161)



Related citations provided by authors (1)