7egq Citations

Coupling of N7-methyltransferase and 3'-5' exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading.

Abstract

The capping of mRNA and the proofreading play essential roles in SARS-CoV-2 replication and transcription. Here, we present the cryo-EM structure of the SARS-CoV-2 replication-transcription complex (RTC) in a form identified as Cap(0)-RTC, which couples a co-transcriptional capping complex (CCC) composed of nsp12 NiRAN, nsp9, the bifunctional nsp14 possessing an N-terminal exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), and nsp10 as a cofactor of nsp14. Nsp9 and nsp12 NiRAN recruit nsp10/nsp14 into the Cap(0)-RTC, forming the N7-CCC to yield cap(0) (7MeGpppA) at 5' end of pre-mRNA. A dimeric form of Cap(0)-RTC observed by cryo-EM suggests an in trans backtracking mechanism for nsp14 ExoN to facilitate proofreading of the RNA in concert with polymerase nsp12. These results not only provide a structural basis for understanding co-transcriptional modification of SARS-CoV-2 mRNA but also shed light on how replication fidelity in SARS-CoV-2 is maintained.

Reviews - 7egq mentioned but not cited (3)

  1. Therapeutic strategies for COVID-19: progress and lessons learned. Li G, Hilgenfeld R, Whitley R, De Clercq E. Nat Rev Drug Discov 22 449-475 (2023)
  2. Recent insights into the structure and function of coronavirus ribonucleases. Frazier MN, Riccio AA, Wilson IM, Copeland WC, Stanley RE. FEBS Open Bio 12 1567-1583 (2022)
  3. Genetic conservation across SARS-CoV-2 non-structural proteins - Insights into possible targets for treatment of future viral outbreaks. Kandwal S, Fayne D. Virology 581 97-115 (2023)

Articles - 7egq mentioned but not cited (10)

  1. Coupling of N7-methyltransferase and 3'-5' exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Yan L, Yang Y, Li M, Zhang Y, Zheng L, Ge J, Huang YC, Liu Z, Wang T, Gao S, Zhang R, Huang YY, Guddat LW, Gao Y, Rao Z, Lou Z. Cell 184 3474-3485.e11 (2021)
  2. Coronaviral RNA-methyltransferases: function, structure and inhibition. Nencka R, Silhan J, Klima M, Otava T, Kocek H, Krafcikova P, Boura E. Nucleic Acids Res 50 635-650 (2022)
  3. Genomic diversity of SARS-CoV-2 can be accelerated by mutations in the nsp14 gene. Takada K, Ueda MT, Shichinohe S, Kida Y, Ono C, Matsuura Y, Watanabe T, Nakagawa S. iScience 26 106210 (2023)
  4. Bisubstrate Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 Nsp14 Methyltransferase. Jung E, Soto-Acosta R, Xie J, Wilson DJ, Dreis CD, Majima R, Edwards TC, Geraghty RJ, Chen L. ACS Med Chem Lett 13 1477-1484 (2022)
  5. Complex Mutation Pattern of Omicron BA.2: Evading Antibodies without Losing Receptor Interactions. Kannan SR, Spratt AN, Sharma K, Goyal R, Sönnerborg A, Apparsundaram S, Lorson CL, Byrareddy SN, Singh K. Int J Mol Sci 23 5534 (2022)
  6. Fidelity of Ribonucleotide Incorporation by the SARS-CoV-2 Replication Complex. Yin X, Popa H, Stapon A, Bouda E, Garcia-Diaz M. J Mol Biol 435 167973 (2023)
  7. A universal fluorescence polarization high throughput screening assay to target the SAM-binding sites of SARS-CoV-2 and other viral methyltransferases. Samrat SK, Bashir Q, Zhang R, Huang Y, Liu Y, Wu X, Brown T, Wang W, Zheng YG, Zhang QY, Chen Y, Li Z, Li H. Emerg Microbes Infect 12 2204164 (2023)
  8. L-shaped distribution of the relative substitution rate (c/μ) observed for SARS-COV-2's genome, inconsistent with the selectionist theory, the neutral theory and the nearly neutral theory but a near-neutral balanced selection theory: Implication on "neutralist-selectionist" debate. Wu C, Paradis NJ, Lakernick PM, Hryb M. Comput Biol Med 153 106522 (2023)
  9. Multiple Lines of Evidence Support 199 SARS-CoV-2 Positively Selected Amino Acid Sites. Ferreira P, Soares R, López-Fernández H, Vazquez N, Reboiro-Jato M, Vieira CP, Vieira J. Int J Mol Sci 25 2428 (2024)
  10. research-article Remdesivir resistance in transplant recipients with persistent COVID-19. Hogan JI, Duerr R, Dimartino D, Marier C, Hochman S, Mehta S, Wang G, Heguy A. Res Sq rs.3.rs-1800050 (2022)


Reviews citing this publication (28)

  1. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Malone B, Urakova N, Snijder EJ, Campbell EA. Nat Rev Mol Cell Biol 23 21-39 (2022)
  2. Structural biology of SARS-CoV-2: open the door for novel therapies. Yan W, Zheng Y, Zeng X, He B, Cheng W. Signal Transduct Target Ther 7 26 (2022)
  3. Innate immune evasion strategies of SARS-CoV-2. Minkoff JM, tenOever B. Nat Rev Microbiol 21 178-194 (2023)
  4. Bench-to-bedside: Innovation of small molecule anti-SARS-CoV-2 drugs in China. Yang L, Wang Z. Eur J Med Chem 257 115503 (2023)
  5. A structural view of the SARS-CoV-2 virus and its assembly. Hardenbrook NJ, Zhang P. Curr Opin Virol 52 123-134 (2022)
  6. Replication of the coronavirus genome: A paradox among positive-strand RNA viruses. Grellet E, L'Hôte I, Goulet A, Imbert I. J Biol Chem 298 101923 (2022)
  7. Evolution of the SARS-CoV-2 genome and emergence of variants of concern. Safari I, Elahi E. Arch Virol 167 293-305 (2022)
  8. Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Gao S, Huang T, Song L, Xu S, Cheng Y, Cherukupalli S, Kang D, Zhao T, Sun L, Zhang J, Zhan P, Liu X. Acta Pharm Sin B 12 581-599 (2022)
  9. Molecular Virology of SARS-CoV-2 and Related Coronaviruses. Kung YA, Lee KM, Chiang HJ, Huang SY, Wu CJ, Shih SR. Microbiol Mol Biol Rev 86 e0002621 (2022)
  10. Emerging SARS-CoV-2 variants: Why, how, and what's next? Chen Y, Liu Q, Zhou L, Zhou Y, Yan H, Lan K. Cell Insight 1 100029 (2022)
  11. The use of RNA-based treatments in the field of cancer immunotherapy. Chehelgerdi M, Chehelgerdi M. Mol Cancer 22 106 (2023)
  12. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Chen P, Wu M, He Y, Jiang B, He ML. Signal Transduct Target Ther 8 237 (2023)
  13. Translational Control of COVID-19 and Its Therapeutic Implication. Zhang D, Zhu L, Wang Y, Li P, Gao Y. Front Immunol 13 857490 (2022)
  14. Possible Targets of Pan-Coronavirus Antiviral Strategies for Emerging or Re-Emerging Coronaviruses. Li X, Zhang L, Chen S, Ouyang H, Ren L. Microorganisms 9 1479 (2021)
  15. Recent advances in small-molecular therapeutics for COVID-19. Zhong L, Zhao Z, Peng X, Zou J, Yang S. Precis Clin Med 5 pbac024 (2022)
  16. Opportunities and Challenges in Targeting the Proofreading Activity of SARS-CoV-2 Polymerase Complex. Deval J, Gurard-Levin ZA. Molecules 27 2918 (2022)
  17. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. Microorganisms 9 1389 (2021)
  18. Progress on COVID-19 Chemotherapeutics Discovery and Novel Technology. Zhou Y, Wang H, Yang L, Wang Q. Molecules 27 8257 (2022)
  19. Current understanding of nucleoside analogs inhibiting the SARS-CoV-2 RNA-dependent RNA polymerase. Xu T, Zhang L. Comput Struct Biotechnol J 21 4385-4394 (2023)
  20. On the Evolutionary Trajectory of SARS-CoV-2: Host Immunity as a Driver of Adaptation in RNA Viruses. Warger J, Gaudieri S. Viruses 15 70 (2022)
  21. Repositioning anticancer drugs as novel COVID-19 antivirals: targeting structural and functional similarities between viral proteins and cancer. Low ZY, Low ZY, Yip AJW, Lal SK. Expert Rev Mol Med 1-23 (2022)
  22. SARS-CoV-2 biology and host interactions. Steiner S, Kratzel A, Barut GT, Lang RM, Aguiar Moreira E, Thomann L, Kelly JN, Thiel V. Nat Rev Microbiol 22 206-225 (2024)
  23. Insight into the mechanisms of coronaviruses evading host innate immunity. Yao T, Foo C, Zheng G, Huang R, Li Q, Shen J, Wang Z. Biochim Biophys Acta Mol Basis Dis 1869 166671 (2023)
  24. The Potential of Purinergic Signaling to Thwart Viruses Including SARS-CoV-2. Ferrari D, Rubini M, Burns JS. Front Immunol 13 904419 (2022)
  25. Viral Nucleases from Herpesviruses and Coronavirus in Recombination and Proofreading: Potential Targets for Antiviral Drug Discovery. Wright LR, Wright DL, Weller SK. Viruses 14 1557 (2022)
  26. Amino Acid Metabolism in Leukocytes Showing In Vitro IgG Memory from SARS-CoV2-Infected Patients. Fanelli G, Lelli V, Rinalducci S, Timperio AM. Diseases 12 43 (2024)
  27. Infections associated with SARS-CoV-2 exploited via nanoformulated photodynamic therapy. Pallavi P, Harini K, Elboughdiri N, Gowtham P, Girigoswami K, Girigoswami A. ADMET DMPK 11 513-531 (2023)
  28. What do we know about the function of SARS-CoV-2 proteins? Justo Arevalo S, Castillo-Chávez A, Uribe Calampa CS, Zapata Sifuentes D, Huallpa CJ, Landa Bianchi G, Garavito-Salini Casas R, Quiñones Aguilar M, Pineda Chavarría R. Front Immunol 14 1249607 (2023)

Articles citing this publication (43)

  1. Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN. Moeller NH, Shi K, Demir Ö, Belica C, Banerjee S, Yin L, Durfee C, Amaro RE, Aihara H. Proc Natl Acad Sci U S A 119 e2106379119 (2022)
  2. The mechanism of RNA capping by SARS-CoV-2. Park GJ, Osinski A, Hernandez G, Eitson JL, Majumdar A, Tonelli M, Henzler-Wildman K, Pawłowski K, Chen Z, Li Y, Schoggins JW, Tagliabracci VS. Nature 609 793-800 (2022)
  3. The NSP14/NSP10 RNA repair complex as a Pan-coronavirus therapeutic target. Rona G, Zeke A, Miwatani-Minter B, de Vries M, Kaur R, Schinlever A, Garcia SF, Goldberg HV, Wang H, Hinds TR, Bailly F, Zheng N, Cotelle P, Desmaële D, Landau NR, Dittmann M, Pagano M. Cell Death Differ 29 285-292 (2022)
  4. A natural product compound inhibits coronaviral replication in vitro by binding to the conserved Nsp9 SARS-CoV-2 protein. Littler DR, Liu M, McAuley JL, Lowery SA, Illing PT, Gully BS, Purcell AW, Chandrashekaran IR, Perlman S, Purcell DFJ, Quinn RJ, Rossjohn J. J Biol Chem 297 101362 (2021)
  5. N7-Methylation of the Coronavirus RNA Cap Is Required for Maximal Virulence by Preventing Innate Immune Recognition. Pan R, Kindler E, Cao L, Zhou Y, Zhang Z, Liu Q, Ebert N, Züst R, Sun Y, Gorbalenya AE, Perlman S, Thiel V, Chen Y, Guo D. mBio 13 e0366221 (2022)
  6. Structure-function analysis of the nsp14 N7-guanine methyltransferase reveals an essential role in Betacoronavirus replication. Ogando NS, El Kazzi P, Zevenhoven-Dobbe JC, Bontes BW, Decombe A, Posthuma CC, Thiel V, Canard B, Ferron F, Decroly E, Snijder EJ. Proc Natl Acad Sci U S A 118 e2108709118 (2021)
  7. The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme. Walker AP, Fan H, Keown JR, Knight ML, Grimes JM, Fodor E. Nucleic Acids Res 49 13019-13030 (2021)
  8. Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex. Chen J, Wang Q, Malone B, Llewellyn E, Pechersky Y, Maruthi K, Eng ET, Perry JK, Campbell EA, Shaw DE, Darst SA. Nat Struct Mol Biol 29 250-260 (2022)
  9. A mechanism for SARS-CoV-2 RNA capping and its inhibition by nucleotide analog inhibitors. Yan L, Huang Y, Ge J, Liu Z, Lu P, Huang B, Gao S, Wang J, Tan L, Ye S, Yu F, Lan W, Xu S, Zhou F, Shi L, Guddat LW, Gao Y, Rao Z, Lou Z. Cell 185 4347-4360.e17 (2022)
  10. SIRT5 is a proviral factor that interacts with SARS-CoV-2 Nsp14 protein. Walter M, Chen IP, Vallejo-Gracia A, Kim IJ, Bielska O, Lam VL, Hayashi JM, Cruz A, Shah S, Soveg FW, Gross JD, Krogan NJ, Jerome KR, Schilling B, Ott M, Verdin E. PLoS Pathog 18 e1010811 (2022)
  11. Activation of the SARS-CoV-2 NSP14 3'-5' exoribonuclease by NSP10 and response to antiviral inhibitors. Riccio AA, Sullivan ED, Copeland WC. J Biol Chem 298 101518 (2022)
  12. Attenuation of SARS-CoV-2 replication and associated inflammation by concomitant targeting of viral and host cap 2'-O-ribose methyltransferases. Bergant V, Yamada S, Grass V, Tsukamoto Y, Lavacca T, Krey K, Mühlhofer MT, Wittmann S, Ensser A, Herrmann A, Vom Hemdt A, Tomita Y, Matsuyama S, Hirokawa T, Huang Y, Piras A, Jakwerth CA, Oelsner M, Thieme S, Graf A, Krebs S, Blum H, Kümmerer BM, Stukalov A, Schmidt-Weber CB, Igarashi M, Gramberg T, Pichlmair A, Kato H. EMBO J 41 e111608 (2022)
  13. Flipped over U: structural basis for dsRNA cleavage by the SARS-CoV-2 endoribonuclease. Frazier MN, Wilson IM, Krahn JM, Butay KJ, Dillard LB, Borgnia MJ, Stanley RE. Nucleic Acids Res 50 8290-8301 (2022)
  14. Emergence of unique SARS-CoV-2 ORF10 variants and their impact on protein structure and function. Hassan SS, Lundstrom K, Serrano-Aroca Á, Adadi P, Aljabali AAA, Redwan EM, Lal A, Kandimalla R, El-Aziz TMA, Pal Choudhury P, Azad GK, Sherchan SP, Chauhan G, Tambuwala M, Takayama K, Barh D, Palu G, Basu P, Uversky VN. Int J Biol Macromol 194 128-143 (2022)
  15. Crystal structures and fragment screening of SARS-CoV-2 NSP14 reveal details of exoribonuclease activation and mRNA capping and provide starting points for antiviral drug development. Imprachim N, Yosaatmadja Y, Newman JA. Nucleic Acids Res 51 475-487 (2023)
  16. Binding of a pyrimidine RNA base-mimic to SARS-CoV-2 nonstructural protein 9. Littler DR, Mohanty B, Lowery SA, Colson RN, Gully BS, Perlman S, Scanlon MJ, Rossjohn J. J Biol Chem 297 101018 (2021)
  17. High-resolution structures of the SARS-CoV-2 N7-methyltransferase inform therapeutic development. Kottur J, Rechkoblit O, Quintana-Feliciano R, Sciaky D, Aggarwal AK. Nat Struct Mol Biol 29 850-853 (2022)
  18. Localization of SARS-CoV-2 Capping Enzymes Revealed by an Antibody against the nsp10 Subunit. Horova V, Landova B, Hodek J, Chalupsky K, Krafcikova P, Chalupska D, Duchoslav V, Weber J, Boura E, Klima M. Viruses 13 1487 (2021)
  19. Effects of natural RNA modifications on the activity of SARS-CoV-2 RNA-dependent RNA polymerase. Petushkov I, Esyunina D, Kulbachinskiy A. FEBS J 290 80-92 (2023)
  20. Characterization of SARS-CoV-2 replication complex elongation and proofreading activity. Jones AN, Mourão A, Czarna A, Matsuda A, Fino R, Pyrc K, Sattler M, Popowicz GM. Sci Rep 12 9593 (2022)
  21. The SARS-CoV nsp12 Polymerase Active Site Is Tuned for Large-Genome Replication. Campagnola G, Govindarajan V, Pelletier A, Canard B, Peersen OB. J Virol 96 e0067122 (2022)
  22. Comparative analysis of within-host diversity among vaccinated COVID-19 patients infected with different SARS-CoV-2 variants. Al-Khatib HA, Smatti MK, Ali FH, Zedan HT, Thomas S, Ahmed MN, El-Kahlout RA, Al Bader MA, Elgakhlab D, Coyle PV, Abu-Raddad LJ, Al Thani AA, Yassine HM. iScience 25 105438 (2022)
  23. Identifying Structural Features of Nucleotide Analogues to Overcome SARS-CoV-2 Exonuclease Activity. Wang X, Tao C, Morozova I, Kalachikov S, Li X, Kumar S, Russo JJ, Ju J. Viruses 14 1413 (2022)
  24. NMR-Based Analysis of Nanobodies to SARS-CoV-2 Nsp9 Reveals a Possible Antiviral Strategy Against COVID-19. Esposito G, Hunashal Y, Percipalle M, Venit T, Dieng MM, Fogolari F, Hassanzadeh G, Piano F, Gunsalus KC, Idaghdour Y, Percipalle P. Adv Biol (Weinh) 5 e2101113 (2021)
  25. Screening of SARS-CoV-2 antivirals through a cell-based RNA-dependent RNA polymerase (RdRp) reporter assay. Uppal T, Tuffo K, Khaiboullina S, Reganti S, Pandori M, Verma SC. Cell Insight 1 100046 (2022)
  26. Antiviral Activity of N1,N3-Disubstituted Uracil Derivatives against SARS-CoV-2 Variants of Concern. Siniavin AE, Novikov MS, Gushchin VA, Terechov AA, Ivanov IA, Paramonova MP, Gureeva ES, Russu LI, Kuznetsova NA, Shidlovskaya EV, Luyksaar SI, Vasina DV, Zolotov SA, Zigangirova NA, Logunov DY, Gintsburg AL. Int J Mol Sci 23 10171 (2022)
  27. Crystal Structures of Flavivirus NS5 Guanylyltransferase Reveal a GMP-Arginine Adduct. Jia H, Zhong Y, Peng C, Gong P. J Virol 96 e0041822 (2022)
  28. Within and Beyond the Nucleotide Addition Cycle of Viral RNA-dependent RNA Polymerases. Gong P. Front Mol Biosci 8 822218 (2021)
  29. A second type of N7-guanine RNA cap methyltransferase in an unusual locus of a large RNA virus genome. Shannon A, Sama B, Gauffre P, Guez T, Debart F, Vasseur JJ, Decroly E, Canard B, Ferron F. Nucleic Acids Res 50 11186-11198 (2022)
  30. ATP enhances the error-prone ribonucleotide incorporation by the SARS-CoV-2 RNA polymerase. Pourfarjam Y, Ma Z, Kim IK. Biochem Biophys Res Commun 625 53-59 (2022)
  31. SARS-CoV-2 modulation of RIG-I-MAVS signaling: Potential mechanisms of impairment on host antiviral immunity and therapeutic approaches. Wang M, Zhao Y, Liu J, Li T. MedComm Futur Med 1 e29 (2022)
  32. Comparison of Intracellular Transcriptional Response of NHBE Cells to Infection with SARS-CoV-2 Washington and New York Strains. Scott TM, Solis-Leal A, Lopez JB, Robison RA, Berges BK, Pickett BE. Front Cell Infect Microbiol 12 1009328 (2022)
  33. Discovery of a Druggable, Cryptic Pocket in SARS-CoV-2 nsp16 Using Allosteric Inhibitors. Inniss NL, Kozic J, Li F, Rosas-Lemus M, Minasov G, Rybáček J, Zhu Y, Pohl R, Shuvalova L, Rulíšek L, Brunzelle JS, Bednárová L, Štefek M, Kormaník JM, Andris E, Šebestík J, Li ASM, Brown PJ, Schmitz U, Saikatendu K, Chang E, Nencka R, Vedadi M, Satchell KJF. ACS Infect Dis 9 1918-1931 (2023)
  34. In Silico Discovery of Small-Molecule Inhibitors Targeting SARS-CoV-2 Main Protease. Gao M, Kang D, Liu N, Liu Y. Molecules 28 5320 (2023)
  35. Kinetic analysis of RNA cleavage by coronavirus Nsp15 endonuclease: Evidence for acid-base catalysis and substrate-dependent metal ion activation. Huang T, Snell KC, Kalia N, Gardezi S, Guo L, Harris ME. J Biol Chem 299 104787 (2023)
  36. Mechanisms of Coronavirus Genome Stability As Potential Targets for Antiviral Drugs. Yuyukina SK, Zharkov DO. Her Russ Acad Sci 92 470-478 (2022)
  37. Substrate Specificity and Kinetics of RNA Hydrolysis by SARS-CoV-2 NSP10/14 Exonuclease. Dangerfield TL, Johnson KA. ACS Bio Med Chem Au 2 600-606 (2022)
  38. Virtual screening and molecular dynamics simulation for identification of natural antiviral agents targeting SARS-CoV-2 NSP10. Zhao H, Liu J, He L, Zhang L, Yu R, Kang C. Biochem Biophys Res Commun 626 114-120 (2022)
  39. AI-guided pipeline for protein-protein interaction drug discovery identifies a SARS-CoV-2 inhibitor. Trepte P, Secker C, Olivet J, Blavier J, Kostova S, Maseko SB, Minia I, Silva Ramos E, Cassonnet P, Golusik S, Zenkner M, Beetz S, Liebich MJ, Scharek N, Schütz A, Sperling M, Lisurek M, Wang Y, Spirohn K, Hao T, Calderwood MA, Hill DE, Landthaler M, Choi SG, Twizere JC, Vidal M, Wanker EE. Mol Syst Biol 20 428-457 (2024)
  40. Activity of nsp14 Exonuclease from SARS-CoV-2 towards RNAs with Modified 3'-Termini. Yuyukina SK, Barmatov AE, Bizyaev SN, Stetsenko DA, Sergeeva OV, Zatsepin TS, Zharkov DO. Dokl Biochem Biophys 509 65-69 (2023)
  41. Inside-out: Antibody-binding reveals potential folding hinge-points within the SARS-CoV-2 replication co-factor nsp9. Pan Y, Chandrashekaran IR, Tennant L, Rossjohn J, Littler DR. PLoS One 18 e0283194 (2023)
  42. Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action. Trifan A, Gorgun D, Salim M, Li Z, Brace A, Zvyagin M, Ma H, Clyde A, Clark D, Hardy DJ, Burnley T, Huang L, McCalpin J, Emani M, Yoo H, Yin J, Tsaris A, Subbiah V, Raza T, Liu J, Trebesch N, Wells G, Mysore V, Gibbs T, Phillips J, Chennubhotla SC, Foster I, Stevens R, Anandkumar A, Vishwanath V, Stone JE, Tajkhorshid E, A Harris S, Ramanathan A. Int J High Perform Comput Appl 36 603-623 (2022)
  43. Oligomeric State of β-Coronavirus Non-Structural Protein 10 Stimulators Studied by Small Angle X-ray Scattering. Knecht W, Fisher SZ, Lou J, Sele C, Ma S, Rasmussen AA, Pinotsis N, Kozielski F. Int J Mol Sci 24 13649 (2023)