7n0d Citations

Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme.

OpenAccess logo Science 373 1142-1146 (2021)
Related entries: 7n0b, 7n0c

Cited: 61 times
EuropePMC logo PMID: 34315827

Abstract

Coronavirus 3′-to-5′ exoribonuclease (ExoN), residing in the nonstructural protein (nsp) 10–nsp14 complex, boosts replication fidelity by proofreading RNA synthesis and is critical for the virus life cycle. ExoN also recognizes and excises nucleotide analog inhibitors incorporated into the nascent RNA, undermining the effectiveness of nucleotide analog–based antivirals. Here we present cryo–electron microscopy structures of both wild-type and mutant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nsp10-nsp14 in complex with an RNA substrate bearing a 3′-end mismatch at resolutions ranging from 2.5 to 3.9 angstroms. The structures reveal the molecular determinants of ExoN substrate specificity and offer insight into the molecular mechanisms of mismatch correction during coronavirus RNA synthesis. Our findings provide guidance for rational design of improved anticoronavirus therapies.

Reviews - 7n0d mentioned but not cited (1)

  1. Recent insights into the structure and function of coronavirus ribonucleases. Frazier MN, Riccio AA, Wilson IM, Copeland WC, Stanley RE. FEBS Open Bio 12 1567-1583 (2022)

Articles - 7n0d mentioned but not cited (3)

  1. High-resolution structures of the SARS-CoV-2 N7-methyltransferase inform therapeutic development. Kottur J, Rechkoblit O, Quintana-Feliciano R, Sciaky D, Aggarwal AK. Nat Struct Mol Biol 29 850-853 (2022)
  2. research-article Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Dejnirattisai W, Huo J, Zhou D, Zahradník J, Supasa P, Liu C, Duyvesteyn HME, Ginn HM, Mentzer AJ, Tuekprakhon A, Nutalai R, Wang B, Dijokaite A, Khan S, Avinoam O, Bahar M, Skelly D, Adele S, Johnson SA, Amini A, Ritter T, Mason C, Dold C, Pan D, Assadi S, Bellass A, Omo-Dare N, Koeckerling D, Flaxman A, Jenkin D, Aley PK, Voysey M, Clemens SAC, Naveca FG, Nascimento V, Nascimento F, Fernandes da Costa C, Resende PC, Pauvolid-Correa A, Siqueira MM, Baillie V, Serafin N, Ditse Z, Da Silva K, Madhi S, Nunes MC, Malik T, Openshaw PJ, Baillie JK, Semple MG, Townsend AR, Huang KA, Tan TK, Carroll MW, Klenerman P, Barnes E, Dunachie SJ, Constantinides B, Webster H, Crook D, Pollard AJ, Lambe T, OPTIC consortium, ISARIC4C consortium, Paterson NG, Williams MA, Hall DR, Fry EE, Mongkolsapaya J, Ren J, Schreiber G, Stuart DI, Screaton GR. bioRxiv 2021.12.03.471045 (2021)
  3. L-shaped distribution of the relative substitution rate (c/μ) observed for SARS-COV-2's genome, inconsistent with the selectionist theory, the neutral theory and the nearly neutral theory but a near-neutral balanced selection theory: Implication on "neutralist-selectionist" debate. Wu C, Paradis NJ, Lakernick PM, Hryb M. Comput Biol Med 153 106522 (2023)


Reviews citing this publication (18)

  1. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Malone B, Urakova N, Snijder EJ, Campbell EA. Nat Rev Mol Cell Biol 23 21-39 (2022)
  2. Structural biology of SARS-CoV-2: open the door for novel therapies. Yan W, Zheng Y, Zeng X, He B, Cheng W. Signal Transduct Target Ther 7 26 (2022)
  3. Therapeutic strategies for COVID-19: progress and lessons learned. Li G, Hilgenfeld R, Whitley R, De Clercq E. Nat Rev Drug Discov 22 449-475 (2023)
  4. Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Gao S, Huang T, Song L, Xu S, Cheng Y, Cherukupalli S, Kang D, Zhao T, Sun L, Zhang J, Zhan P, Liu X. Acta Pharm Sin B 12 581-599 (2022)
  5. Molecular Virology of SARS-CoV-2 and Related Coronaviruses. Kung YA, Lee KM, Chiang HJ, Huang SY, Wu CJ, Shih SR. Microbiol Mol Biol Rev 86 e0002621 (2022)
  6. SARS-CoV-2 Transmission and Prevention in the Era of the Delta Variant. Meyerowitz EA, Richterman A. Infect Dis Clin North Am 36 267-293 (2022)
  7. Viral proteases as therapeutic targets. Majerová T, Konvalinka J. Mol Aspects Med 88 101159 (2022)
  8. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Jahirul Islam M, Nawal Islam N, Siddik Alom M, Kabir M, Halim MA. Immunobiology 228 152302 (2023)
  9. Efficacy, Immunogenicity, and Safety of COVID-19 Vaccines in Randomized Control Trials in the Pre-Delta Era: A Systematic Review and Network Meta-Analysis. Oh S, Purja S, Shin H, Kim MS, Park S, Kronbichler A, Smith L, Eisenhut M, Shin JI, Kim E. Vaccines (Basel) 10 1572 (2022)
  10. Conquer by cryo-EM without physically dividing. Lander GC, Glaeser RM. Biochem Soc Trans 49 2287-2298 (2021)
  11. Opportunities and Challenges in Targeting the Proofreading Activity of SARS-CoV-2 Polymerase Complex. Deval J, Gurard-Levin ZA. Molecules 27 2918 (2022)
  12. Nucleoside analogs for management of respiratory virus infections: mechanism of action and clinical efficacy. Stevaert A, Groaz E, Naesens L. Curr Opin Virol 57 101279 (2022)
  13. Current understanding of nucleoside analogs inhibiting the SARS-CoV-2 RNA-dependent RNA polymerase. Xu T, Zhang L. Comput Struct Biotechnol J 21 4385-4394 (2023)
  14. On the Evolutionary Trajectory of SARS-CoV-2: Host Immunity as a Driver of Adaptation in RNA Viruses. Warger J, Gaudieri S. Viruses 15 70 (2022)
  15. How hydrolytic exoribonucleases impact human disease: Two sides of the same story. Costa SM, Saramago M, Matos RG, Arraiano CM, Viegas SC. FEBS Open Bio 13 957-974 (2023)
  16. SARS-CoV-2 biology and host interactions. Steiner S, Kratzel A, Barut GT, Lang RM, Aguiar Moreira E, Thomann L, Kelly JN, Thiel V. Nat Rev Microbiol 22 206-225 (2024)
  17. The Potential of Purinergic Signaling to Thwart Viruses Including SARS-CoV-2. Ferrari D, Rubini M, Burns JS. Front Immunol 13 904419 (2022)
  18. Subgenomic RNAs and Their Encoded Proteins Contribute to the Rapid Duplication of SARS-CoV-2 and COVID-19 Progression. Zhang Y, Zhang X, Zheng H, Liu L. Biomolecules 12 1680 (2022)

Articles citing this publication (39)

  1. Search and sequence analysis tools services from EMBL-EBI in 2022. Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez R. Nucleic Acids Res 50 W276-W279 (2022)
  2. Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN. Moeller NH, Shi K, Demir Ö, Belica C, Banerjee S, Yin L, Durfee C, Amaro RE, Aihara H. Proc Natl Acad Sci U S A 119 e2106379119 (2022)
  3. Characterization of the SARS-CoV-2 ExoN (nsp14ExoN-nsp10) complex: implications for its role in viral genome stability and inhibitor identification. Baddock HT, Brolih S, Yosaatmadja Y, Ratnaweera M, Bielinski M, Swift LP, Cruz-Migoni A, Fan H, Keown JR, Walker AP, Morris GM, Grimes JM, Fodor E, Schofield CJ, Gileadi O, McHugh PJ. Nucleic Acids Res 50 1484-1500 (2022)
  4. Inhibition of SARS-CoV-2 polymerase by nucleotide analogs from a single-molecule perspective. Seifert M, Bera SC, van Nies P, Kirchdoerfer RN, Shannon A, Le TT, Meng X, Xia H, Wood JM, Harris LD, Papini FS, Arnold JJ, Almo S, Grove TL, Shi PY, Xiang Y, Canard B, Depken M, Cameron CE, Dulin D. Elife 10 e70968 (2021)
  5. An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15. Perry JK, Appleby TC, Bilello JP, Feng JY, Schmitz U, Campbell EA. J Biol Chem 297 101218 (2021)
  6. Coronaviral RNA-methyltransferases: function, structure and inhibition. Nencka R, Silhan J, Klima M, Otava T, Kocek H, Krafcikova P, Boura E. Nucleic Acids Res 50 635-650 (2022)
  7. SARS-CoV-2 virus NSP14 Impairs NRF2/HMOX1 activation by targeting Sirtuin 1. Zhang S, Wang J, Wang L, Aliyari S, Cheng G. Cell Mol Immunol 19 872-882 (2022)
  8. Structure-function analysis of the nsp14 N7-guanine methyltransferase reveals an essential role in Betacoronavirus replication. Ogando NS, El Kazzi P, Zevenhoven-Dobbe JC, Bontes BW, Decombe A, Posthuma CC, Thiel V, Canard B, Ferron F, Decroly E, Snijder EJ. Proc Natl Acad Sci U S A 118 e2108709118 (2021)
  9. Refolding of lid subdomain of SARS-CoV-2 nsp14 upon nsp10 interaction releases exonuclease activity. Czarna A, Plewka J, Kresik L, Matsuda A, Karim A, Robinson C, O'Byrne S, Cunningham F, Georgiou I, Wilk P, Pachota M, Popowicz G, Wyatt PG, Dubin G, Pyrć K. Structure 30 1050-1054.e2 (2022)
  10. Activation of the SARS-CoV-2 NSP14 3'-5' exoribonuclease by NSP10 and response to antiviral inhibitors. Riccio AA, Sullivan ED, Copeland WC. J Biol Chem 298 101518 (2022)
  11. SIRT5 is a proviral factor that interacts with SARS-CoV-2 Nsp14 protein. Walter M, Chen IP, Vallejo-Gracia A, Kim IJ, Bielska O, Lam VL, Hayashi JM, Cruz A, Shah S, Soveg FW, Gross JD, Krogan NJ, Jerome KR, Schilling B, Ott M, Verdin E. PLoS Pathog 18 e1010811 (2022)
  12. Crystal structures and fragment screening of SARS-CoV-2 NSP14 reveal details of exoribonuclease activation and mRNA capping and provide starting points for antiviral drug development. Imprachim N, Yosaatmadja Y, Newman JA. Nucleic Acids Res 51 475-487 (2023)
  13. Bisubstrate Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 Nsp14 Methyltransferase. Jung E, Soto-Acosta R, Xie J, Wilson DJ, Dreis CD, Majima R, Edwards TC, Geraghty RJ, Chen L. ACS Med Chem Lett 13 1477-1484 (2022)
  14. Chemical biology and medicinal chemistry of RNA methyltransferases. Fischer TR, Meidner L, Schwickert M, Weber M, Zimmermann RA, Kersten C, Schirmeister T, Helm M. Nucleic Acids Res 50 4216-4245 (2022)
  15. Effects of natural RNA modifications on the activity of SARS-CoV-2 RNA-dependent RNA polymerase. Petushkov I, Esyunina D, Kulbachinskiy A. FEBS J 290 80-92 (2023)
  16. Fidelity of Ribonucleotide Incorporation by the SARS-CoV-2 Replication Complex. Yin X, Popa H, Stapon A, Bouda E, Garcia-Diaz M. J Mol Biol 435 167973 (2023)
  17. SARS-CoV-2 nsp14 Exoribonuclease Removes the Natural Antiviral 3'-Deoxy-3',4'-didehydro-cytidine Nucleotide from RNA. Moeller NH, Passow KT, Harki DA, Aihara H. Viruses 14 1790 (2022)
  18. Structure-Based Discovery of Inhibitors of the SARS-CoV-2 Nsp14 N7-Methyltransferase. Singh I, Li F, Fink EA, Chau I, Li A, Rodriguez-Hernández A, Glenn I, Zapatero-Belinchón FJ, Rodriguez ML, Devkota K, Deng Z, White K, Wan X, Tolmachova NA, Moroz YS, Kaniskan HÜ, Ott M, García-Sastre A, Jin J, Fujimori DG, Irwin JJ, Vedadi M, Shoichet BK. J Med Chem 66 7785-7803 (2023)
  19. Identifying Structural Features of Nucleotide Analogues to Overcome SARS-CoV-2 Exonuclease Activity. Wang X, Tao C, Morozova I, Kalachikov S, Li X, Kumar S, Russo JJ, Ju J. Viruses 14 1413 (2022)
  20. A lung-specific mutational signature enables inference of viral and bacterial respiratory niche. Ruis C, Peacock TP, Polo LM, Masone D, Alvarez MS, Hinrichs AS, Turakhia Y, Cheng Y, McBroome J, Corbett-Detig R, Parkhill J, Floto RA. Microb Genom 9 (2023)
  21. A universal fluorescence polarization high throughput screening assay to target the SAM-binding sites of SARS-CoV-2 and other viral methyltransferases. Samrat SK, Bashir Q, Zhang R, Huang Y, Liu Y, Wu X, Brown T, Wang W, Zheng YG, Zhang QY, Chen Y, Li Z, Li H. Emerg Microbes Infect 12 2204164 (2023)
  22. Inhibition of the RNA-dependent RNA Polymerase of the SARS-CoV-2 by Short Peptide Inhibitors. Pant S, Jena NR. Eur J Pharm Sci 167 106012 (2021)
  23. Interfering with nucleotide excision by the coronavirus 3'-to-5' exoribonuclease. Chinthapatla R, Sotoudegan M, Srivastava P, Anderson TK, Moustafa IM, Passow KT, Kennelly SA, Moorthy R, Dulin D, Feng JY, Harki DA, Kirchdoerfer RN, Cameron CE, Arnold JJ. Nucleic Acids Res 51 315-336 (2023)
  24. Modeling the Enzymatic Mechanism of the SARS-CoV-2 RNA-Dependent RNA Polymerase by DFT/MM-MD: An Unusual Active Site Leading to High Replication Rates. Bignon E, Monari A. J Chem Inf Model 62 4261-4269 (2022)
  25. Proteolytic Processing of the Coronavirus Replicase Nonstructural Protein 14 Exonuclease Is Not Required for Virus Replication but Alters RNA Synthesis and Viral Fitness. Anderson-Daniels J, Gribble J, Denison M. J Virol 96 e0084122 (2022)
  26. A Computational Study on the Interaction of NSP10 and NSP14: Unraveling the RNA Synthesis Proofreading Mechanism in SARS-CoV-2, SARS-CoV, and MERS-CoV. Sarma H, Sastry GN. ACS Omega 7 30003-30022 (2022)
  27. A Proofreading Mutation with an Allosteric Effect Allows a Cluster of SARS-CoV-2 Viruses to Rapidly Evolve. Mack AH, Menzies G, Southgate A, Jones DD, Connor TR. Mol Biol Evol 40 msad209 (2023)
  28. ATP enhances the error-prone ribonucleotide incorporation by the SARS-CoV-2 RNA polymerase. Pourfarjam Y, Ma Z, Kim IK. Biochem Biophys Res Commun 625 53-59 (2022)
  29. Exploring the pharmacological aspects of natural phytochemicals against SARS-CoV-2 Nsp14 through an in silico approach. De A, Bhattacharya S, Debroy B, Bhattacharya A, Pal K. In Silico Pharmacol 11 12 (2023)
  30. An exonuclease-resistant chain-terminating nucleotide analogue targeting the SARS-CoV-2 replicase complex. Shannon A, Chazot A, Feracci M, Falcou C, Fattorini V, Selisko B, Good S, Moussa A, Sommadossi JP, Ferron F, Alvarez K, Canard B. Nucleic Acids Res 52 1325-1340 (2024)
  31. Analogs of the Catechol Derivative Dynasore Inhibit HIV-1 Ribonuclease H, SARS-CoV-2 nsp14 Exoribonuclease, and Virus Replication. Asthana A, Corona A, Shin WJ, Kwak MJ, Gaughan C, Tramontano E, Jung JU, Schobert R, Jha BK, Silverman RH, Biersack B. Viruses 15 1539 (2023)
  32. Analysis of critical protein-protein interactions of SARS-CoV-2 capping and proofreading molecular machineries towards designing dual target inhibitory peptides. Arabi-Jeshvaghani F, Javadi-Zarnaghi F, Ganjalikhany MR. Sci Rep 13 350 (2023)
  33. Informatics and Computational Approaches for the Discovery and Optimization of Natural Product-Inspired Inhibitors of the SARS-CoV-2 2'-O-Methyltransferase. Hanna GS, Benjamin MM, Choo YM, De R, Schinazi RF, Nielson SE, Hevel JM, Hamann MT. J Nat Prod 87 217-227 (2024)
  34. Mechanisms of Coronavirus Genome Stability As Potential Targets for Antiviral Drugs. Yuyukina SK, Zharkov DO. Her Russ Acad Sci 92 470-478 (2022)
  35. Substrate Specificity and Kinetics of RNA Hydrolysis by SARS-CoV-2 NSP10/14 Exonuclease. Dangerfield TL, Johnson KA. ACS Bio Med Chem Au 2 600-606 (2022)
  36. Virtual screening and molecular dynamics simulation for identification of natural antiviral agents targeting SARS-CoV-2 NSP10. Zhao H, Liu J, He L, Zhang L, Yu R, Kang C. Biochem Biophys Res Commun 626 114-120 (2022)
  37. Activity of nsp14 Exonuclease from SARS-CoV-2 towards RNAs with Modified 3'-Termini. Yuyukina SK, Barmatov AE, Bizyaev SN, Stetsenko DA, Sergeeva OV, Zatsepin TS, Zharkov DO. Dokl Biochem Biophys 509 65-69 (2023)
  38. Comprehensive Understanding of the Kinetic Behaviors of Main Protease from SARS-CoV-2 and SARS-CoV: New Data and Comparison to Published Parameters. Li F, Fang T, Guo F, Zhao Z, Zhang J. Molecules 28 4605 (2023)
  39. SARS-CoV-2 Infections in Vaccinated and Unvaccinated Populations in Camp Lemonnier, Djibouti, from April 2020 to January 2022. Arnold CE, Voegtly LJ, Stefanov EK, Lueder MR, Luquette AE, Miller RH, Miner HL, Bennett AJ, Glang L, McGinnis TN, Reisinger KE, Dugan JW, Mangat MA, Silberger DJ, Pavlicek RL, Watters CM, Rice GK, Malagon F, Cer RZ, Eggan SM, Bishop-Lilly KA. Viruses 14 1918 (2022)