6ybt Citations

Structure of a human 48S translational initiation complex.

Science 369 1220-1227 (2020)
Related entries: 6ybd, 6ybs, 6ybv, 6ybw, 6zmw

Cited: 77 times
EuropePMC logo PMID: 32883864

Abstract

A key step in translational initiation is the recruitment of the 43S preinitiation complex by the cap-binding complex [eukaryotic initiation factor 4F (eIF4F)] at the 5' end of messenger RNA (mRNA) to form the 48S initiation complex (i.e., the 48S). The 48S then scans along the mRNA to locate a start codon. To understand the mechanisms involved, we used cryo-electron microscopy to determine the structure of a reconstituted human 48S The structure reveals insights into early events of translation initiation complex assembly, as well as how eIF4F interacts with subunits of eIF3 near the mRNA exit channel in the 43S The location of eIF4F is consistent with a slotting model of mRNA recruitment and suggests that downstream mRNA is unwound at least in part by being "pulled" through the 40S subunit during scanning.

Articles - 6ybt mentioned but not cited (2)

  1. Structure of a human 48S translational initiation complex. Brito Querido J, Sokabe M, Kraatz S, Gordiyenko Y, Skehel JM, Fraser CS, Ramakrishnan V. Science 369 1220-1227 (2020)
  2. Format chain exchange (FORCE) for high-throughput generation of bispecific antibodies in combinatorial binder-format matrices. Dengl S, Mayer K, Bormann F, Duerr H, Hoffmann E, Nussbaum B, Tischler M, Wagner M, Kuglstatter A, Leibrock L, Buldun C, Georges G, Brinkmann U. Nat Commun 11 4974 (2020)


Reviews citing this publication (12)

  1. Control of the eIF4E activity: structural insights and pharmacological implications. Romagnoli A, D'Agostino M, Ardiccioni C, Maracci C, Motta S, La Teana A, Di Marino D. Cell Mol Life Sci 78 6869-6885 (2021)
  2. Translational regulation by uORFs and start codon selection stringency. Dever TE, Ivanov IP, Hinnebusch AG. Genes Dev 37 474-489 (2023)
  3. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Gerovac M, Vogel J, Smirnov A. Front Mol Biosci 8 661448 (2021)
  4. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Nat Rev Mol Cell Biol 24 749-769 (2023)
  5. The Structural Dynamics of Translation. Korostelev AA. Annu Rev Biochem 91 245-267 (2022)
  6. Specific mechanisms of translation initiation in higher eukaryotes: the eIF4G2 story. Shestakova ED, Smirnova VV, Shatsky IN, Terenin IM. RNA 29 282-299 (2023)
  7. The metaphorical swiss army knife: The multitude and diverse roles of HEAT domains in eukaryotic translation initiation. Friedrich D, Marintchev A, Arthanari H. Nucleic Acids Res 50 5424-5442 (2022)
  8. The molecular basis of translation initiation and its regulation in eukaryotes. Brito Querido J, Díaz-López I, Ramakrishnan V. Nat Rev Mol Cell Biol 25 168-186 (2024)
  9. eIF3d: A driver of noncanonical cap-dependent translation of specific mRNAs and a trigger of biological/pathological processes. Ma S, Liu JY, Zhang JT. J Biol Chem 299 104658 (2023)
  10. Coronavirus takeover of host cell translation and intracellular antiviral response: a molecular perspective. Karousis ED, Schubert K, Ban N. EMBO J 43 151-167 (2024)
  11. Promising Assays for Examining a Putative Role of Ribosomal Heterogeneity in COVID-19 Susceptibility and Severity. Shiao YH. Life (Basel) 12 203 (2022)
  12. Strategies of Influenza A Virus to Ensure the Translation of Viral mRNAs. Li HC, Yang CH, Lo SY. Pathogens 11 1521 (2022)

Articles citing this publication (63)

  1. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. Proc Natl Acad Sci U S A 118 e2017715118 (2021)
  2. The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. Tidu A, Janvier A, Schaeffer L, Sosnowski P, Kuhn L, Hammann P, Westhof E, Eriani G, Martin F. RNA rna.078121.120 (2020)
  3. DDX3 depletion represses translation of mRNAs with complex 5' UTRs. Calviello L, Venkataramanan S, Rogowski KJ, Wyler E, Wilkins K, Tejura M, Thai B, Krol J, Filipowicz W, Landthaler M, Floor SN. Nucleic Acids Res 49 5336-5350 (2021)
  4. Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation. Wang J, Shin BS, Alvarado C, Kim JR, Bohlen J, Dever TE, Puglisi JD. Cell 185 4474-4487.e17 (2022)
  5. eIF5B and eIF1A reorient initiator tRNA to allow ribosomal subunit joining. Lapointe CP, Grosely R, Sokabe M, Alvarado C, Wang J, Montabana E, Villa N, Shin BS, Dever TE, Fraser CS, Fernández IS, Puglisi JD. Nature 607 185-190 (2022)
  6. Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons. Ichihara K, Matsumoto A, Nishida H, Kito Y, Shimizu H, Shichino Y, Iwasaki S, Imami K, Ishihama Y, Nakayama KI. Nucleic Acids Res 49 7298-7317 (2021)
  7. Human oncoprotein 5MP suppresses general and repeat-associated non-AUG translation via eIF3 by a common mechanism. Singh CR, Glineburg MR, Moore C, Tani N, Jaiswal R, Zou Y, Aube E, Gillaspie S, Thornton M, Cecil A, Hilgers M, Takasu A, Asano I, Asano M, Escalante CR, Nakamura A, Todd PK, Asano K. Cell Rep 36 109376 (2021)
  8. Conformational rearrangements upon start codon recognition in human 48S translation initiation complex. Yi SH, Petrychenko V, Schliep JE, Goyal A, Linden A, Chari A, Urlaub H, Stark H, Rodnina MV, Adio S, Fischer N. Nucleic Acids Res 50 5282-5298 (2022)
  9. Large-scale movement of eIF3 domains during translation initiation modulate start codon selection. Llácer JL, Hussain T, Dong J, Villamayor L, Gordiyenko Y, Hinnebusch AG. Nucleic Acids Res 49 11491-11511 (2021)
  10. Molecular architecture of 40S translation initiation complexes on the hepatitis C virus IRES. Brown ZP, Abaeva IS, De S, Hellen CUT, Pestova TV, Frank J. EMBO J 41 e110581 (2022)
  11. Universal features of Nsp1-mediated translational shutdown by coronaviruses. Schubert K, Karousis ED, Ban I, Lapointe CP, Leibundgut M, Bäumlin E, Kummerant E, Scaiola A, Schönhut T, Ziegelmüller J, Puglisi JD, Mühlemann O, Ban N. Mol Cell 83 3546-3557.e8 (2023)
  12. Bursting translation on single mRNAs in live cells. Livingston NM, Kwon J, Valera O, Saba JA, Sinha NK, Reddy P, Nelson B, Wolfe C, Ha T, Green R, Liu J, Wu B. Mol Cell 83 2276-2289.e11 (2023)
  13. Role of aIF5B in archaeal translation initiation. Kazan R, Bourgeois G, Lazennec-Schurdevin C, Larquet E, Mechulam Y, Coureux PD, Schmitt E. Nucleic Acids Res 50 6532-6548 (2022)
  14. Selective translational control of cellular and viral mRNAs by RPS3 mRNA binding. Havkin-Solomon T, Itzhaki E, Joffe N, Reuven N, Shaul Y, Dikstein R. Nucleic Acids Res 51 4208-4222 (2023)
  15. Specific recognition and ubiquitination of translating ribosomes by mammalian CCR4-NOT. Absmeier E, Chandrasekaran V, O'Reilly FJ, Stowell JAW, Rappsilber J, Passmore LA. Nat Struct Mol Biol 30 1314-1322 (2023)
  16. eIF4G is retained on ribosomes elongating and terminating on short upstream ORFs to control reinitiation in yeast. Mohammad MP, Smirnova A, Gunišová S, Valášek LS. Nucleic Acids Res 49 8743-8756 (2021)
  17. Distance-dependent inhibition of translation initiation by downstream out-of-frame AUGs is consistent with a Brownian ratchet process of ribosome scanning. Li K, Kong J, Zhang S, Zhao T, Qian W. Genome Biol 23 254 (2022)
  18. Inhibitors of eIF4G1-eIF1 uncover its regulatory role of ER/UPR stress-response genes independent of eIF2α-phosphorylation. Sehrawat U, Haimov O, Weiss B, Tamarkin-Ben Harush A, Ashkenazi S, Plotnikov A, Noiman T, Leshkowitz D, Stelzer G, Dikstein R. Proc Natl Acad Sci U S A 119 e2120339119 (2022)
  19. Using deep-learning predictions of inter-residue distances for model validation. Sánchez Rodríguez F, Chojnowski G, Keegan RM, Rigden DJ. Acta Crystallogr D Struct Biol 78 1412-1427 (2022)
  20. In vitro reconstitution of SARS-CoV-2 Nsp1-induced mRNA cleavage reveals the key roles of the N-terminal domain of Nsp1 and the RRM domain of eIF3g. Abaeva IS, Arhab Y, Miścicka A, Hellen CUT, Pestova TV. Genes Dev 37 844-860 (2023)
  21. Regulation of the DEAH/RHA helicase Prp43 by the G-patch factor Pfa1. Enders M, Ficner R, Adio S. Proc Natl Acad Sci U S A 119 e2203567119 (2022)
  22. The flip-flop configuration of the PABP-dimer leads to switching of the translation function. Gu S, Jeon HM, Nam SW, Hong KY, Rahman MS, Lee JB, Kim Y, Jang SK. Nucleic Acids Res 50 306-321 (2022)
  23. Time resolution in cryo-EM using a PDMS-based microfluidic chip assembly and its application to the study of HflX-mediated ribosome recycling. Bhattacharjee S, Feng X, Maji S, Dadhwal P, Zhang Z, Brown ZP, Frank J. Cell 187 782-796.e23 (2024)
  24. eIF3 and Its mRNA-Entry-Channel Arm Contribute to the Recruitment of mRNAs With Long 5'-Untranslated Regions. Stanciu A, Luo J, Funes L, Galbokke Hewage S, Aitken CE. Front Mol Biosci 8 787664 (2021)
  25. mRNA- and factor-driven dynamic variability controls eIF4F-cap recognition for translation initiation. Çetin B, O'Leary SE. Nucleic Acids Res 50 8240-8261 (2022)
  26. High-risk human papillomavirus-18 uses an mRNA sequence to synthesize oncoprotein E6 in tumors. García A, Maldonado G, González JL, Svitkin Y, Cantú D, García-Carrancá A, Sonenberg N, Hernández G. Proc Natl Acad Sci U S A 118 e2108359118 (2021)
  27. Molecular basis for recognition and deubiquitination of 40S ribosomes by Otu2. Ikeuchi K, Ivic N, Buschauer R, Cheng J, Fröhlich T, Matsuo Y, Berninghausen O, Inada T, Becker T, Beckmann R. Nat Commun 14 2730 (2023)
  28. Rebirth of the translational machinery: The importance of recycling ribosomes. Young DJ, Guydosh NR. Bioessays 44 e2100269 (2022)
  29. Short 5' Untranslated Region Enables Optimal Translation of Plant Virus Tricistronic RNA via Leaky Scanning. Fujimoto Y, Keima T, Hashimoto M, Hagiwara-Komoda Y, Hosoe N, Nishida S, Nijo T, Oshima K, Verchot J, Namba S, Yamaji Y. J Virol 96 e0214421 (2022)
  30. Translational fidelity screens in mammalian cells reveal eIF3 and eIF4G2 as regulators of start codon selectivity. She R, Luo J, Weissman JS. Nucleic Acids Res 51 6355-6369 (2023)
  31. eIF3 interacts with histone H4 messenger RNA to regulate its translation. Hayek H, Gross L, Janvier A, Schaeffer L, Martin F, Eriani G, Allmang C. J Biol Chem 296 100578 (2021)
  32. Cryo-EM reconstruction of the human 40S ribosomal subunit at 2.15 Å resolution. Pellegrino S, Dent KC, Spikes T, Warren AJ. Nucleic Acids Res 51 4043-4054 (2023)
  33. Dynamic interaction network involving the conserved intrinsically disordered regions in human eIF5. Paul EE, Lin KY, Gamble N, Tsai AW, Swan SHK, Yang Y, Doran M, Marintchev A. Biophys Chem 281 106740 (2022)
  34. Human TRMT1 catalyzes m2G or m22G formation on tRNAs in a substrate-dependent manner. Xiong QP, Li J, Li H, Huang ZX, Dong H, Wang ED, Liu RJ. Sci China Life Sci 66 2295-2309 (2023)
  35. Human eukaryotic initiation factor 4E (eIF4E) and the nucleotide-bound state of eIF4A regulate eIF4F binding to RNA. Izidoro MS, Sokabe M, Villa N, Merrick WC, Fraser CS. J Biol Chem 298 102368 (2022)
  36. Increased levels of eIF2A inhibit translation by sequestering 40S ribosomal subunits. Grove DJ, Levine DJ, Kearse MG. Nucleic Acids Res 51 9983-10000 (2023)
  37. Monitoring RNA restructuring in a human cell-free extract reveals eIF4A-dependent and eIF4A-independent unwinding activity. O'Sullivan MH, Fraser CS. J Biol Chem 299 104936 (2023)
  38. The structure of a human translation initiation complex reveals two independent roles for the helicase eIF4A. Brito Querido J, Sokabe M, Díaz-López I, Gordiyenko Y, Fraser CS, Ramakrishnan V. Nat Struct Mol Biol 31 455-464 (2024)
  39. Translation reinitiation after uORFs does not fully protect mRNAs from nonsense-mediated decay. Russell PJ, Slivka JA, Boyle EP, Burghes AHM, Kearse MG. RNA 29 735-744 (2023)
  40. eIF3 Interacts with Selenoprotein mRNAs. Hayek H, Eriani G, Allmang C. Biomolecules 12 1268 (2022)
  41. Enzymatic and Molecular Characterization of Anti-Leishmania Molecules That Differently Target Leishmania and Mammalian eIF4A Proteins, LieIF4A and eIF4AMus. Abdelkrim YZ, Harigua-Souiai E, Bassoumi-Jamoussi I, Barhoumi M, Banroques J, Essafi-Benkhadir K, Nilges M, Blondel A, Tanner NK, Guizani I. Molecules 27 5890 (2022)
  42. Human eukaryotic initiation factor 4G directly binds the 40S ribosomal subunit to promote efficient translation. Villa N, Fraser CS. J Biol Chem 300 107242 (2024)
  43. Letter Human tumor suppressor PDCD4 directly interacts with ribosomes to repress translation. Ye X, Huang Z, Li Y, Wang M, Meng W, Miao M, Cheng J. Cell Res (2024)
  44. Identification of new aptamer BC-3 targeting RPS7 from rapid screening for bladder carcinoma. Liu Y, Li J, Ou H, Qi D, Hu B, Xu Y, Hu J, Xiong Y, Xia L, Huang JH, Hu X, Wu E. Genes Dis 10 2137-2150 (2023)
  45. Interactome Mapping of eIF3A in a Colon Cancer and an Immortalized Embryonic Cell Line Using Proximity-Dependent Biotin Identification. Vo DK, Engler A, Stoimenovski D, Hartig R, Kaehne T, Kalinski T, Naumann M, Haybaeck J, Nass N. Cancers (Basel) 13 1293 (2021)
  46. Phosphorylation of Eukaryotic Initiation Factor 4G1 (eIF4G1) at Ser1147 Is Specific for eIF4G1 Bound to eIF4E in Delayed Neuronal Death after Ischemia. Martínez-Alonso E, Guerra-Pérez N, Escobar-Peso A, Peracho L, Vera-Lechuga R, Cruz-Culebras A, Masjuan J, Alcázar A. Int J Mol Sci 23 1830 (2022)
  47. Secondary structures that regulate mRNA translation provide insights for ASO-mediated modulation of cardiac hypertrophy. Hedaya OM, Venkata Subbaiah KC, Jiang F, Xie LH, Wu J, Khor ES, Zhu M, Mathews DH, Proschel C, Yao P. Nat Commun 14 6166 (2023)
  48. The ASC-1 complex promotes translation initiation by scanning ribosomes. Kito Y, Matsumoto A, Ichihara K, Shiraishi C, Tang R, Hatano A, Matsumoto M, Han P, Iwasaki S, Nakayama KI. EMBO J 42 e112869 (2023)
  49. Visualization of translation reorganization upon persistent ribosome collision stress in mammalian cells. Fedry J, Silva J, Vanevic M, Fronik S, Mechulam Y, Schmitt E, des Georges A, Faller WJ, Förster F. Mol Cell 84 1078-1089.e4 (2024)
  50. ZNF692 organizes a hub specialized in 40S ribosomal subunit maturation enhancing translation in rapidly proliferating cells. Lafita-Navarro MC, Hao YH, Jiang C, Jang S, Chang TC, Brown IN, Venkateswaran N, Maurais E, Stachera W, Zhang Y, Mundy D, Han J, Tran VM, Mettlen M, Xu L, Woodruff JB, Grishin NV, Kinch L, Mendell JT, Buszczak M, Conacci-Sorrell M. Cell Rep 42 113280 (2023)
  51. eIF3j facilitates loading of release factors into the ribosome. Egorova T, Biziaev N, Shuvalov A, Sokolova E, Mukba S, Evmenov K, Zotova M, Kushchenko A, Shuvalova E, Alkalaeva E. Nucleic Acids Res 49 11181-11196 (2021)
  52. Distinct roles of LARP1 and 4EBP1/2 in regulating translation and stability of 5'TOP mRNAs. Hochstoeger T, Papasaikas P, Piskadlo E, Chao JA. Sci Adv 10 eadi7830 (2024)
  53. Dynamically regulated two-site interaction of viral RNA to capture host translation initiation factor. Imai S, Suzuki H, Fujiyoshi Y, Shimada I. Nat Commun 14 4977 (2023)
  54. Grid batch-dependent tuning of glow discharge parameters. Kazan R, Bourgeois G, Carisetti D, Florea I, Larquet E, Maurice JL, Mechulam Y, Ozanam F, Schmitt E, Coureux PD. Front Mol Biosci 9 910218 (2022)
  55. High-Resolution Structure and Internal Mobility of a Plant 40S Ribosomal Subunit. Kravchenko OV, Baymukhametov TN, Afonina ZA, Vassilenko KS. Int J Mol Sci 24 17453 (2023)
  56. Molecular and Structural Characterization of Lenalidomide-Mediated Sequestration of eIF3i. Lin Z, Shen D, Yang B, Woo CM. ACS Chem Biol 17 3229-3237 (2022)
  57. RNA splicing regulator EIF3D regulates the tumor microenvironment through immunogene-related alternative splicing in head and neck squamous cell carcinoma. Lu D, Mihoayi M, Ablikim Y, Arikin A. Aging (Albany NY) 16 5929-5948 (2024)
  58. Recruitment of the 40S ribosomal subunit by the West Nile virus 3' UTR promotes the cross-talk between the viral genomic ends for translation regulation. Ramos-Lorente SE, Berzal-Herranz B, Romero-López C, Berzal-Herranz A. Virus Res 343 199340 (2024)
  59. Recruitment of trimeric eIF2 by phosphatase non-catalytic subunit PPP1R15B. Fatalska A, Hodgson G, Freund SMV, Maslen SL, Morgan T, Thorkelsson SR, van Slegtenhorst M, Lorenz S, Andreeva A, Kaat LD, Bertolotti A. Mol Cell 84 506-521.e11 (2024)
  60. Substrate recruitment via eIF2γ enhances catalytic efficiency of a holophosphatase that terminates the integrated stress response. Yan Y, Shetty M, Harding HP, George G, Zyryanova A, Labbé K, Mafi A, Hao Q, Sidrauski C, Ron D. Proc Natl Acad Sci U S A 121 e2320013121 (2024)
  61. The DEAD-Box RNA Helicase Ded1 Is Associated with Translating Ribosomes. Yeter-Alat H, Belgareh-Touzé N, Huvelle E, Banroques J, Tanner NK. Genes (Basel) 14 1566 (2023)
  62. The Giardia lamblia ribosome structure reveals divergence in several biological pathways and the mode of emetine function. Eiler DR, Wimberly BT, Bilodeau DY, Taliaferro JM, Reigan P, Rissland OS, Kieft JS. Structure 32 400-410.e4 (2024)
  63. The Helix-Loop-Helix motif of human EIF3A regulates translation of proliferative cellular mRNAs. Volegova MP, Hermosillo C, Cate JHD. PLoS One 18 e0292080 (2023)