6zw7 Citations

Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily.

OpenAccess logo Cell 184 3660-3673.e18 (2021)
Related entries: 6zvr, 6zvs, 6zvt, 6zw4, 6zw5, 6zw6

Cited: 31 times
EuropePMC logo PMID: 34166615

Abstract

Membrane remodeling and repair are essential for all cells. Proteins that perform these functions include Vipp1/IM30 in photosynthetic plastids, PspA in bacteria, and ESCRT-III in eukaryotes. Here, using a combination of evolutionary and structural analyses, we show that these protein families are homologous and share a common ancient evolutionary origin that likely predates the last universal common ancestor. This homology is evident in cryo-electron microscopy structures of Vipp1 rings from the cyanobacterium Nostoc punctiforme presented over a range of symmetries. Each ring is assembled from rungs that stack and progressively tilt to form dome-shaped curvature. Assembly is facilitated by hinges in the Vipp1 monomer, similar to those in ESCRT-III proteins, which allow the formation of flexible polymers. Rings have an inner lumen that is able to bind and deform membranes. Collectively, these data suggest conserved mechanistic principles that underlie Vipp1, PspA, and ESCRT-III-dependent membrane remodeling across all domains of life.

Articles - 6zw7 mentioned but not cited (1)

  1. Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. Liu J, Tassinari M, Souza DP, Naskar S, Noel JK, Bohuszewicz O, Buck M, Williams TA, Baum B, Low HH. Cell 184 3660-3673.e18 (2021)


Reviews citing this publication (7)

  1. Autophagy genes in biology and disease. Yamamoto H, Zhang S, Mizushima N. Nat Rev Genet 24 382-400 (2023)
  2. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Willdigg JR, Helmann JD. Front Mol Biosci 8 634438 (2021)
  3. The cell biology of archaea. van Wolferen M, Pulschen AA, Baum B, Gribaldo S, Albers SV. Nat Microbiol 7 1744-1755 (2022)
  4. The ESCRT Machinery: Remodeling, Repairing, and Sealing Membranes. Olmos Y. Membranes (Basel) 12 633 (2022)
  5. Orchestral manoeuvres in the light: crosstalk needed for regulation of the Chlamydomonas carbon concentration mechanism. Santhanagopalan I, Wong R, Mathur T, Griffiths H. J Exp Bot 72 4604-4624 (2021)
  6. Gasdermin Pore Forming Activities that Promote Inflammation from Living and Dead Cells. Cao A, Kagan JC. J Mol Biol 434 167427 (2022)
  7. Roles of ESCRT-III polymers in cell division across the tree of life. Carlton JG, Baum B. Curr Opin Cell Biol 85 102274 (2023)

Articles citing this publication (23)

  1. Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery. Hatano T, Palani S, Papatziamou D, Salzer R, Souza DP, Tamarit D, Makwana M, Potter A, Haig A, Xu W, Townsend D, Rochester D, Bellini D, Hussain HMA, Ettema TJG, Löwe J, Baum B, Robinson NP, Balasubramanian M. Nat Commun 13 3398 (2022)
  2. An Stomatin, Prohibitin, Flotillin, and HflK/C-Domain Protein Required to Link the Phage-Shock Protein to the Membrane in Bacillus subtilis. Scholz AS, Baur SSM, Wolf D, Bramkamp M. Front Microbiol 12 754924 (2021)
  3. The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. Hurtig F, Burgers TCQ, Cezanne A, Jiang X, Mol FN, Traparić J, Pulschen AA, Nierhaus T, Tarrason-Risa G, Harker-Kirschneck L, Löwe J, Šarić A, Vlijm R, Baum B. Sci Adv 9 eade5224 (2023)
  4. A bacterial membrane sculpting protein with BAR domain-like activity. Phillips DA, Zacharoff LA, Hampton CM, Chong GW, Malanoski AP, Metskas LA, Xu S, Bird LJ, Eddie BJ, Miklos AE, Jensen GJ, Drummy LF, El-Naggar MY, Glaven SM. Elife 10 e60049 (2021)
  5. Coatomer in the universe of cellular complexity. Field MC, Rout MP. Mol Biol Cell 33 (2022)
  6. Membrane destabilization and pore formation induced by the Synechocystis IM30 protein. Junglas B, Axt A, Siebenaller C, Sonel H, Hellmann N, Weber SAL, Schneider D. Biophys J 121 3411-3421 (2022)
  7. Modelling membrane reshaping by staged polymerization of ESCRT-III filaments. Jiang X, Harker-Kirschneck L, Vanhille-Campos C, Pfitzner AK, Lominadze E, Roux A, Baum B, Šarić A. PLoS Comput Biol 18 e1010586 (2022)
  8. TurboID reveals the proxiomes of Chlamydomonas proteins involved in thylakoid biogenesis and stress response. Kreis E, König K, Misir M, Niemeyer J, Sommer F, Schroda M. Plant Physiol 193 1772-1796 (2023)
  9. Vps60 initiates alternative ESCRT-III filaments. Pfitzner AK, Zivkovic H, Bernat-Silvestre C, West M, Peltier T, Humbert F, Odorizzi G, Roux A. J Cell Biol 222 e202206028 (2023)
  10. Asgard ESCRT-III and VPS4 reveal conserved chromatin binding properties of the ESCRT machinery. Nachmias D, Melnikov N, Zorea A, Sharon M, Yemini R, De-Picchoto Y, Tsirkas I, Aharoni A, Frohn B, Schwille P, Zarivach R, Mizrahi I, Elia N. ISME J 17 117-129 (2023)
  11. Bro1 family proteins harmonize cargo sorting with vesicle formation. Tseng CC, Piper RC, Katzmann DJ. Bioessays 44 e2100276 (2022)
  12. Cyanobacterial membrane dynamics in the light of eukaryotic principles. Siebenaller C, Schneider D. Biosci Rep 43 BSR20221269 (2023)
  13. Envelope Stress Activates Expression of the Twin Arginine Translocation (Tat) System in Salmonella. Rogers AR, Turner EE, Johnson DT, Ellermeier JR. Microbiol Spectr 10 e0162122 (2022)
  14. Giant worm-shaped ESCRT scaffolds surround actin-independent integrin clusters. Stempels FC, Jiang M, Warner HM, Moser ML, Janssens MH, Maassen S, Nelen IH, de Boer R, Jiemy WF, Knight D, Selley J, O'Cualain R, Baranov MV, Burgers TCQ, Sansevrino R, Milovanovic D, Heeringa P, Jones MC, Vlijm R, Ter Beest M, van den Bogaart G. J Cell Biol 222 e202205130 (2023)
  15. Asymmetric survival in single-cell lineages of cyanobacteria in response to photodamage. Tay JW, Cameron JC. Photosynth Res 155 289-297 (2023)
  16. BacA: a possible regulator that contributes to the biofilm formation of Pseudomonas aeruginosa. Wallart L, Ben Mlouka MA, Saffiedine B, Coquet L, Le H, Hardouin J, Jouenne T, Phan G, Kiefer-Meyer MC, Girard E, Broutin I, Cosette P. Front Microbiol 15 1332448 (2024)
  17. Ca2+-sensor ALG-2 engages ESCRTs to enhance lysosomal membrane resilience to osmotic stress. Chen W, Motsinger MM, Li J, Bohannon KP, Hanson PI. Proc Natl Acad Sci U S A 121 e2318412121 (2024)
  18. Distinctive in vitro ATP Hydrolysis Activity of AtVIPP1, a Chloroplastic ESCRT-III Superfamily Protein in Arabidopsis. Ohnishi N, Sugimoto M, Kondo H, Shioya KI, Zhang L, Sakamoto W. Front Plant Sci 13 949578 (2022)
  19. Diversity, origin, and evolution of the ESCRT systems. Makarova KS, Tobiasson V, Wolf YI, Lu Z, Liu Y, Zhang S, Krupovic M, Li M, Koonin EV. mBio 15 e0033524 (2024)
  20. Molecular basis for curvature formation in SepF polymerization. Liu W, Zhang C, Zhang H, Ma S, Deng J, Wang D, Chang Z, Yang J. Proc Natl Acad Sci U S A 121 e2316922121 (2024)
  21. SynDLP is a dynamin-like protein of Synechocystis sp. PCC 6803 with eukaryotic features. Gewehr L, Junglas B, Jilly R, Franz J, Zhu WE, Weidner T, Bonn M, Sachse C, Schneider D. Nat Commun 14 2156 (2023)
  22. The metabolic slowdown caused by the deletion of pspA accelerates protein aggregation during stationary phase facilitating antibiotic persistence. Li Y, Chen X, Zhang W, Fang K, Tian J, Li F, Han M, Huang J, Sun T, Bai F, Cheng M, Xu Y. Antimicrob Agents Chemother 68 e0093723 (2024)
  23. Three-dimensional architecture of ESCRT-III flat spirals on the membrane. Liu M, Liu Y, Song T, Yang L, Qi L, Zhang YZ, Wang Y, Shen QT. Proc Natl Acad Sci U S A 121 e2319115121 (2024)