7aat Citations

X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase.

J Mol Biol 225 495-517 (1992)
Related entries: 8aat, 9aat

Cited: 101 times
EuropePMC logo PMID: 1593633

Abstract

The X-ray crystal structures of three forms of the enzyme aspartate aminotransferase (EC 2.6.1.1) from chicken heart mitochondria have been refined by least-squares methods: holoenzyme with the co-factor pyridoxal-5'-phosphate bound at pH 7.5 (1.9 A resolution), holoenzyme with pyridoxal-5'-phosphate bound at pH 5.1 (2.3 A resolution) and holoenzyme with the co-factor pyridoxamine-5'-phosphate bound at pH 7.5 (2.2 A resolution). The crystallographic agreement factors [formula: see text] for the structures are 0.166, 0.130 and 0.131, respectively, for all data in the resolution range from 10.0 A to the limit of diffraction for each structure. The secondary, super-secondary and domain structures of the pyridoxal-phosphate holoenzyme at pH 7.5 are described in detail. The surface area of the interface between the monomer subunits of this dimeric alpha 2 protein is unusually large, indicating a very stable dimer. This is consistent with biochemical data. Both subunit and domain interfaces are relatively smooth compared with other proteins. The interactions of the protein with its co-factor are described and compared among the three structures. Observed changes in co-factor conformation may be related to spectral changes and the energetics of the catalytic reaction. Small but significant adjustments of the protein to changes in co-factor conformation are seen. These adjustments may be accommodated by small rigid-body shifts of secondary structural elements, and by packing defects in the protein core.

Articles - 7aat mentioned but not cited (4)

  1. iMolTalk: an interactive, internet-based protein structure analysis server. Diemand AV, Scheib H. Nucleic Acids Res. 32 W512-6 (2004)
  2. Protein subunit interfaces: heterodimers versus homodimers. Zhanhua C, Gan JG, Lei L, Sakharkar MK, Kangueane P. Bioinformation 1 28-39 (2005)
  3. Biochemical and structural characterization of mouse mitochondrial aspartate aminotransferase, a newly identified kynurenine aminotransferase-IV. Han Q, Robinson H, Cai T, Tagle DA, Li J. Biosci. Rep. 31 323-332 (2011)
  4. Structural Insights into a Novel Class of Aspartate Aminotransferase from Corynebacterium glutamicum. Son HF, Kim KJ. PLoS ONE 11 e0158402 (2016)


Reviews citing this publication (9)

  1. Structure, evolution and action of vitamin B6-dependent enzymes. Jansonius JN. Curr. Opin. Struct. Biol. 8 759-769 (1998)
  2. Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. Böhm HJ. J. Comput. Aided Mol. Des. 12 309-323 (1998)
  3. Structure, expression, and function of kynurenine aminotransferases in human and rodent brains. Han Q, Cai T, Tagle DA, Li J. Cell. Mol. Life Sci. 67 353-368 (2010)
  4. PLP-dependent H(2)S biogenesis. Singh S, Banerjee R. Biochim. Biophys. Acta 1814 1518-1527 (2011)
  5. Dual substrate recognition of aminotransferases. Hirotsu K, Goto M, Okamoto A, Miyahara I. Chem Rec 5 160-172 (2005)
  6. Stereochemical constraint in the evolution of pyridoxal-5'-phosphate-dependent enzymes. A hypothesis. Christen P, Kasper P, Gehring H, Sterk M. FEBS Lett. 389 12-14 (1996)
  7. Release of enzyme strain during catalysis reduces the activation energy barrier. Kagamiyama H, Hayashi H. Chem Rec 1 385-394 (2001)
  8. The Synthesis of Kynurenic Acid in Mammals: An Updated Kynurenine Aminotransferase Structural KATalogue. Rossi F, Miggiano R, Ferraris DM, Rizzi M. Front Mol Biosci 6 7 (2019)
  9. An Extended C-Terminus, the Possible Culprit for Differential Regulation of 5-Aminolevulinate Synthase Isoforms. Hunter GA, Ferreira GC. Front Mol Biosci 9 920668 (2022)

Articles citing this publication (88)

  1. Knowledge-based protein secondary structure assignment. Frishman D, Argos P. Proteins 23 566-579 (1995)
  2. Volume changes on protein folding. Harpaz Y, Gerstein M, Chothia C. Structure 2 641-649 (1994)
  3. Aminotransferases: demonstration of homology and division into evolutionary subgroups. Mehta PK, Hale TI, Christen P. Eur. J. Biochem. 214 549-561 (1993)
  4. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. Alexander FW, Sandmeier E, Mehta PK, Christen P. Eur. J. Biochem. 219 953-960 (1994)
  5. Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Grishin NV, Phillips MA, Goldsmith EJ. Protein Sci. 4 1291-1304 (1995)
  6. Structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and L-arginine in the formation of an SDS-resistant dimer. Klatt P, Schmidt K, Lehner D, Glatter O, Bächinger HP, Mayer B. EMBO J. 14 3687-3695 (1995)
  7. Directed evolution of an aspartate aminotransferase with new substrate specificities. Yano T, Oue S, Kagamiyama H. Proc. Natl. Acad. Sci. U.S.A. 95 5511-5515 (1998)
  8. Peroxisomal alanine : glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Liepman AH, Olsen LJ. Plant J. 25 487-498 (2001)
  9. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. Capitani G, De Biase D, Aurizi C, Gut H, Bossa F, Grütter MG. EMBO J. 22 4027-4037 (2003)
  10. Domain closure in mitochondrial aspartate aminotransferase. McPhalen CA, Vincent MG, Picot D, Jansonius JN, Lesk AM, Chothia C. J. Mol. Biol. 227 197-213 (1992)
  11. The crystal structure of human cytosolic serine hydroxymethyltransferase: a target for cancer chemotherapy. Renwick SB, Snell K, Baumann U. Structure 6 1105-1116 (1998)
  12. Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. Burkhard P, Rao GS, Hohenester E, Schnackerz KD, Cook PF, Jansonius JN. J. Mol. Biol. 283 121-133 (1998)
  13. Crystal structure of a NifS-like protein from Thermotoga maritima: implications for iron sulphur cluster assembly. Kaiser JT, Clausen T, Bourenkow GP, Bartunik HD, Steinbacher S, Huber R. J. Mol. Biol. 297 451-464 (2000)
  14. Structural principles governing domain motions in proteins. Hayward S. Proteins 36 425-435 (1999)
  15. The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. Alexeev D, Alexeeva M, Baxter RL, Campopiano DJ, Webster SP, Sawyer L. J. Mol. Biol. 284 401-419 (1998)
  16. A procedure for detecting structural domains in proteins. Swindells MB. Protein Sci. 4 103-112 (1995)
  17. Refinement and comparisons of the crystal structures of pig cytosolic aspartate aminotransferase and its complex with 2-methylaspartate. Rhee S, Silva MM, Hyde CC, Rogers PH, Metzler CM, Metzler DE, Arnone A. J. Biol. Chem. 272 17293-17302 (1997)
  18. Identification of specific interactions that drive ligand-induced closure in five enzymes with classic domain movements. Hayward S. J. Mol. Biol. 339 1001-1021 (2004)
  19. Crystal structures of Paracoccus denitrificans aromatic amino acid aminotransferase: a substrate recognition site constructed by rearrangement of hydrogen bond network. Okamoto A, Nakai Y, Hayashi H, Hirotsu K, Kagamiyama H. J. Mol. Biol. 280 443-461 (1998)
  20. Crystal structure of tryptophanase. Isupov MN, Antson AA, Dodson EJ, Dodson GG, Dementieva IS, Zakomirdina LN, Wilson KS, Dauter Z, Lebedev AA, Harutyunyan EH. J. Mol. Biol. 276 603-623 (1998)
  21. Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase. Momany C, Ghosh R, Hackert ML. Protein Sci. 4 849-854 (1995)
  22. Crystal structure of human recombinant ornithine aminotransferase. Shen BW, Hennig M, Hohenester E, Jansonius JN, Schirmer T. J. Mol. Biol. 277 81-102 (1998)
  23. Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. Capitani G, Hohenester E, Feng L, Storici P, Kirsch JF, Jansonius JN. J. Mol. Biol. 294 745-756 (1999)
  24. The subunit interfaces of oligomeric enzymes are conserved to a similar extent to the overall protein sequences. Grishin NV, Phillips MA. Protein Sci. 3 2455-2458 (1994)
  25. Aspartate aminotransferase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Cloning, expression, properties, and molecular modelling. Birolo L, Tutino ML, Fontanella B, Gerday C, Mainolfi K, Pascarella S, Sannia G, Vinci F, Marino G. Eur. J. Biochem. 267 2790-2802 (2000)
  26. Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II. Han Q, Cai T, Tagle DA, Robinson H, Li J. Biosci. Rep. 28 205-215 (2008)
  27. Crystal structure of phosphoserine aminotransferase from Escherichia coli at 2.3 A resolution: comparison of the unligated enzyme and a complex with alpha-methyl-l-glutamate. Hester G, Stark W, Moser M, Kallen J, Marković-Housley Z, Jansonius JN. J. Mol. Biol. 286 829-850 (1999)
  28. Functional attributes of the phosphate group binding cup of pyridoxal phosphate-dependent enzymes. Denesyuk AI, Denessiouk KA, Korpela T, Johnson MS. J. Mol. Biol. 316 155-172 (2002)
  29. Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli: kinetic characterization of wild-type and active-site mutant forms. White MF, Vasquez J, Yang SF, Kirsch JF. Proc. Natl. Acad. Sci. U.S.A. 91 12428-12432 (1994)
  30. Crystal structure of human ornithine aminotransferase complexed with the highly specific and potent inhibitor 5-fluoromethylornithine. Storici P, Capitani G, Müller R, Schirmer T, Jansonius JN. J. Mol. Biol. 285 297-309 (1999)
  31. Characterization of two members (ACS1 and ACS3) of the 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana. Liang X, Oono Y, Shen NF, Köhler C, Li K, Scolnik PA, Theologis A. Gene 167 17-24 (1995)
  32. E. coli 5'-nucleotidase undergoes a hinge-bending domain rotation resembling a ball-and-socket motion. Knöfel T, Sträter N. J. Mol. Biol. 309 255-266 (2001)
  33. Common structural elements in the architecture of the cofactor-binding domains in unrelated families of pyridoxal phosphate-dependent enzymes. Denessiouk KA, Denesyuk AI, Lehtonen JV, Korpela T, Johnson MS. Proteins 35 250-261 (1999)
  34. Crystal structure of Saccharomyces cerevisiae cytosolic aspartate aminotransferase. Jeffery CJ, Barry T, Doonan S, Petsko GA, Ringe D. Protein Sci. 7 1380-1387 (1998)
  35. Importance of the amino terminus in maintenance of oligomeric structure of sheep liver cytosolic serine hydroxymethyltransferase. Jagath JR, Sharma B, Bhaskar B, Datta A, Rao NA, Savithri HS. Eur. J. Biochem. 247 372-379 (1997)
  36. Motifs and structural fold of the cofactor binding site of human glutamate decarboxylase. Qu K, Martin DL, Lawrence CE. Protein Sci. 7 1092-1105 (1998)
  37. The role of residues outside the active site: structural basis for function of C191 mutants of Escherichia coli aspartate aminotransferase. Jeffery CJ, Gloss LM, Petsko GA, Ringe D. Protein Eng. 13 105-112 (2000)
  38. Binding to chaperones allows import of a purified mitochondrial precursor into mitochondria. Artigues A, Iriarte A, Martinez-Carrion M. J. Biol. Chem. 277 25047-25055 (2002)
  39. Mutation of cysteine 111 in Dopa decarboxylase leads to active site perturbation. Dominici P, Moore PS, Castellani S, Bertoldi M, Voltattorni CB. Protein Sci. 6 2007-2015 (1997)
  40. Optimized torsion-angle normal modes reproduce conformational changes more accurately than cartesian modes. Bray JK, Weiss DR, Levitt M. Biophys. J. 101 2966-2969 (2011)
  41. Similarity between serine hydroxymethyltransferase and other pyridoxal phosphate-dependent enzymes. Pascarella S, Schirch V, Bossa F. FEBS Lett. 331 145-149 (1993)
  42. Crystal structure of Homo sapiens kynureninase. Lima S, Khristoforov R, Momany C, Phillips RS. Biochemistry 46 2735-2744 (2007)
  43. Molecular analysis of the role of two aromatic aminotransferases and a broad-specificity aspartate aminotransferase in the aromatic amino acid metabolism of Pyrococcus furiosus. Ward DE, de Vos WM, van der Oost J. Archaea 1 133-141 (2002)
  44. Purification, characterization, and crystallization of alliinase from garlic. Kuettner EB, Hilgenfeld R, Weiss MS. Arch. Biochem. Biophys. 402 192-200 (2002)
  45. Specific inhibition of the aspartate aminotransferase of Plasmodium falciparum. Wrenger C, Müller IB, Schifferdecker AJ, Jain R, Jordanova R, Groves MR. J. Mol. Biol. 405 956-971 (2011)
  46. Structural features of the precursor to mitochondrial aspartate aminotransferase responsible for binding to hsp70. Lain B, Iriarte A, Mattingly JR, Moreno JI, Martinez-Carrion M. J. Biol. Chem. 270 24732-24739 (1995)
  47. Crystal structures and solution studies of oxime adducts of mitochondrial aspartate aminotransferase. Marković-Housley Z, Schirmer T, Hohenester E, Khomutov AR, Khomutov RM, Karpeisky MY, Sandmeier E, Christen P, Jansonius JN. Eur. J. Biochem. 236 1025-1032 (1996)
  48. Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity. Vacca RA, Christen P, Malashkevich VN, Jansonius JN, Sandmeier E. Eur. J. Biochem. 227 481-487 (1995)
  49. Crystalline mitochondrial aspartate aminotransferase exists in only two conformations. Hohenester E, Jansonius JN. J. Mol. Biol. 236 963-968 (1994)
  50. Structural insight into the mechanism of substrate specificity of aedes kynurenine aminotransferase. Han Q, Gao YG, Robinson H, Li J. Biochemistry 47 1622-1630 (2008)
  51. Crystal structure and substrate specificity of the thermophilic serine:pyruvate aminotransferase from Sulfolobus solfataricus. Sayer C, Bommer M, Isupov M, Ward J, Littlechild J. Acta Crystallogr. D Biol. Crystallogr. 68 763-772 (2012)
  52. Molecular characterization of a disease associated conformational epitope on GAD65 recognised by a human monoclonal antibody b96.11. Fenalti G, Hampe CS, O'connor K, Banga JP, Mackay IR, Rowley MJ, El-Kabbani O. Mol. Immunol. 44 1178-1189 (2007)
  53. The function of arginine 363 as the substrate carboxyl-binding site in Escherichia coli serine hydroxymethyltransferase. Delle Fratte S, Iurescia S, Angelaccio S, Bossa F, Schirch V. Eur. J. Biochem. 225 395-401 (1994)
  54. Chloroplastic aspartate aminotransferase from Arabidopsis thaliana: an examination of the relationship between the structure of the gene and the spatial structure of the protein. Wilkie SE, Lambert R, Warren MJ. Biochem. J. 319 ( Pt 3) 969-976 (1996)
  55. Mutant aspartate aminotransferase (K258H) without pyridoxal-5'-phosphate-binding lysine residue. Structural and catalytic properties. Ziak M, Jäger J, Malashkevich VN, Gehring H, Jaussi R, Jansonius JN, Christen P. Eur. J. Biochem. 211 475-484 (1993)
  56. NMR Crystallography of a Carbanionic Intermediate in Tryptophan Synthase: Chemical Structure, Tautomerization, and Reaction Specificity. Caulkins BG, Young RP, Kudla RA, Yang C, Bittbauer TJ, Bastin B, Hilario E, Fan L, Marsella MJ, Dunn MF, Mueller LJ. J. Am. Chem. Soc. 138 15214-15226 (2016)
  57. Novel sources of mammalian C-S lyase activity. Adcock HJ, Gaskin PJ, Shaw PN, Teesdale-Spittle PH, Buckberry LD. J. Pharm. Pharmacol. 48 150-153 (1996)
  58. The C-S lysis of L-cysteine conjugates by aspartate and alanine aminotransferase enzymes. Gaskin PJ, Adcock HJ, Buckberry LD, Teesdale-Spittle PH, Shaw PN. Hum Exp Toxicol 14 422-427 (1995)
  59. Role of Arg-401 of cytosolic serine hydroxymethyltransferase in subunit assembly and interaction with the substrate carboxy group. Jagath JR, Rao NA, Savithri HS. Biochem. J. 327 ( Pt 3) 877-882 (1997)
  60. Structure, assembly, and mechanism of a PLP-dependent dodecameric L-aspartate beta-decarboxylase. Chen HJ, Ko TP, Lee CY, Wang NC, Wang AH. Structure 17 517-529 (2009)
  61. The role of the conserved Lys68*:Glu265 intersubunit salt bridge in aspartate aminotransferase kinetics: multiple forced covariant amino acid substitutions in natural variants. Deu E, Koch KA, Kirsch JF. Protein Sci. 11 1062-1073 (2002)
  62. Type I pyridoxal 5'-phosphate dependent enzymatic domains embedded within multimodular nonribosomal peptide synthetase and polyketide synthase assembly lines. Milano T, Paiardini A, Grgurina I, Pascarella S. BMC Struct. Biol. 13 26 (2013)
  63. Cysteine-191 in aspartate aminotransferases appears to be conserved due to the lack of a neutral mutation pathway to the functional equivalent, alanine-191. Gloss LM, Spencer DE, Kirsch JF. Proteins 24 195-208 (1996)
  64. Molecular modeling and functional confirmation of a predicted fatty acid binding site of mitochondrial aspartate aminotransferase. Bradbury MW, Stump D, Guarnieri F, Berk PD. J. Mol. Biol. 412 412-422 (2011)
  65. Molecular-dynamics simulation of domain movements in aspartate aminotransferase. Kasper P, Sterk M, Christen P, Gehring H. Eur. J. Biochem. 240 751-755 (1996)
  66. The multiple roles of conserved arginine 286 of 1-aminocyclopropane-1-carboxylate synthase. Coenzyme binding, substrate binding, and beyond. Zhou H, Wang HW, Zhu K, Sui SF, Xu P, Yang SF, Li N. Plant Physiol. 121 913-919 (1999)
  67. The roles of Tyr70 and Tyr225 in aspartate aminotransferase assessed by analysing the effects of mutations on the multiple reactions of the substrate analogue serine o-sulphate. Birolo L, Sandmeier E, Christen P, John RA. Eur. J. Biochem. 232 859-864 (1995)
  68. His230 of serine hydroxymethyltransferase facilitates the proton abstraction step in catalysis. Talwar R, Jagath JR, Rao NA, Savithri HS. Eur. J. Biochem. 267 1441-1446 (2000)
  69. Kinetic properties and thermal stabilities of mutant forms of mitochondrial aspartate aminotransferase. Azzariti A, Vacca RA, Giannattasio S, Merafina RS, Marra E, Doonan S. Biochim. Biophys. Acta 1386 29-38 (1998)
  70. Similarity between pyridoxal/pyridoxamine phosphate-dependent enzymes involved in dideoxy and deoxyaminosugar biosynthesis and other pyridoxal phosphate enzymes. Pascarella S, Bossa F. Protein Sci. 3 701-705 (1994)
  71. Truncated aspartate aminotransferase from alkalophilic Bacillus circulans with deletion of N-terminal 32 amino acids is a non-functional monomer in a partially structured state. Kravchuk Z, Tsybovsky Y, Koivulehto M, Vlasov A, Chumanevich A, Battchikova N, Martsev S, Korpela T. Protein Eng. 14 279-285 (2001)
  72. Crystal structure and enzymatic properties of a broad substrate-specificity psychrophilic aminotransferase from the Antarctic soil bacterium Psychrobacter sp. B6. Bujacz A, Rutkiewicz-Krotewicz M, Nowakowska-Sapota K, Turkiewicz M. Acta Crystallogr D Biol Crystallogr 71 632-645 (2015)
  73. Local electrostatic potentials in pyridoxal phosphate labelled horse heart cytochrome c. Miteva MA, Kossekova GP, Villoutreix BO, Atanasov BP. J. Photochem. Photobiol. B, Biol. 37 74-83 (1997)
  74. SNPs in the porcine GOT1 gene improve a QTL for serum aspartate aminotransferase activity on SSC14. Reiner G, Clemens N, Lohner E, Willems H. Anim. Genet. 41 319-323 (2010)
  75. The structure of serine hydroxymethyltransferase as modeled by homology and validated by site-directed mutagenesis. Pascarella S, Angelaccio S, Contestabile R, Delle Fratte S, Di Salvo M, Bossa F. Protein Sci. 7 1976-1982 (1998)
  76. Characterization of pyridoxal phosphate as an optical label for measuring electrostatic potentials in proteins. Kossekova G, Miteva M, Atanasov B. J. Photochem. Photobiol. B, Biol. 32 71-79 (1996)
  77. Cloning and sequencing of aspartate aminotransferase from Thermus aquaticus YT1. O'Farrell PA, Sannia G, Walker JM, Doonan S. Biochem. Biophys. Res. Commun. 239 810-815 (1997)
  78. Identification of Hsc70 binding sites in mitochondrial aspartate aminotransferase. Artigues A, Iriarte A, Martinez-Carrion M. Arch. Biochem. Biophys. 450 30-38 (2006)
  79. Mechanism-Based Inhibition of the Mycobacterium tuberculosis Branched-Chain Aminotransferase by d- and l-Cycloserine. Amorim Franco TM, Favrot L, Vergnolle O, Blanchard JS. ACS Chem. Biol. 12 1235-1244 (2017)
  80. Thermodynamics and molecular simulation analysis of hydrophobic substrate recognition by aminotransferases. Kawaguchi Si, Kuramitsu S. J. Biol. Chem. 273 18353-18364 (1998)
  81. Electron paramagnetic resonance and fluorescence studies of the conformation of aspartate aminotransferase bound to GroEL. Berezov A, McNeill MJ, Iriarte A, Martinez-Carrion M. Protein J. 24 465-478 (2005)
  82. Structure of glutamate decarboxylase and related PLP-enzymes: computer-graphical studies. Areshev AG, Mamaeva OK, Andreeva NS, Sukhareva BS. J. Biomol. Struct. Dyn. 18 127-136 (2000)
  83. A shared mechanistic pathway for pyridoxal phosphate-dependent arginine oxidases. Hoffarth ER, Caddell Haatveit K, Kuatsjah E, MacNeil GA, Saroya S, Walsby CJ, Eltis LD, Houk KN, Garcia-Borràs M, Ryan KS. Proc Natl Acad Sci U S A 118 e2012591118 (2021)
  84. Artabotrys odoratissimus Bark Extract Restores Ethanol Induced Redox Imbalance and Toxicity in Hepatocytes and In Vivo Model. P M, R SKJ, N P, J U SK, R S, N D S, R R, C IM, H M K. Appl Biochem Biotechnol 195 3366-3383 (2023)
  85. Automated and optimally FRET-assisted structural modeling. Dimura M, Peulen TO, Sanabria H, Rodnin D, Hemmen K, Hanke CA, Seidel CAM, Gohlke H. Nat Commun 11 5394 (2020)
  86. Crystal structure of L-aspartate aminotransferase from Schizosaccharomyces pombe. Jeong SY, Jin H, Chang JH. PLoS ONE 14 e0221975 (2019)
  87. Modeling of protein conformational changes with Rosetta guided by limited experimental data. Sala D, Del Alamo D, Mchaourab HS, Meiler J. Structure 30 1157-1168.e3 (2022)
  88. Role of pro-297 in the catalytic mechanism of sheep liver serine hydroxymethyltransferase. Talwar R, Leelavathy V, Krishna Rao JV, Appaji Rao N, Savithri HS. Biochem. J. 350 Pt 3 849-853 (2000)


Related citations provided by authors (3)

  1. The Open(Slash)Closed Conformational Equilibrium of Aspartate Aminotransferase: Studies in the Crystalline State and with a Fluorescent Probe in Solution. Picot D, Sandmeier E, Thaller C, Vincent MG, Christen P, Jansonius JN Eur. J. Biochem. 196 329- (1991)
  2. Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure.. Kirsch JF, Eichele G, Ford GC, Vincent MG, Jansonius JN, Gehring H, Christen P J Mol Biol 174 497-525 (1984)
  3. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase.. Ford GC, Eichele G, Jansonius JN Proc Natl Acad Sci U S A 77 2559-63 (1980)