7cxm Citations

Architecture of a SARS-CoV-2 mini replication and transcription complex.

OpenAccess logo Nat Commun 11 5874 (2020)
Cited: 103 times
EuropePMC logo PMID: 33208736

Abstract

Non-structural proteins (nsp) constitute the SARS-CoV-2 replication and transcription complex (RTC) to play a pivotal role in the virus life cycle. Here we determine the atomic structure of a SARS-CoV-2 mini RTC, assembled by viral RNA-dependent RNA polymerase (RdRp, nsp12) with a template-primer RNA, nsp7 and nsp8, and two helicase molecules (nsp13-1 and nsp13-2), by cryo-electron microscopy. Two groups of mini RTCs with different conformations of nsp13-1 are identified. In both of them, nsp13-1 stabilizes overall architecture of the mini RTC by contacting with nsp13-2, which anchors the 5'-extension of RNA template, as well as interacting with nsp7-nsp8-nsp12-RNA. Orientation shifts of nsp13-1 results in its variable interactions with other components in two forms of mini RTC. The mutations on nsp13-1:nsp12 and nsp13-1:nsp13-2 interfaces prohibit the enhancement of helicase activity achieved by mini RTCs. These results provide an insight into how helicase couples with polymerase to facilitate its function in virus replication and transcription.

Reviews - 7cxm mentioned but not cited (4)

  1. SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Brant AC, Tian W, Majerciak V, Yang W, Zheng ZM. Cell Biosci 11 136 (2021)
  2. Structural biology of SARS-CoV-2: open the door for novel therapies. Yan W, Zheng Y, Zeng X, He B, Cheng W. Signal Transduct Target Ther 7 26 (2022)
  3. Structure and function of SARS-CoV-2 polymerase. Hillen HS. Curr Opin Virol 48 82-90 (2021)
  4. Revisiting Viral RNA-Dependent RNA Polymerases: Insights from Recent Structural Studies. Ramaswamy K, Rashid M, Ramasamy S, Jayavelu T, Venkataraman S. Viruses 14 2200 (2022)

Articles - 7cxm mentioned but not cited (8)

  1. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Newman JA, Douangamath A, Yadzani S, Yosaatmadja Y, Aimon A, Brandão-Neto J, Dunnett L, Gorrie-Stone T, Skyner R, Fearon D, Schapira M, von Delft F, Gileadi O. Nat Commun 12 4848 (2021)
  2. From quantum-derived principles underlying cysteine reactivity to combating the COVID-19 pandemic. Mazmanian K, Chen T, Sargsyan K, Lim C. Wiley Interdiscip Rev Comput Mol Sci 12 e1607 (2022)
  3. Natural Compounds Inhibit SARS-CoV-2 nsp13 Unwinding and ATPase Enzyme Activities. Corona A, Wycisk K, Talarico C, Manelfi C, Milia J, Cannalire R, Esposito F, Gribbon P, Zaliani A, Iaconis D, Beccari AR, Summa V, Nowotny M, Tramontano E. ACS Pharmacol Transl Sci 5 226-239 (2022)
  4. Global Genomic Analysis of SARS-CoV-2 RNA Dependent RNA Polymerase Evolution and Antiviral Drug Resistance. Mari A, Roloff T, Stange M, Søgaard KK, Asllanaj E, Tauriello G, Alexander LT, Schweitzer M, Leuzinger K, Gensch A, Martinez AE, Bielicki J, Pargger H, Siegemund M, Nickel CH, Bingisser R, Osthoff M, Bassetti S, Sendi P, Battegay M, Marzolini C, Seth-Smith HMB, Schwede T, Hirsch HH, Egli A. Microorganisms 9 1094 (2021)
  5. Modelling the active SARS-CoV-2 helicase complex as a basis for structure-based inhibitor design. Berta D, Badaoui M, Martino SA, Buigues PJ, Pisliakov AV, Elghobashi-Meinhardt N, Wells G, Harris SA, Frezza E, Rosta E. Chem Sci 12 13492-13505 (2021)
  6. In Silico Insights towards the Identification of SARS-CoV-2 NSP13 Helicase Druggable Pockets. Ricci F, Gitto R, Pitasi G, De Luca L. Biomolecules 12 482 (2022)
  7. research-article An alphacoronavirus polymerase structure reveals conserved co-factor functions. Anderson TK, Hoferle PJ, Lee KW, Coon JJ, Kirchdoerfer RN. bioRxiv 2023.03.15.532841 (2023)
  8. SARS-CoV-2 Nsp8 N-terminal domain folds autonomously and binds dsRNA. Treviño MÁ, Pantoja-Uceda D, Laurents DV, Mompeán M. Nucleic Acids Res 51 10041-10048 (2023)


Reviews citing this publication (31)

  1. Structural biology of SARS-CoV-2 and implications for therapeutic development. Yang H, Rao Z. Nat Rev Microbiol 19 685-700 (2021)
  2. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Malone B, Urakova N, Snijder EJ, Campbell EA. Nat Rev Mol Cell Biol 23 21-39 (2022)
  3. SARS-CoV-2 mutations: the biological trackway towards viral fitness. Majumdar P, Niyogi S. Epidemiol Infect 149 e110 (2021)
  4. Oral GS-441524 derivatives: Next-generation inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase. Wang Z, Yang L, Song XQ. Front Immunol 13 1015355 (2022)
  5. Bench-to-bedside: Innovation of small molecule anti-SARS-CoV-2 drugs in China. Yang L, Wang Z. Eur J Med Chem 257 115503 (2023)
  6. A structural view of the SARS-CoV-2 virus and its assembly. Hardenbrook NJ, Zhang P. Curr Opin Virol 52 123-134 (2022)
  7. Replication of the coronavirus genome: A paradox among positive-strand RNA viruses. Grellet E, L'Hôte I, Goulet A, Imbert I. J Biol Chem 298 101923 (2022)
  8. Molecular Insights into the Flavivirus Replication Complex. van den Elsen K, Quek JP, Luo D. Viruses 13 956 (2021)
  9. Coronavirus helicases: attractive and unique targets of antiviral drug-development and therapeutic patents. Spratt AN, Gallazzi F, Quinn TP, Lorson CL, Sönnerborg A, Singh K. Expert Opin Ther Pat 31 339-350 (2021)
  10. The Rise and Fall of SARS-CoV-2 Variants and Ongoing Diversification of Omicron. Wiegand T, Nemudryi A, Nemudraia A, McVey A, Little A, Taylor DN, Walk ST, Wiedenheft B. Viruses 14 2009 (2022)
  11. A Biochemical Perspective of the Nonstructural Proteins (NSPs) and the Spike Protein of SARS CoV-2. Yoshimoto FK. Protein J 40 260-295 (2021)
  12. Membrane remodeling by SARS-CoV-2 - double-enveloped viral replication. Mohan J, Wollert T. Fac Rev 10 17 (2021)
  13. Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions. Shah M, Woo HG. Mol Cells 44 408-421 (2021)
  14. Long COVID-19 and the Heart: Is Cardiac Mitochondria the Missing Link? Chang X, Ismail NI, Rahman A, Xu D, Chan RWY, Ong SG, Ong SB. Antioxid Redox Signal 38 599-618 (2023)
  15. Molecular Virology of SARS-CoV-2 and Related Coronaviruses. Kung YA, Lee KM, Chiang HJ, Huang SY, Wu CJ, Shih SR. Microbiol Mol Biol Rev 86 e0002621 (2022)
  16. Type I and III IFN-mediated antiviral actions counteracted by SARS-CoV-2 proteins and host inherited factors. Quarleri J, Delpino MV. Cytokine Growth Factor Rev 58 55-65 (2021)
  17. The effects of SARS-CoV-2 infection on modulating innate immunity and strategies of combating inflammatory response for COVID-19 therapy. Wang Y, Wu M, Li Y, Yuen HH, He ML. J Biomed Sci 29 27 (2022)
  18. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Jahirul Islam M, Nawal Islam N, Siddik Alom M, Kabir M, Halim MA. Immunobiology 228 152302 (2023)
  19. Cyclosporin A: A Repurposable Drug in the Treatment of COVID-19? Devaux CA, Melenotte C, Piercecchi-Marti MD, Delteil C, Raoult D. Front Med (Lausanne) 8 663708 (2021)
  20. Know your enemy and know yourself - the case of SARS-CoV-2 host factors. Lee WS, Yousefi M, Yan B, Yong CL, Ooi YS. Curr Opin Virol 50 159-170 (2021)
  21. Non-coding RNA in SARS-CoV-2: Progress toward therapeutic significance. Shirvani H, Jafari H, Moravveji SS, Abbasi Faranghizadeh F, Talebi M, Ghanavi J, Esfandi F, Najafi S, Nasiri Moghadam M, Farnia P, Aghaei Zarch SM. Int J Biol Macromol 222 1538-1550 (2022)
  22. COVID-19 Therapeutic Potential of Natural Products. Low Z, Lani R, Tiong V, Poh C, AbuBakar S, Hassandarvish P. Int J Mol Sci 24 9589 (2023)
  23. Insights into SARS-CoV-2: Medicinal Chemistry Approaches to Combat Its Structural and Functional Biology. Zhuo LS, Wang MS, Yang JF, Xu HC, Huang W, Shang LQ, Yang GF. Top Curr Chem (Cham) 379 23 (2021)
  24. RNA helicases required for viral propagation in humans. Marecki JC, Belachew B, Gao J, Raney KD. Enzymes 50 335-367 (2021)
  25. The atomic portrait of SARS-CoV-2 as captured by cryo-electron microscopy. Fertig TE, Chitoiu L, Terinte-Balcan G, Peteu VE, Marta D, Gherghiceanu M. J Cell Mol Med 26 25-34 (2022)
  26. Curcumin and Its Analogs as a Therapeutic Strategy in Infections Caused by RNA Genome Viruses. Ferreira LLC, Abreu MP, Costa CB, Leda PO, Behrens MD, Dos Santos EP. Food Environ Virol 14 120-137 (2022)
  27. The consequences of viral infection on host DNA damage response: a focus on SARS-CoVs. Mekawy AS, Alaswad Z, Ibrahim AA, Mohamed AA, AlOkda A, Elserafy M. J Genet Eng Biotechnol 20 104 (2022)
  28. SARS-CoV-2 biology and host interactions. Steiner S, Kratzel A, Barut GT, Lang RM, Aguiar Moreira E, Thomann L, Kelly JN, Thiel V. Nat Rev Microbiol 22 206-225 (2024)
  29. Targeting SARS-CoV-2 Non-Structural Proteins. Tam D, Lorenzo-Leal AC, Hernández LR, Bach H. Int J Mol Sci 24 13002 (2023)
  30. The impact of high-resolution structural data on stemming the COVID-19 pandemic. Cox RM, Plemper RK. Curr Opin Virol 49 127-138 (2021)
  31. Classification, replication, and transcription of Nidovirales. Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Front Microbiol 14 1291761 (2023)

Articles citing this publication (60)

  1. Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis. Yan L, Ge J, Zheng L, Zhang Y, Gao Y, Wang T, Huang Y, Yang Y, Gao S, Li M, Liu Z, Wang H, Li Y, Chen Y, Guddat LW, Wang Q, Rao Z, Lou Z. Cell 184 184-193.e10 (2021)
  2. Coupling of N7-methyltransferase and 3'-5' exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Yan L, Yang Y, Li M, Zhang Y, Zheng L, Ge J, Huang YC, Liu Z, Wang T, Gao S, Zhang R, Huang YY, Guddat LW, Gao Y, Rao Z, Lou Z. Cell 184 3474-3485.e11 (2021)
  3. Remdesivir is a delayed translocation inhibitor of SARS-CoV-2 replication. Bravo JPK, Dangerfield TL, Taylor DW, Johnson KA. Mol Cell 81 1548-1552.e4 (2021)
  4. Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin. Yin W, Luan X, Li Z, Zhou Z, Wang Q, Gao M, Wang X, Zhou F, Shi J, You E, Liu M, Wang Q, Jiang Y, Jiang H, Xiao G, Zhang L, Yu X, Zhang S, Eric Xu H. Nat Struct Mol Biol 28 319-325 (2021)
  5. SARS-CoV-2 viral proteins NSP1 and NSP13 inhibit interferon activation through distinct mechanisms. Vazquez C, Swanson SE, Negatu SG, Dittmar M, Miller J, Ramage HR, Cherry S, Jurado KA. PLoS One 16 e0253089 (2021)
  6. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. Gorgulla C, Padmanabha Das KM, Leigh KE, Cespugli M, Fischer PD, Wang ZF, Tesseyre G, Pandita S, Shnapir A, Calderaio A, Gechev M, Rose A, Lewis N, Hutcheson C, Yaffe E, Luxenburg R, Herce HD, Durmaz V, Halazonetis TD, Fackeldey K, Patten JJ, Chuprina A, Dziuba I, Plekhova A, Moroz Y, Radchenko D, Tarkhanova O, Yavnyuk I, Gruber C, Yust R, Payne D, Näär AM, Namchuk MN, Davey RA, Wagner G, Kinney J, Arthanari H. iScience 24 102021 (2021)
  7. Inhibition of SARS-CoV-2 polymerase by nucleotide analogs from a single-molecule perspective. Seifert M, Bera SC, van Nies P, Kirchdoerfer RN, Shannon A, Le TT, Meng X, Xia H, Wood JM, Harris LD, Papini FS, Arnold JJ, Almo S, Grove TL, Shi PY, Xiang Y, Canard B, Depken M, Cameron CE, Dulin D. Elife 10 e70968 (2021)
  8. Synergistic Inhibition of SARS-CoV-2 Replication Using Disulfiram/Ebselen and Remdesivir. Chen T, Fei CY, Chen YP, Sargsyan K, Chang CP, Yuan HS, Lim C. ACS Pharmacol Transl Sci 4 898-907 (2021)
  9. An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15. Perry JK, Appleby TC, Bilello JP, Feng JY, Schmitz U, Campbell EA. J Biol Chem 297 101218 (2021)
  10. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp13 helicase. Zeng J, Weissmann F, Bertolin AP, Posse V, Canal B, Ulferts R, Wu M, Harvey R, Hussain S, Milligan JC, Roustan C, Borg A, McCoy L, Drury LS, Kjaer S, McCauley J, Howell M, Beale R, Diffley JFX. Biochem J 478 2405-2423 (2021)
  11. Congress Report of the National Institutes of Health SARS-CoV-2 Antiviral Therapeutics Summit. Hall MD, Anderson JM, Anderson A, Baker D, Bradner J, Brimacombe KR, Campbell EA, Corbett KS, Carter K, Cherry S, Chiang L, Cihlar T, de Wit E, Denison M, Disney M, Fletcher CV, Ford-Scheimer SL, Götte M, Grossman AC, Hayden FG, Hazuda DJ, Lanteri CA, Marston H, Mesecar AD, Moore S, Nwankwo JO, O'Rear J, Painter G, Singh Saikatendu K, Schiffer CA, Sheahan TP, Shi PY, Smyth HD, Sofia MJ, Weetall M, Weller SK, Whitley R, Fauci AS, Austin CP, Collins FS, Conley AJ, Davis MI. J Infect Dis 224 S1-S21 (2021)
  12. Two conserved oligomer interfaces of NSP7 and NSP8 underpin the dynamic assembly of SARS-CoV-2 RdRP. Biswal M, Diggs S, Xu D, Khudaverdyan N, Lu J, Fang J, Blaha G, Hai R, Song J. Nucleic Acids Res 49 5956-5966 (2021)
  13. Quercetin and luteolin are single-digit micromolar inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase. Munafò F, Donati E, Brindani N, Ottonello G, Armirotti A, De Vivo M. Sci Rep 12 10571 (2022)
  14. Transient and stabilized complexes of Nsp7, Nsp8, and Nsp12 in SARS-CoV-2 replication. Wilamowski M, Hammel M, Leite W, Zhang Q, Kim Y, Weiss KL, Jedrzejczak R, Rosenberg DJ, Fan Y, Wower J, Bierma JC, Sarker AH, Tsutakawa SE, Pingali SV, O'Neill HM, Joachimiak A, Hura GL. Biophys J 120 3152-3165 (2021)
  15. Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex. Chen J, Wang Q, Malone B, Llewellyn E, Pechersky Y, Maruthi K, Eng ET, Perry JK, Campbell EA, Shaw DE, Darst SA. Nat Struct Mol Biol 29 250-260 (2022)
  16. Ritonavir may inhibit exoribonuclease activity of nsp14 from the SARS-CoV-2 virus and potentiate the activity of chain terminating drugs. Narayanan N, Nair DT. Int J Biol Macromol 168 272-278 (2021)
  17. A mechanism for SARS-CoV-2 RNA capping and its inhibition by nucleotide analog inhibitors. Yan L, Huang Y, Ge J, Liu Z, Lu P, Huang B, Gao S, Wang J, Tan L, Ye S, Yu F, Lan W, Xu S, Zhou F, Shi L, Guddat LW, Gao Y, Rao Z, Lou Z. Cell 185 4347-4360.e17 (2022)
  18. The nucleotide addition cycle of the SARS-CoV-2 polymerase. Bera SC, Seifert M, Kirchdoerfer RN, van Nies P, Wubulikasimu Y, Quack S, Papini FS, Arnold JJ, Canard B, Cameron CE, Depken M, Dulin D. Cell Rep 36 109650 (2021)
  19. In silico evaluation of food-derived carotenoids against SARS-CoV-2 drug targets: Crocin is a promising dietary supplement candidate for COVID-19. Mujwar S, Sun L, Fidan O. J Food Biochem 46 e14219 (2022)
  20. Remdesivir overcomes the S861 roadblock in SARS-CoV-2 polymerase elongation complex. Wu J, Wang H, Liu Q, Li R, Gao Y, Fang X, Zhong Y, Wang M, Wang Q, Rao Z, Gong P. Cell Rep 37 109882 (2021)
  21. Compartmentalization-aided interaction screening reveals extensive high-order complexes within the SARS-CoV-2 proteome. Xu W, Pei G, Liu H, Ju X, Wang J, Ding Q, Li P. Cell Rep 36 109482 (2021)
  22. The structure of a dimeric form of SARS-CoV-2 polymerase. Jochheim FA, Tegunov D, Hillen HS, Schmitzová J, Kokic G, Dienemann C, Cramer P. Commun Biol 4 999 (2021)
  23. Effects of natural RNA modifications on the activity of SARS-CoV-2 RNA-dependent RNA polymerase. Petushkov I, Esyunina D, Kulbachinskiy A. FEBS J 290 80-92 (2023)
  24. Expression Profile and Localization of SARS-CoV-2 Nonstructural Replicase Proteins in Infected Cells. Shi FS, Yu Y, Li YL, Cui L, Zhao Z, Wang M, Wang B, Zhang R, Huang YW. Microbiol Spectr 10 e0074422 (2022)
  25. Punicalagin as an allosteric NSP13 helicase inhibitor potently suppresses SARS-CoV-2 replication in vitro. Lu L, Peng Y, Yao H, Wang Y, Li J, Yang Y, Lin Z. Antiviral Res 206 105389 (2022)
  26. The SARS-CoV-2 helicase as a target for antiviral therapy: Identification of potential small molecule inhibitors by in silico modelling. Pitsillou E, Liang J, Hung A, Karagiannis TC. J Mol Graph Model 114 108193 (2022)
  27. "Bucket brigade" using lysine residues in RNA-dependent RNA polymerase of SARS-CoV-2. Tanimoto S, Itoh SG, Okumura H. Biophys J 120 3615-3627 (2021)
  28. Identification of an Intramolecular Switch That Controls the Interaction of Helicase nsp10 with Membrane-Associated nsp12 of Porcine Reproductive and Respiratory Syndrome Virus. Hu Y, Ke P, Gao P, Zhang Y, Zhou L, Ge X, Guo X, Han J, Yang H. J Virol 95 e0051821 (2021)
  29. The stalk domain of SARS-CoV-2 NSP13 is essential for its helicase activity. Yue K, Yao B, Shi Y, Yang Y, Qian Z, Ci Y, Shi L. Biochem Biophys Res Commun 601 129-136 (2022)
  30. Identifying Structural Features of Nucleotide Analogues to Overcome SARS-CoV-2 Exonuclease Activity. Wang X, Tao C, Morozova I, Kalachikov S, Li X, Kumar S, Russo JJ, Ju J. Viruses 14 1413 (2022)
  31. Kinetic Characterization of SARS-CoV-2 nsp13 ATPase Activity and Discovery of Small-Molecule Inhibitors. Yazdi AK, Pakarian P, Perveen S, Hajian T, Santhakumar V, Bolotokova A, Li F, Vedadi M. ACS Infect Dis 8 1533-1542 (2022)
  32. NMR-Based Analysis of Nanobodies to SARS-CoV-2 Nsp9 Reveals a Possible Antiviral Strategy Against COVID-19. Esposito G, Hunashal Y, Percipalle M, Venit T, Dieng MM, Fogolari F, Hassanzadeh G, Piano F, Gunsalus KC, Idaghdour Y, Percipalle P. Adv Biol (Weinh) 5 e2101113 (2021)
  33. Omicron Binding Mode: Contact Analysis and Dynamics of the Omicron Receptor-Binding Domain in Complex with ACE2. Fazekas Z, Menyhárd DK, Perczel A. J Chem Inf Model 62 3844-3853 (2022)
  34. Role of ATP in the RNA Translocation Mechanism of SARS-CoV-2 NSP13 Helicase. Weber R, McCullagh M. J Phys Chem B 125 8787-8796 (2021)
  35. Structural Reshaping of the Zinc-Finger Domain of the SARS-CoV-2 nsp13 Protein Using Bismuth(III) Ions: A Multilevel Computational Study. Tolbatov I, Storchi L, Marrone A. Inorg Chem 61 15664-15677 (2022)
  36. An iron-sulfur cluster in the zinc-binding domain of the SARS-CoV-2 helicase modulates its RNA-binding and -unwinding activities. Maio N, Raza MK, Li Y, Zhang DL, Bollinger JM, Krebs C, Rouault TA. Proc Natl Acad Sci U S A 120 e2303860120 (2023)
  37. Biochemical analysis of SARS-CoV-2 Nsp13 helicase implicated in COVID-19 and factors that regulate its catalytic functions. Sommers JA, Loftus LN, Jones MP, Lee RA, Haren CE, Dumm AJ, Brosh RM. J Biol Chem 299 102980 (2023)
  38. Enisamium Inhibits SARS-CoV-2 RNA Synthesis. Elli S, Bojkova D, Bechtel M, Vial T, Boltz D, Muzzio M, Peng X, Sala F, Cosentino C, Goy A, Guerrini M, Müller L, Cinatl J, Margitich V, Te Velthuis AJW. Biomedicines 9 1254 (2021)
  39. How the Replication and Transcription Complex Functions in Jumping Transcription of SARS-CoV-2. Liang J, Shi J, Chen S, Duan G, Yang F, Cheng Z, Li X, Ruan J, Mi D, Gao S. Front Genet 13 904513 (2022)
  40. Potential COVID-19 Therapies from Computational Repurposing of Drugs and Natural Products against the SARS-CoV-2 Helicase. Piplani S, Singh P, Winkler DA, Petrovsky N. Int J Mol Sci 23 7704 (2022)
  41. Proteolytic Processing of the Coronavirus Replicase Nonstructural Protein 14 Exonuclease Is Not Required for Virus Replication but Alters RNA Synthesis and Viral Fitness. Anderson-Daniels J, Gribble J, Denison M. J Virol 96 e0084122 (2022)
  42. SARS-CoV-2 spike trimer vaccine expressed in Nicotiana benthamiana adjuvanted with Alum elicits protective immune responses in mice. Song SJ, Kim H, Jang EY, Jeon H, Diao HP, Khan MRI, Lee MS, Lee YJ, Nam JH, Kim SR, Kim YJ, Sohn EJ, Hwang I, Choi JH. Plant Biotechnol J 20 2298-2312 (2022)
  43. SARS-CoV-2-encoded inhibitors of human LINE-1 retrotransposition. Li Y, Yang J, Shen S, Wang W, Liu N, Guo H, Wei W. J Med Virol 95 e28135 (2023)
  44. Stability of SARS-CoV-2-Encoded Proteins and Their Antibody Levels Correlate with Interleukin 6 in COVID-19 Patients. Li W, Kitsios GD, Bain W, Wang C, Li T, Fanning KV, Deshpande R, Qin X, Morris A, Lee JS, Zou C. mSystems 7 e0005822 (2022)
  45. Allosteric regulation and crystallographic fragment screening of SARS-CoV-2 NSP15 endoribonuclease. Godoy AS, Nakamura AM, Douangamath A, Song Y, Noske GD, Gawriljuk VO, Fernandes RS, Pereira HDM, Oliveira KIZ, Fearon D, Dias A, Krojer T, Fairhead M, Powell A, Dunnet L, Brandao-Neto J, Skyner R, Chalk R, Bajusz D, Bege M, Borbás A, Keserű GM, von Delft F, Oliva G. Nucleic Acids Res 51 5255-5270 (2023)
  46. Computational Study of Helicase from SARS-CoV-2 in RNA-Free and Engaged Form. Di Matteo F, Frumenzio G, Chandramouli B, Grottesi A, Emerson A, Musiani F. Int J Mol Sci 23 14721 (2022)
  47. Conserved Characteristics of NMPylation Activities of Alpha- and Betacoronavirus NiRAN Domains. Slanina H, Madhugiri R, Wenk K, Reinke T, Schultheiß K, Schultheis J, Karl N, Linne U, Ziebuhr J. J Virol 97 e0046523 (2023)
  48. Development of Monoclonal Antibodies to Detect for SARS-CoV-2 Proteins. Mishra N, Teyra J, Boytz R, Miersch S, Merritt TN, Cardarelli L, Gorelik M, Mihalic F, Jemth P, Davey RA, Sidhu SS, Leung DW, Amarasinghe GK. J Mol Biol 434 167583 (2022)
  49. Fast and efficient purification of SARS-CoV-2 RNA dependent RNA polymerase complex expressed in Escherichia coli. Madru C, Tekpinar AD, Rosario S, Czernecki D, Brûlé S, Sauguet L, Delarue M. PLoS One 16 e0250610 (2021)
  50. Molecular dynamics simulations of the flexibility and inhibition of SARS-CoV-2 NSP 13 helicase. Raubenolt BA, Islam NN, Summa CM, Rick SW. J Mol Graph Model 112 108122 (2022)
  51. Synthesis of Hetaryl-Substituted Asymmetric Porphyrins and Their Affinity to SARS-CoV-2 Helicase. Syrbu SA, Kiselev AN, Lebedev MA, Gubarev YA, Yurina ES, Lebedeva NS. Russ J Gen Chem 91 1039-1049 (2021)
  52. Targeting SARS-CoV-2 nsp13 Helicase and Assessment of Druggability Pockets: Identification of Two Potent Inhibitors by a Multi-Site In Silico Drug Repurposing Approach. Romeo I, Ambrosio FA, Costa G, Corona A, Alkhatib M, Salpini R, Lemme S, Vergni D, Svicher V, Santoro MM, Tramontano E, Ceccherini-Silberstein F, Artese A, Alcaro S. Molecules 27 7522 (2022)
  53. Monitoring and tracking the spread of SARS-CoV-2 in Asturias, Spain. Gonzalez-Alba JM, Rojo-Alba S, Perez-Martinez Z, Boga JA, Alvarez-Arguelles ME, Gomez J, Herrero P, Costales I, Alba LM, Martin-Rodriguez G, Campo R, Castelló-Abietar C, Sandoval M, Abreu-Salinas F, Coto E, Rodriguez M, Rubianes P, Sanchez ML, Vazquez F, Antuña L, Álvarez V, Melón García S. Access Microbiol 5 000573.v4 (2023)
  54. Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution. Marx SK, Mickolajczyk KJ, Craig JM, Thomas CA, Pfeffer AM, Abell SJ, Carrasco JD, Franzi MC, Huang JR, Kim HC, Brinkerhoff H, Kapoor TM, Gundlach JH, Laszlo AH. Nucleic Acids Res 51 9266-9278 (2023)
  55. Selenoprotein S Interacts with the Replication and Transcription Complex of SARS-CoV-2 by Binding nsp7. Ghelichkhani F, Gonzalez FA, Kapitonova MA, Rozovsky S. J Mol Biol 435 168008 (2023)
  56. Translocation pause of remdesivir-containing primer/template RNA duplex within SARS-CoV-2's RNA polymerase complexes. Shi Y, Wang J, Batista VS. Front Mol Biosci 9 999291 (2022)
  57. A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance. Grimes SL, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, Pruijssers AJ, Agostini ML, Abu-Shmais A, Lu X, Darst SA, Campbell E, Denison MR. mBio 14 e0106023 (2023)
  58. Applications of Mass Spectrometry in the Characterization, Screening, Diagnosis, and Prognosis of COVID-19. Yamada CAO, de Paula Oliveira Santos B, Lemos RP, Batista ACS, da Conceição IMCA, de Paula Sabino A, E Lima LMTDR, de Magalhães MTQ. Adv Exp Med Biol 1443 33-61 (2024)
  59. Classification of likely functional class for ligand binding sites identified from fragment screening. Utgés JS, MacGowan SA, Ives CM, Barton GJ. Commun Biol 7 320 (2024)
  60. Evaluation of Inhibitory Activity In Silico of In-House Thiomorpholine Compounds between the ACE2 Receptor and S1 Subunit of SARS-CoV-2 Spike. Vázquez-Valadez VH, Hernández-Serda A, Jiménez-Cabiedes MF, Aguirre-Vidal P, González-Tapia I, Carreño-Vargas L, Alarcón-López YA, Espejel-Fuentes A, Martínez-Soriano P, Lugo Álvarez M, Velázquez-Sánchez AM, Markarian NM, Angeles E, Abrahamyan L. Pathogens 10 1208 (2021)