7krp Citations

Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex.

OpenAccess logo Proc Natl Acad Sci U S A 118 (2021)
Related entries: 7krn, 7kro

Cited: 53 times
EuropePMC logo PMID: 33883267

Abstract

Backtracking, the reverse motion of the transcriptase enzyme on the nucleic acid template, is a universal regulatory feature of transcription in cellular organisms but its role in viruses is not established. Here we present evidence that backtracking extends into the viral realm, where backtracking by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) may aid viral transcription and replication. Structures of SARS-CoV-2 RdRp bound to the essential nsp13 helicase and RNA suggested the helicase facilitates backtracking. We use cryo-electron microscopy, RNA-protein cross-linking, and unbiased molecular dynamics simulations to characterize SARS-CoV-2 RdRp backtracking. The results establish that the single-stranded 3' segment of the product RNA generated by backtracking extrudes through the RdRp nucleoside triphosphate (NTP) entry tunnel, that a mismatched nucleotide at the product RNA 3' end frays and enters the NTP entry tunnel to initiate backtracking, and that nsp13 stimulates RdRp backtracking. Backtracking may aid proofreading, a crucial process for SARS-CoV-2 resistance against antivirals.

Reviews - 7krp mentioned but not cited (2)

  1. Structure and function of SARS-CoV-2 polymerase. Hillen HS. Curr Opin Virol 48 82-90 (2021)
  2. Revisiting Viral RNA-Dependent RNA Polymerases: Insights from Recent Structural Studies. Ramaswamy K, Rashid M, Ramasamy S, Jayavelu T, Venkataraman S. Viruses 14 2200 (2022)

Articles - 7krp mentioned but not cited (4)

  1. Insights into Binding of Single-Stranded Viral RNA Template to the Replication-Transcription Complex of SARS-CoV-2 for the Priming Reaction from Molecular Dynamics Simulations. Wang J, Shi Y, Reiss K, Allen B, Maschietto F, Lolis E, Konigsberg WH, Lisi GP, Batista VS. Biochemistry 61 424-432 (2022)
  2. Significant Broad-Spectrum Antiviral Activity of Bi121 against Different Variants of SARS-CoV-2. Subhadra B, Agrawal R, Pal VK, Chenine AL, Mattathil JG, Singh A. Viruses 15 1299 (2023)
  3. research-article Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex. Malone B, Chen J, Wang Q, Llewellyn E, Choi YJ, Olinares PDB, Cao X, Hernandez C, Eng ET, Chait BT, Shaw DE, Landick R, Darst SA, Campbell EA. bioRxiv 2021.03.13.435256 (2021)
  4. research-article An alphacoronavirus polymerase structure reveals conserved co-factor functions. Anderson TK, Hoferle PJ, Lee KW, Coon JJ, Kirchdoerfer RN. bioRxiv 2023.03.15.532841 (2023)


Reviews citing this publication (18)

  1. Structural biology of SARS-CoV-2 and implications for therapeutic development. Yang H, Rao Z. Nat Rev Microbiol 19 685-700 (2021)
  2. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Malone B, Urakova N, Snijder EJ, Campbell EA. Nat Rev Mol Cell Biol 23 21-39 (2022)
  3. Structural biology of SARS-CoV-2: open the door for novel therapies. Yan W, Zheng Y, Zeng X, He B, Cheng W. Signal Transduct Target Ther 7 26 (2022)
  4. Structure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19. Wu CR, Yin WC, Jiang Y, Xu HE. Acta Pharmacol Sin 43 3021-3033 (2022)
  5. Molnupiravir: A lethal mutagenic drug against rapidly mutating severe acute respiratory syndrome coronavirus 2-A narrative review. Masyeni S, Iqhrammullah M, Frediansyah A, Nainu F, Tallei T, Emran TB, Ophinni Y, Dhama K, Harapan H. J Med Virol 94 3006-3016 (2022)
  6. A structural view of the SARS-CoV-2 virus and its assembly. Hardenbrook NJ, Zhang P. Curr Opin Virol 52 123-134 (2022)
  7. Replication of the coronavirus genome: A paradox among positive-strand RNA viruses. Grellet E, L'Hôte I, Goulet A, Imbert I. J Biol Chem 298 101923 (2022)
  8. Accelerating antiviral drug discovery: lessons from COVID-19. von Delft A, Hall MD, Kwong AD, Purcell LA, Saikatendu KS, Schmitz U, Tallarico JA, Lee AA. Nat Rev Drug Discov 22 585-603 (2023)
  9. Remdesivir for the treatment of Covid-19: the value of biochemical studies. Götte M. Curr Opin Virol 49 81-85 (2021)
  10. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Jahirul Islam M, Nawal Islam N, Siddik Alom M, Kabir M, Halim MA. Immunobiology 228 152302 (2023)
  11. Dissecting nucleotide selectivity in viral RNA polymerases. Long C, Romero ME, La Rocco D, Yu J. Comput Struct Biotechnol J 19 3339-3348 (2021)
  12. CoV-er all the bases: Structural perspectives of SARS-CoV-2 RNA synthesis. Malone B, Campbell EA, Darst SA. Enzymes 49 1-37 (2021)
  13. Recent insights into the structure and function of coronavirus ribonucleases. Frazier MN, Riccio AA, Wilson IM, Copeland WC, Stanley RE. FEBS Open Bio 12 1567-1583 (2022)
  14. Three-Dimensional Visualization of Viral Structure, Entry, and Replication Underlying the Spread of SARS-CoV-2. Saville JW, Berezuk AM, Srivastava SS, Subramaniam S. Chem Rev 122 14066-14084 (2022)
  15. Druggable targets and therapeutic development for COVID-19. Duan X, Lacko LA, Chen S. Front Chem 10 963701 (2022)
  16. Current understanding of nucleoside analogs inhibiting the SARS-CoV-2 RNA-dependent RNA polymerase. Xu T, Zhang L. Comput Struct Biotechnol J 21 4385-4394 (2023)
  17. Imaging Flow Cytometry and Confocal Immunofluorescence Microscopy of Virus-Host Cell Interactions. McClelland RD, Culp TN, Marchant DJ. Front Cell Infect Microbiol 11 749039 (2021)
  18. SARS-CoV-2 biology and host interactions. Steiner S, Kratzel A, Barut GT, Lang RM, Aguiar Moreira E, Thomann L, Kelly JN, Thiel V. Nat Rev Microbiol (2024)

Articles citing this publication (29)

  1. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, Höbartner C, Cramer P. Nat Struct Mol Biol 28 740-746 (2021)
  2. Coupling of N7-methyltransferase and 3'-5' exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Yan L, Yang Y, Li M, Zhang Y, Zheng L, Ge J, Huang YC, Liu Z, Wang T, Gao S, Zhang R, Huang YY, Guddat LW, Gao Y, Rao Z, Lou Z. Cell 184 3474-3485.e11 (2021)
  3. In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2. Szemiel AM, Merits A, Orton RJ, MacLean OA, Pinto RM, Wickenhagen A, Lieber G, Turnbull ML, Wang S, Furnon W, Suarez NM, Mair D, da Silva Filipe A, Willett BJ, Wilson SJ, Patel AH, Thomson EC, Palmarini M, Kohl A, Stewart ME. PLoS Pathog 17 e1009929 (2021)
  4. Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Liu C, Shi W, Becker ST, Schatz DG, Liu B, Yang Y. Science 373 1142-1146 (2021)
  5. A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase. Shannon A, Fattorini V, Sama B, Selisko B, Feracci M, Falcou C, Gauffre P, El Kazzi P, Delpal A, Decroly E, Alvarez K, Eydoux C, Guillemot JC, Moussa A, Good SS, La Colla P, Lin K, Sommadossi JP, Zhu Y, Yan X, Shi H, Ferron F, Canard B. Nat Commun 13 621 (2022)
  6. Inhibition of SARS-CoV-2 polymerase by nucleotide analogs from a single-molecule perspective. Seifert M, Bera SC, van Nies P, Kirchdoerfer RN, Shannon A, Le TT, Meng X, Xia H, Wood JM, Harris LD, Papini FS, Arnold JJ, Almo S, Grove TL, Shi PY, Xiang Y, Canard B, Depken M, Cameron CE, Dulin D. Elife 10 e70968 (2021)
  7. An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15. Perry JK, Appleby TC, Bilello JP, Feng JY, Schmitz U, Campbell EA. J Biol Chem 297 101218 (2021)
  8. SARS-CoV-2 NSP13 helicase suppresses interferon signaling by perturbing JAK1 phosphorylation of STAT1. Fung SY, Siu KL, Lin H, Chan CP, Yeung ML, Jin DY. Cell Biosci 12 36 (2022)
  9. Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex. Chen J, Wang Q, Malone B, Llewellyn E, Pechersky Y, Maruthi K, Eng ET, Perry JK, Campbell EA, Shaw DE, Darst SA. Nat Struct Mol Biol 29 250-260 (2022)
  10. The nucleotide addition cycle of the SARS-CoV-2 polymerase. Bera SC, Seifert M, Kirchdoerfer RN, van Nies P, Wubulikasimu Y, Quack S, Papini FS, Arnold JJ, Canard B, Cameron CE, Depken M, Dulin D. Cell Rep 36 109650 (2021)
  11. Metabolites with SARS-CoV-2 Inhibitory Activity Identified from Human Microbiome Commensals. Piscotta FJ, Hoffmann HH, Choi YJ, Small GI, Ashbrook AW, Koirala B, Campbell EA, Darst SA, Rice CM, Brady SF. mSphere 6 e0071121 (2021)
  12. Structural basis for substrate selection by the SARS-CoV-2 replicase. Malone BF, Perry JK, Olinares PDB, Lee HW, Chen J, Appleby TC, Feng JY, Bilello JP, Ng H, Sotiris J, Ebrahim M, Chua EYD, Mendez JH, Eng ET, Landick R, Götte M, Chait BT, Campbell EA, Darst SA. Nature 614 781-787 (2023)
  13. Characterisation of SARS-CoV-2 genomic variation in response to molnupiravir treatment in the AGILE Phase IIa clinical trial. Donovan-Banfield I, Penrice-Randal R, Goldswain H, Rzeszutek AM, Pilgrim J, Bullock K, Saunders G, Northey J, Dong X, Ryan Y, Reynolds H, Tetlow M, Walker LE, FitzGerald R, Hale C, Lyon R, Woods C, Ahmad S, Hadjiyiannakis D, Periselneris J, Knox E, Middleton C, Lavelle-Langham L, Shaw V, Greenhalf W, Edwards T, Lalloo DG, Edwards CJ, Darby AC, Carroll MW, Griffiths G, Khoo SH, Hiscox JA, Fletcher T. Nat Commun 13 7284 (2022)
  14. The structure of a dimeric form of SARS-CoV-2 polymerase. Jochheim FA, Tegunov D, Hillen HS, Schmitzová J, Kokic G, Dienemann C, Cramer P. Commun Biol 4 999 (2021)
  15. Effects of natural RNA modifications on the activity of SARS-CoV-2 RNA-dependent RNA polymerase. Petushkov I, Esyunina D, Kulbachinskiy A. FEBS J 290 80-92 (2023)
  16. Identifying Structural Features of Nucleotide Analogues to Overcome SARS-CoV-2 Exonuclease Activity. Wang X, Tao C, Morozova I, Kalachikov S, Li X, Kumar S, Russo JJ, Ju J. Viruses 14 1413 (2022)
  17. Induced intra- and intermolecular template switching as a therapeutic mechanism against RNA viruses. Janissen R, Woodman A, Shengjuler D, Vallet T, Lee KM, Kuijpers L, Moustafa IM, Fitzgerald F, Huang PN, Perkins AL, Harki DA, Arnold JJ, Solano B, Shih SR, Vignuzzi M, Cameron CE, Dekker NH. Mol Cell 81 4467-4480.e7 (2021)
  18. Biochemical analysis of SARS-CoV-2 Nsp13 helicase implicated in COVID-19 and factors that regulate its catalytic functions. Sommers JA, Loftus LN, Jones MP, Lee RA, Haren CE, Dumm AJ, Brosh RM. J Biol Chem 299 102980 (2023)
  19. Interfering with nucleotide excision by the coronavirus 3'-to-5' exoribonuclease. Chinthapatla R, Sotoudegan M, Srivastava P, Anderson TK, Moustafa IM, Passow KT, Kennelly SA, Moorthy R, Dulin D, Feng JY, Harki DA, Kirchdoerfer RN, Cameron CE, Arnold JJ. Nucleic Acids Res 51 315-336 (2023)
  20. Pre-exascale HPC approaches for molecular dynamics simulations. Covid-19 research: A use case. Wieczór M, Genna V, Aranda J, Badia RM, Gelpí JL, Gapsys V, de Groot BL, Lindahl E, Municoy M, Hospital A, Orozco M. Wiley Interdiscip Rev Comput Mol Sci e1622 (2022)
  21. Within and Beyond the Nucleotide Addition Cycle of Viral RNA-dependent RNA Polymerases. Gong P. Front Mol Biosci 8 822218 (2021)
  22. A Systematic Study on the Optimal Nucleotide Analogue Concentration and Rate Limiting Nucleotide of the SARS-CoV-2 RNA-Dependent RNA Polymerase. Vatandaslar H. Int J Mol Sci 23 8302 (2022)
  23. Structural Reshaping of the Zinc-Finger Domain of the SARS-CoV-2 nsp13 Protein Using Bismuth(III) Ions: A Multilevel Computational Study. Tolbatov I, Storchi L, Marrone A. Inorg Chem 61 15664-15677 (2022)
  24. Natural Compound ZINC12899676 Reduces Porcine Epidemic Diarrhea Virus Replication by Inhibiting the Viral NTPase Activity. Wang P, Wang X, Liu X, Sun M, Liang X, Bai J, Jiang P. Front Pharmacol 13 879733 (2022)
  25. Translocation pause of remdesivir-containing primer/template RNA duplex within SARS-CoV-2's RNA polymerase complexes. Shi Y, Wang J, Batista VS. Front Mol Biosci 9 999291 (2022)
  26. A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance. Grimes SL, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, Pruijssers AJ, Agostini ML, Abu-Shmais A, Lu X, Darst SA, Campbell E, Denison MR. mBio 14 e0106023 (2023)
  27. An exonuclease-resistant chain-terminating nucleotide analogue targeting the SARS-CoV-2 replicase complex. Shannon A, Chazot A, Feracci M, Falcou C, Fattorini V, Selisko B, Good S, Moussa A, Sommadossi JP, Ferron F, Alvarez K, Canard B. Nucleic Acids Res 52 1325-1340 (2024)
  28. Identification of consensus hairpin loop structure among the negative sense subgenomic RNAs of SARS-CoV-2. Bokolia NP, Gadepalli R. Bull Natl Res Cent 47 28 (2023)
  29. SARS-CoV-2 nsp13 Restricts Episomal DNA Transcription without Affecting Chromosomal DNA. Li A, Zhang B, Zhao K, Yin Z, Teng Y, Zhang L, Xu Z, Liang K, Cheng X, Xia Y. J Virol 97 e0051223 (2023)