7bod Citations

A conserved rRNA switch is central to decoding site maturation on the small ribosomal subunit.

Abstract

While a structural description of the molecular mechanisms guiding ribosome assembly in eukaryotic systems is emerging, bacteria use an unrelated core set of assembly factors for which high-resolution structural information is still missing. To address this, we used single-particle cryo-electron microscopy to visualize the effects of bacterial ribosome assembly factors RimP, RbfA, RsmA, and RsgA on the conformational landscape of the 30S ribosomal subunit and obtained eight snapshots representing late steps in the folding of the decoding center. Analysis of these structures identifies a conserved secondary structure switch in the 16S ribosomal RNA central to decoding site maturation and suggests both a sequential order of action and molecular mechanisms for the assembly factors in coordinating and controlling this switch. Structural and mechanistic parallels between bacterial and eukaryotic systems indicate common folding features inherent to all ribosomes.

Reviews citing this publication (2)

  1. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. Microorganisms 10 747 (2022)
  2. GTPase Era at the heart of ribosome assembly. Gruffaz C, Smirnov A. Front Mol Biosci 10 1263433 (2023)

Articles citing this publication (12)

  1. Mechanism of mitoribosomal small subunit biogenesis and preinitiation. Itoh Y, Khawaja A, Laptev I, Cipullo M, Atanassov I, Sergiev P, Rorbach J, Amunts A. Nature 606 603-608 (2022)
  2. Mitoribosomal small subunit maturation involves formation of initiation-like complexes. Lenarčič T, Niemann M, Ramrath DJF, Calderaro S, Flügel T, Saurer M, Leibundgut M, Boehringer D, Prange C, Horn EK, Schneider A, Ban N. Proc Natl Acad Sci U S A 119 e2114710118 (2022)
  3. Principles of mitoribosomal small subunit assembly in eukaryotes. Harper NJ, Burnside C, Klinge S. Nature 614 175-181 (2023)
  4. The nucleoplasmic phase of pre-40S formation prior to nuclear export. Cheng J, Lau B, Thoms M, Ameismeier M, Berninghausen O, Hurt E, Beckmann R. Nucleic Acids Res 50 11924-11937 (2022)
  5. The Stringent Response Inhibits 70S Ribosome Formation in Staphylococcus aureus by Impeding GTPase-Ribosome Interactions. Bennison DJ, Nakamoto JA, Craggs TD, Milón P, Rafferty JB, Corrigan RM. mBio 12 e0267921 (2021)
  6. KsgA facilitates ribosomal small subunit maturation by proofreading a key structural lesion. Sun J, Kinman LF, Jahagirdar D, Ortega J, Davis JH. Nat Struct Mol Biol 30 1468-1480 (2023)
  7. Stabilization of Ribosomal RNA of the Small Subunit by Spermidine in Staphylococcus aureus. Belinite M, Khusainov I, Soufari H, Marzi S, Romby P, Yusupov M, Hashem Y. Front Mol Biosci 8 738752 (2021)
  8. Miniature RNAs are embedded in an exceptionally protein-rich mitoribosome via an elaborate assembly pathway. Valach M, Benz C, Aguilar LC, Gahura O, Faktorová D, Zíková A, Oeffinger M, Burger G, Gray MW, Lukeš J. Nucleic Acids Res 51 6443-6460 (2023)
  9. The recognition mode between hsRBFA and mitoribosome 12S rRNA during mitoribosomal biogenesis. Zhou W, Liu X, Lv M, Shi Y, Zhang L. Nucleic Acids Res 51 1353-1363 (2023)
  10. Structural Insights into the Distortion of the Ribosomal Small Subunit at Different Magnesium Concentrations. Yu T, Jiang J, Yu Q, Li X, Zeng F. Biomolecules 13 566 (2023)
  11. Yet Another Similarity between Mitochondrial and Bacterial Ribosomal Small Subunit Biogenesis Obtained by Structural Characterization of RbfA from S. aureus. Bikmullin AG, Fatkhullin B, Stetsenko A, Gabdulkhakov A, Garaeva N, Nurullina L, Klochkova E, Golubev A, Khusainov I, Trachtmann N, Blokhin D, Guskov A, Validov S, Usachev K, Yusupov M. Int J Mol Sci 24 2118 (2023)
  12. Structural basis of ribosomal 30S subunit degradation by RNase R. Dimitrova-Paternoga L, Kasvandik S, Beckert B, Granneman S, Tenson T, Wilson DN, Paternoga H. Nature 626 1133-1140 (2024)