7li3 Citations

Structural analysis of the full-length human LRRK2.

Cell 184 3519-3527.e10 (2021)
Related entries: 7lht, 7lhw, 7li4

Cited: 53 times
EuropePMC logo PMID: 34107286

Abstract

Mutations in leucine-rich repeat kinase 2 (LRRK2) are commonly implicated in the pathogenesis of both familial and sporadic Parkinson's disease (PD). LRRK2 regulates critical cellular processes at membranous organelles and forms microtubule-based pathogenic filaments, yet the molecular basis underlying these biological roles of LRRK2 remains largely enigmatic. Here, we determined high-resolution structures of full-length human LRRK2, revealing its architecture and key interdomain scaffolding elements for rationalizing disease-causing mutations. The kinase domain of LRRK2 is captured in an inactive state, a conformation also adopted by the most common PD-associated mutation, LRRK2G2019S. This conformation serves as a framework for structure-guided design of conformational specific inhibitors. We further determined the structure of COR-mediated LRRK2 dimers and found that single-point mutations at the dimer interface abolished pathogenic filamentation in cells. Overall, our study provides mechanistic insights into physiological and pathological roles of LRRK2 and establishes a structural template for future therapeutic intervention in PD.

Reviews - 7li3 mentioned but not cited (2)

  1. LRRK2 at Striatal Synapses: Cell-Type Specificity and Mechanistic Insights. Skelton PD, Tokars V, Parisiadou L. Cells 11 169 (2022)
  2. Structural Insights and Development of LRRK2 Inhibitors for Parkinson's Disease in the Last Decade. Thakur G, Kumar V, Lee KW, Won C. Genes (Basel) 13 1426 (2022)

Articles - 7li3 mentioned but not cited (1)

  1. Structural analysis of the full-length human LRRK2. Myasnikov A, Zhu H, Hixson P, Xie B, Yu K, Pitre A, Peng J, Sun J. Cell 184 3519-3527.e10 (2021)


Reviews citing this publication (14)

  1. LRRK2 and idiopathic Parkinson's disease. Rocha EM, Keeney MT, Di Maio R, De Miranda BR, Greenamyre JT. Trends Neurosci 45 224-236 (2022)
  2. LRRK2 Targeting Strategies as Potential Treatment of Parkinson's Disease. Wojewska DN, Kortholt A. Biomolecules 11 1101 (2021)
  3. LRRK2 mutant knock-in mouse models: therapeutic relevance in Parkinson's disease. Chang EES, Ho PW, Liu HF, Pang SY, Leung CT, Malki Y, Choi ZY, Ramsden DB, Ho SL. Transl Neurodegener 11 10 (2022)
  4. Structural Biology of LRRK2 and its Interaction with Microtubules. Leschziner AE, Reck-Peterson SL. Mov Disord 36 2494-2504 (2021)
  5. Genetic variations in GBA1 and LRRK2 genes: Biochemical and clinical consequences in Parkinson disease. Smith LJ, Lee CY, Menozzi E, Schapira AHV. Front Neurol 13 971252 (2022)
  6. Neuroinflammation in Parkinson's Disease: From Gene to Clinic: A Systematic Review. Castillo-Rangel C, Marin G, Hernández-Contreras KA, Vichi-Ramírez MM, Zarate-Calderon C, Torres-Pineda O, Diaz-Chiguer DL, De la Mora González D, Gómez Apo E, Teco-Cortes JA, Santos-Paez FM, Coello-Torres MLÁ, Baldoncini M, Reyes Soto G, Aranda-Abreu GE, García LI. Int J Mol Sci 24 5792 (2023)
  7. Review of the epidemiology and variability of LRRK2 non-p.Gly2019Ser pathogenic mutations in Parkinson's disease. Turski P, Chaberska I, Szukało P, Pyska P, Milanowski Ł, Szlufik S, Figura M, Hoffman-Zacharska D, Siuda J, Koziorowski D. Front Neurosci 16 971270 (2022)
  8. The Double-Faceted Role of Leucine-Rich Repeat Kinase 2 in the Immunopathogenesis of Parkinson's Disease. Zhang M, Li C, Ren J, Wang H, Yi F, Wu J, Tang Y. Front Aging Neurosci 14 909303 (2022)
  9. Perspective on the current state of the LRRK2 field. Taymans JM, Fell M, Greenamyre T, Hirst WD, Mamais A, Padmanabhan S, Peter I, Rideout H, Thaler A. NPJ Parkinsons Dis 9 104 (2023)
  10. Roc, the G-domain of the Parkinson's disease-associated protein LRRK2. Park Y, Liao J, Hoang QQ. Trends Biochem Sci 47 1038-1047 (2022)
  11. Insights into the cellular consequences of LRRK2-mediated Rab protein phosphorylation. Fasiczka R, Naaldijk Y, Brahmia B, Hilfiker S. Biochem Soc Trans 51 587-595 (2023)
  12. LRRK2 Structure-Based Activation Mechanism and Pathogenesis. Zhang X, Kortholt A. Biomolecules 13 612 (2023)
  13. Overview of the Impact of Pathogenic LRRK2 Mutations in Parkinson's Disease. Ito G, Utsunomiya-Tate N. Biomolecules 13 845 (2023)
  14. An Update on the Interplay between LRRK2, Rab GTPases and Parkinson's Disease. Komori T, Kuwahara T. Biomolecules 13 1645 (2023)

Articles citing this publication (36)

  1. A feed-forward pathway drives LRRK2 kinase membrane recruitment and activation. Vides EG, Adhikari A, Chiang CY, Lis P, Purlyte E, Limouse C, Shumate JL, Spínola-Lasso E, Dhekne HS, Alessi DR, Pfeffer SR. Elife 11 e79771 (2022)
  2. Impact of 100 LRRK2 variants linked to Parkinson's disease on kinase activity and microtubule binding. Kalogeropulou AF, Purlyte E, Tonelli F, Lange SM, Wightman M, Prescott AR, Padmanabhan S, Sammler E, Alessi DR. Biochem J 479 1759-1783 (2022)
  3. Impact of Type II LRRK2 inhibitors on signaling and mitophagy. Tasegian A, Singh F, Ganley IG, Reith AD, Alessi DR. Biochem J 478 3555-3573 (2021)
  4. Discovery of XL01126: A Potent, Fast, Cooperative, Selective, Orally Bioavailable, and Blood-Brain Barrier Penetrant PROTAC Degrader of Leucine-Rich Repeat Kinase 2. Liu X, Kalogeropulou AF, Domingos S, Makukhin N, Nirujogi RS, Singh F, Shpiro N, Saalfrank A, Sammler E, Ganley IG, Moreira R, Alessi DR, Ciulli A. J Am Chem Soc 144 16930-16952 (2022)
  5. LRRK2 dynamics analysis identifies allosteric control of the crosstalk between its catalytic domains. Weng JH, Aoto PC, Lorenz R, Wu J, Schmidt SH, Manschwetus JT, Kaila-Sharma P, Silletti S, Mathea S, Chatterjee D, Knapp S, Herberg FW, Taylor SS. PLoS Biol 20 e3001427 (2022)
  6. Structural basis for Parkinson's disease-linked LRRK2's binding to microtubules. Snead DM, Matyszewski M, Dickey AM, Lin YX, Leschziner AE, Reck-Peterson SL. Nat Struct Mol Biol 29 1196-1207 (2022)
  7. Genome-wide screen reveals Rab12 GTPase as a critical activator of Parkinson's disease-linked LRRK2 kinase. Dhekne HS, Tonelli F, Yeshaw WM, Chiang CY, Limouse C, Jaimon E, Purlyte E, Alessi DR, Pfeffer SR. Elife 12 e87098 (2023)
  8. Molecular basis of crosstalk in nuclear receptors: heterodimerization between PXR and CAR and the implication in gene regulation. Bwayi MN, Garcia-Maldonado E, Chai SC, Xie B, Chodankar S, Huber AD, Wu J, Annu K, Wright WC, Lee HM, Seetharaman J, Wang J, Buchman CD, Peng J, Chen T. Nucleic Acids Res 50 3254-3275 (2022)
  9. Nanobodies as allosteric modulators of Parkinson's disease-associated LRRK2. Singh RK, Soliman A, Guaitoli G, Störmer E, von Zweydorf F, Dal Maso T, Oun A, Van Rillaer L, Schmidt SH, Chatterjee D, David JA, Pardon E, Schwartz TU, Knapp S, Kennedy EJ, Steyaert J, Herberg FW, Kortholt A, Gloeckner CJ, Versées W. Proc Natl Acad Sci U S A 119 e2112712119 (2022)
  10. Capturing Differences in the Regulation of LRRK2 Dynamics and Conformational States by Small Molecule Kinase Inhibitors. Weng JH, Ma W, Wu J, Sharma PK, Silletti S, McCammon JA, Taylor S. ACS Chem Biol 18 810-821 (2023)
  11. The E3 ligase TRIM1 ubiquitinates LRRK2 and controls its localization, degradation, and toxicity. Stormo AED, Shavarebi F, FitzGibbon M, Earley EM, Ahrendt H, Lum LS, Verschueren E, Swaney DL, Skibinski G, Ravisankar A, van Haren J, Davis EJ, Johnson JR, Von Dollen J, Balen C, Porath J, Crosio C, Mirescu C, Iaccarino C, Dauer WT, Nichols RJ, Wittmann T, Cox TC, Finkbeiner S, Krogan NJ, Oakes SA, Hiniker A. J Cell Biol 221 e202010065 (2022)
  12. Evaluation of Current Methods to Detect Cellular Leucine-Rich Repeat Kinase 2 (LRRK2) Kinase Activity. Fernández B, Chittoor-Vinod VG, Kluss JH, Kelly K, Bryant N, Nguyen APT, Bukhari SA, Smith N, Lara Ordóñez AJ, Fdez E, Chartier-Harlin MC, Montine TJ, Wilson MA, Moore DJ, West AB, Cookson MR, Nichols RJ, Hilfiker S. J Parkinsons Dis 12 1423-1447 (2022)
  13. Functional Analyses of Two Novel LRRK2 Pathogenic Variants in Familial Parkinson's Disease. Coku I, Mutez E, Eddarkaoui S, Carrier S, Marchand A, Deldycke C, Goveas L, Baille G, Tir M, Magnez R, Thuru X, Vermeersch G, Vandenberghe W, Buée L, Defebvre L, Sablonnière B, Chartier-Harlin MC, Taymans JM, Huin V. Mov Disord 37 1761-1767 (2022)
  14. A Phosphosite Mutant Approach on LRRK2 Links Phosphorylation and Dephosphorylation to Protective and Deleterious Markers, Respectively. Marchand A, Sarchione A, Athanasopoulos PS, Roy HB, Goveas L, Magnez R, Drouyer M, Emanuele M, Ho FY, Liberelle M, Melnyk P, Lebègue N, Thuru X, Nichols RJ, Greggio E, Kortholt A, Galli T, Chartier-Harlin MC, Taymans JM. Cells 11 1018 (2022)
  15. Characterization of Lipopolysaccharide Effects on LRRK2 Signaling in RAW Macrophages. Oun A, Hoeksema E, Soliman A, Brouwer F, García-Reyes F, Pots H, Trombetta-Lima M, Kortholt A, Dolga AM. Int J Mol Sci 24 1644 (2023)
  16. Doubly Constrained C-terminal of Roc (COR) Domain-Derived Peptides Inhibit Leucine-Rich Repeat Kinase 2 (LRRK2) Dimerization. Pathak P, Alexander KK, Helton LG, Kentros M, LeClair TJ, Zhang X, Ho FY, Moore TT, Hall S, Guaitoli G, Gloeckner CJ, Kortholt A, Rideout H, Kennedy EJ. ACS Chem Neurosci 14 1971-1980 (2023)
  17. Inhibition of Parkinson's disease-related LRRK2 by type I and type II kinase inhibitors: Activity and structures. Sanz Murillo M, Villagran Suarez A, Dederer V, Chatterjee D, Alegrio Louro J, Knapp S, Mathea S, Leschziner AE. Sci Adv 9 eadk6191 (2023)
  18. Pathophysiological evaluation of the LRRK2 G2385R risk variant for Parkinson's disease. Tezuka T, Taniguchi D, Sano M, Shimada T, Oji Y, Tsunemi T, Ikeda A, Li Y, Yoshino H, Ogata J, Shiba-Fukushima K, Funayama M, Nishioka K, Imai Y, Hattori N. NPJ Parkinsons Dis 8 97 (2022)
  19. Computational analysis of regulatory regions in human protein kinases. Pei J, Cong Q. Protein Sci 32 e4764 (2023)
  20. Development of mutation-selective LRRK2 kinase inhibitors as precision medicine for Parkinson's disease and other diseases for which carriers are at increased risk. Lesniak RK, Nichols RJ, Montine TJ. Front Neurol 13 1016040 (2022)
  21. From structure to ætiology: a new window on the biology of leucine-rich repeat kinase 2 and Parkinson's disease. Herbst S, Lewis PA. Biochem J 478 2945-2951 (2021)
  22. Leucine-rich repeat kinase 2 at a glance. Zhu C, Herbst S, Lewis PA. J Cell Sci 136 jcs259724 (2023)
  23. Membrane remodeling properties of the Parkinson's disease protein LRRK2. Wang X, Espadas J, Wu Y, Cai S, Ge J, Shao L, Roux A, De Camilli P. Proc Natl Acad Sci U S A 120 e2309698120 (2023)
  24. Rab29-dependent asymmetrical activation of leucine-rich repeat kinase 2. Zhu H, Tonelli F, Turk M, Prescott A, Alessi DR, Sun J. Science 382 1404-1411 (2023)
  25. Structure-Based Virtual Screening and De Novo Design to Identify Submicromolar Inhibitors of G2019S Mutant of Leucine-Rich Repeat Kinase 2. Park H, Kim T, Kim K, Jang A, Hong S. Int J Mol Sci 23 12825 (2022)
  26. Association between inflammatory bowel disease and Parkinson's disease: a prospective cohort study of 468,556 UK biobank participants. Wang HL, Wang ZY, Tian J, Ma DR, Shi CH. Front Aging Neurosci 15 1294879 (2023)
  27. Capturing the domain crosstalk in full length LRRK2 and LRRK2RCKW. Störmer E, Weng JH, Wu J, Bertinetti D, Kaila Sharma P, Ma W, Herberg FW, Taylor S. Biochem J BCJ20230126 (2023)
  28. Comprehensive analysis of clinical and biological features in Parkinson's disease associated with the LRRK2 G2019S mutation: Data from the PPMI study. Sun X, Dou K, Xue L, Xie Y, Yang Y, Xie A. Clin Transl Sci 17 e13720 (2024)
  29. Editorial Editorial: LRRK2-Fifteen Years From Cloning to the Clinic. Rideout H, Greggio E, Kortholt A, Nichols RJ. Front Neurosci 16 880914 (2022)
  30. Leucine-rich repeat kinase 2 (LRRK2) inhibition upregulates microtubule-associated protein 1B to ameliorate lysosomal dysfunction and parkinsonism. Chen K, Tang F, Du B, Yue ZZ, Jiao LL, Ding XL, Tuo QZ, Meng J, He SY, Dai L, Lei P, Wei XW. MedComm (2020) 4 e429 (2023)
  31. PAK6-mediated phosphorylation of PPP2R2C regulates LRRK2-PP2A complex formation. Iannotta L, Emanuele M, Favetta G, Tombesi G, Vandewynckel L, Lara Ordóñez AJ, Saliou JM, Drouyer M, Sibran W, Civiero L, Nichols RJ, Athanasopoulos PS, Kortholt A, Chartier-Harlin MC, Greggio E, Taymans JM. Front Mol Neurosci 16 1269387 (2023)
  32. Pharmacology of LRRK2 with type I and II kinase inhibitors revealed by cryo-EM. Zhu H, Hixson P, Ma W, Sun J. Cell Discov 10 10 (2024)
  33. Phosphorylation of AQP4 by LRRK2 R1441G impairs glymphatic clearance of IFNγ and aggravates dopaminergic neurodegeneration. Huang H, Lin L, Wu T, Wu C, Zhou L, Li G, Su F, Liang F, Guo W, Chen W, Jiang Q, Guan Y, Li X, Xu P, Zhang Y, Smith W, Pei Z. NPJ Parkinsons Dis 10 31 (2024)
  34. Regulatory spine RS3 residue of protein kinases: a lipophilic bystander or a decisive element in the small-molecule kinase inhibitor binding? Shevchenko E, Pantsar T. Biochem Soc Trans 50 633-648 (2022)
  35. Structure and regulation of full-length human leucine-rich repeat kinase 1. Metcalfe RD, Martinez Fiesco JA, Bonet-Ponce L, Kluss JH, Cookson MR, Zhang P. Nat Commun 14 4797 (2023)
  36. Structure of LRRK1 and mechanisms of autoinhibition and activation. Reimer JM, Dickey AM, Lin YX, Abrisch RG, Mathea S, Chatterjee D, Fay EJ, Knapp S, Daugherty MD, Reck-Peterson SL, Leschziner AE. Nat Struct Mol Biol 30 1735-1745 (2023)