7qkf Citations

Assembly of recombinant tau into filaments identical to those of Alzheimer's disease and chronic traumatic encephalopathy.

Abstract

Many neurodegenerative diseases, including Alzheimer’s disease, the most common form of dementia, are characterised by knotted clumps of a protein called tau. In these diseases, tau misfolds, stacks together and forms abnormal filaments, which have a structured core and fuzzy coat. These sticky, misfolded proteins are thought to be toxic to brain cells, the loss of which ultimately causes problems with how people move, think, feel or behave. Reconstructing the shape of tau filaments using an atomic-level imaging technique called electron cryo-microscopy, or cryo-EM, researchers have found distinct types of tau filaments present in certain diseases. In Alzheimer’s disease, for example, a mixture of paired helical and straight filaments is found. Different tau filaments are seen again in chronic traumatic encephalopathy (CTE), a condition associated with repetitive brain trauma. It remains unclear, however, how tau folds into these distinct shapes and under what conditions it forms certain types of filaments. The role that distinct tau folds play in different diseases is also poorly understood. This is largely because researchers making tau proteins in the lab have yet to replicate the exact structure of tau filaments found in diseased brain tissue. Lövestam et al. describe the conditions for making tau filaments in the lab identical to those isolated from the brains of people who died from Alzheimer’s disease and CTE. Lövestam et al. instructed bacteria to make tau protein, optimised filament assembly conditions, including shaking time and speed, and found that bona fide filaments formed from shortened versions of tau. On cryo-EM imaging, the lab-produced filaments had the same left-handed twist and helical symmetry as filaments characteristic of Alzheimer’s disease. Adding salts, however, changed the shape of tau filaments. In the presence of sodium chloride, otherwise known as kitchen salt, tau formed filaments with a filled cavity at the core, identical to tau filaments observed in CTE. Again, this structure was confirmed on cryo-EM imaging. Being able to make tau filaments identical to those found in human tauopathies will allow scientists to study how these filaments form and elucidate what role they play in disease. Ultimately, a better understanding of tau filament formation could lead to improved diagnostics and treatments for neurodegenerative diseases involving tau.

Reviews - 7qkf mentioned but not cited (1)

  1. Insights into the Structural Conformations of the Tau Protein in Different Aggregation Status. Pinzi L, Bisi N, Sorbi C, Franchini S, Tonali N, Rastelli G. Molecules 28 4544 (2023)


Reviews citing this publication (13)

  1. NLRP3 inflammasome in neurodegenerative disease. Anderson FL, Biggs KE, Rankin BE, Havrda MC. Transl Res 252 21-33 (2023)
  2. Can accelerated ageing models inform us on age-related tauopathies? Han ZZ, Fleet A, Larrieu D. Aging Cell 22 e13830 (2023)
  3. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Front Chem 10 886382 (2022)
  4. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Scheres SHW, Ryskeldi-Falcon B, Goedert M. Nature 621 701-710 (2023)
  5. AlphaFold 2 and NMR Spectroscopy: Partners to Understand Protein Structure, Dynamics and Function. Laurents DV. Front Mol Biosci 9 906437 (2022)
  6. Concomitant protein pathogenesis in Parkinson's disease and perspective mechanisms. Han Y, He Z. Front Aging Neurosci 15 1189809 (2023)
  7. Conformational strains of pathogenic amyloid proteins in neurodegenerative diseases. Li D, Liu C. Nat Rev Neurosci 23 523-534 (2022)
  8. Dityrosine cross-linking and its potential roles in Alzheimer's disease. Maina MB, Al-Hilaly YK, Serpell LC. Front Neurosci 17 1132670 (2023)
  9. It's ok to be outnumbered - sub-stoichiometric modulation of homomeric protein complexes. Dimitrova YN, Gutierrez JA, Huard K. RSC Med Chem 14 22-46 (2023)
  10. Mechanisms and pathology of protein misfolding and aggregation. Louros N, Schymkowitz J, Rousseau F. Nat Rev Mol Cell Biol 24 912-933 (2023)
  11. Pick's Disease, Seeding an Answer to the Clinical Diagnosis Conundrum. Tamvaka N, Manne S, Kondru N, Ross OA. Biomedicines 11 1646 (2023)
  12. Populations of Tau Conformers Drive Prion-like Strain Effects in Alzheimer's Disease and Related Dementias. Hromadkova L, Siddiqi MK, Liu H, Safar JG. Cells 11 2997 (2022)
  13. Visualization analysis of exercise intervention on Alzheimer disease based on bibliometrics: Trends, hotspots and topics. Jin Y, Li X, Yuan Q, Huang X, Zhang D. Medicine (Baltimore) 102 e36347 (2023)

Articles citing this publication (43)

  1. Cryo-EM structures of prion protein filaments from Gerstmann-Sträussler-Scheinker disease. Hallinan GI, Ozcan KA, Hoq MR, Cracco L, Vago FS, Bharath SR, Li D, Jacobsen M, Doud EH, Mosley AL, Fernandez A, Garringer HJ, Jiang W, Ghetti B, Vidal R. Acta Neuropathol 144 509-520 (2022)
  2. Structures of α-synuclein filaments from human brains with Lewy pathology. Yang Y, Shi Y, Schweighauser M, Zhang X, Kotecha A, Murzin AG, Garringer HJ, Cullinane PW, Saito Y, Foroud T, Warner TT, Hasegawa K, Vidal R, Murayama S, Revesz T, Ghetti B, Hasegawa M, Lashley T, Scheres SHW, Goedert M. Nature 610 791-795 (2022)
  3. In vitro Tau Aggregation Inducer Molecules Influence the Effects of MAPT Mutations on Aggregation Dynamics. Ingham DJ, Hillyer KM, McGuire MJ, Gamblin TC. Biochemistry 61 1243-1259 (2022)
  4. Chemical Features of Polyanions Modulate Tau Aggregation and Conformational States. Montgomery KM, Carroll EC, Thwin AC, Quddus AY, Hodges P, Southworth DR, Gestwicki JE. J Am Chem Soc (2023)
  5. Hierarchical Assembly of Intrinsically Disordered Short Peptides. Guo J, Rich-New ST, Liu C, Huang Y, Tan W, He H, Yi M, Zhang X, Egelman EH, Wang F, Xu B. Chem 9 2530-2546 (2023)
  6. High-throughput cryo-EM structure determination of amyloids. Lövestam S, Scheres SHW. Faraday Discuss 240 243-260 (2022)
  7. Location of the cross-β structure in prion fibrils: A search by seeding and electron spin resonance spectroscopy. Chu BK, Tsai RF, Hung CL, Kuo YH, Chen EH, Chiang YW, Chan SI, Chen RP. Protein Sci 31 e4326 (2022)
  8. Network of hotspot interactions cluster tau amyloid folds. Mullapudi V, Vaquer-Alicea J, Bommareddy V, Vega AR, Ryder BD, White CL, Diamond MI, Joachimiak LA. Nat Commun 14 895 (2023)
  9. Self-Aggregating Tau Fragments Recapitulate Pathologic Phenotypes and Neurotoxicity of Alzheimer's Disease in Mice. Le LTHL, Lee J, Im D, Park S, Hwang KD, Lee JH, Jiang Y, Lee YS, Suh YH, Kim HI, Lee MJ. Adv Sci (Weinh) 10 e2302035 (2023)
  10. A new electrochemical method that mimics phosphorylation of the core tau peptide K18 enables kinetic and structural analysis of intermediates and assembly. Masquelier E, Taxon E, Liang SP, Al Sabeh Y, Sepunaru L, Gordon MJ, Morse DE. J Biol Chem 299 103011 (2023)
  11. A new polymorphism of human amylin fibrils with similar protofilaments and a conserved core. Li D, Zhang X, Wang Y, Zhang H, Song K, Bao K, Zhu P. iScience 25 105705 (2022)
  12. Amyloid fibril structures of tau: Conformational plasticity of the second microtubule-binding repeat. El Mammeri N, Duan P, Dregni AJ, Hong M. Sci Adv 9 eadh4731 (2023)
  13. Cryo-EM structure of ex vivo fibrils associated with extreme AA amyloidosis prevalence in a cat shelter. Schulte T, Chaves-Sanjuan A, Mazzini G, Speranzini V, Lavatelli F, Ferri F, Palizzotto C, Mazza M, Milani P, Nuvolone M, Vogt AC, Vogel M, Palladini G, Merlini G, Bolognesi M, Ferro S, Zini E, Ricagno S. Nat Commun 13 7041 (2022)
  14. Cryo-EM structures of tau filaments from SH-SY5Y cells seeded with brain extracts from cases of Alzheimer's disease and corticobasal degeneration. Tarutani A, Lövestam S, Zhang X, Kotecha A, Robinson AC, Mann DMA, Saito Y, Murayama S, Tomita T, Goedert M, Scheres SHW, Hasegawa M. FEBS Open Bio 13 1394-1404 (2023)
  15. Cryo-EM structures of tau filaments from the brains of mice transgenic for human mutant P301S Tau. Schweighauser M, Murzin AG, Macdonald J, Lavenir I, Crowther RA, Scheres SHW, Goedert M. Acta Neuropathol Commun 11 160 (2023)
  16. Cryomicroscopy in situ: what is the smallest molecule that can be directly identified without labels in a cell? Russo CJ, Dickerson JL, Naydenova K. Faraday Discuss 240 277-302 (2022)
  17. Disease-Associated Mutations in Tau Encode for Changes in Aggregate Structure Conformation. Sun KT, Patel T, Kang SG, Yarahmady A, Srinivasan M, Julien O, Heras J, Mok SA. ACS Chem Neurosci 14 4282-4297 (2023)
  18. Disease-relevant β2-microglobulin variants share a common amyloid fold. Wilkinson M, Gallardo RU, Martinez RM, Guthertz N, So M, Aubrey LD, Radford SE, Ranson NA. Nat Commun 14 1190 (2023)
  19. Disease-specific tau filaments assemble via polymorphic intermediates. Lövestam S, Li D, Wagstaff JL, Kotecha A, Kimanius D, McLaughlin SH, Murzin AG, Freund SMV, Goedert M, Scheres SHW. Nature (2023)
  20. Distinct tau folds initiate templated seeding and alter the post-translational modification profile. Tarutani A, Kametani F, Tahira M, Saito Y, Yoshida M, Robinson AC, Mann DMA, Murayama S, Tomita T, Hasegawa M. Brain 146 4988-4999 (2023)
  21. Evolving prion-like tau conformers differentially alter postsynaptic proteins in neurons inoculated with distinct isolates of Alzheimer's disease tau. Hromadkova L, Kim C, Haldiman T, Peng L, Zhu X, Cohen M, de Silva R, Safar JG. Cell Biosci 13 174 (2023)
  22. Fully co-factor-free ClearTau platform produces seeding-competent Tau fibrils for reconstructing pathological Tau aggregates. Limorenko G, Tatli M, Kolla R, Nazarov S, Weil MT, Schöndorf DC, Geist D, Reinhardt P, Ehrnhoefer DE, Stahlberg H, Gasparini L, Lashuel HA. Nat Commun 14 3939 (2023)
  23. Identical tau filaments in subacute sclerosing panencephalitis and chronic traumatic encephalopathy. Qi C, Hasegawa M, Takao M, Sakai M, Sasaki M, Mizutani M, Akagi A, Iwasaki Y, Miyahara H, Yoshida M, Scheres SHW, Goedert M. Acta Neuropathol Commun 11 74 (2023)
  24. Improving the hole picture: towards a consensus on the mechanism of nuclear transport. Cowburn D, Rout M. Biochem Soc Trans 51 871-886 (2023)
  25. In pursuit of degenerative brain disease diagnosis: Dementia biomarkers detected by DNA aptamer-attached portable graphene biosensor. Bodily TA, Ramanathan A, Wei S, Karkisaval A, Bhatt N, Jerez C, Haque MA, Ramil A, Heda P, Wang Y, Kumar S, Leite M, Li T, Zhao J, Lal R. Proc Natl Acad Sci U S A 120 e2311565120 (2023)
  26. Initiation and modulation of Tau protein phase separation by the drug suramin. Prince PR, Hochmair J, Brognaro H, Gevorgyan S, Franck M, Schubert R, Lorenzen K, Yazici S, Mandelkow E, Wegmann S, Betzel C. Sci Rep 13 3963 (2023)
  27. Investigating the Theranostic Potential of Graphene Quantum Dots in Alzheimer's Disease. Walton-Raaby M, Woods R, Kalyaanamoorthy S. Int J Mol Sci 24 9476 (2023)
  28. Multiancestry analysis of the HLA locus in Alzheimer's and Parkinson's diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes. Le Guen Y, Luo G, Ambati A, Damotte V, Jansen I, Yu E, Nicolas A, de Rojas I, Peixoto Leal T, Miyashita A, Bellenguez C, Lian MM, Parveen K, Morizono T, Park H, Grenier-Boley B, Naito T, Küçükali F, Talyansky SD, Yogeshwar SM, Sempere V, Satake W, Alvarez V, Arosio B, Belloy ME, Benussi L, Boland A, Borroni B, Bullido MJ, Caffarra P, Clarimon J, Daniele A, Darling D, Debette S, Deleuze JF, Dichgans M, Dufouil C, During E, Düzel E, Galimberti D, Garcia-Ribas G, García-Alberca JM, García-González P, Giedraitis V, Goldhardt O, Graff C, Grünblatt E, Hanon O, Hausner L, Heilmann-Heimbach S, Holstege H, Hort J, Jung YJ, Jürgen D, Kern S, Kuulasmaa T, Lee KH, Lin L, Masullo C, Mecocci P, Mehrabian S, de Mendonça A, Boada M, Mir P, Moebus S, Moreno F, Nacmias B, Nicolas G, Niida S, Nordestgaard BG, Papenberg G, Papma J, Parnetti L, Pasquier F, Pastor P, Peters O, Pijnenburg YAL, Piñol-Ripoll G, Popp J, Porcel LM, Puerta R, Pérez-Tur J, Rainero I, Ramakers I, Real LM, Riedel-Heller S, Rodriguez-Rodriguez E, Ross OA, Royo LJ, Rujescu D, Scarmeas N, Scheltens P, Scherbaum N, Schneider A, Seripa D, Skoog I, Solfrizzi V, Spalletta G, Squassina A, van Swieten J, Sánchez-Valle R, Tan EK, Tegos T, Teunissen C, Thomassen JQ, Tremolizzo L, Vyhnalek M, Verhey F, Waern M, Wiltfang J, Zhang J, EADB, GR@ACE study group, DEGESCO consortium, DemGene, EADI, GERAD, Asian Parkinson’s Disease Genetics consortium, Zetterberg H, Blennow K, He Z, Williams J, Amouyel P, Jessen F, Kehoe PG, Andreassen OA, Van Duin C, Tsolaki M, Sánchez-Juan P, Frikke-Schmidt R, Sleegers K, Toda T, Zettergren A, Ingelsson M, Okada Y, Rossi G, Hiltunen M, Gim J, Ozaki K, Sims R, Foo JN, van der Flier W, Ikeuchi T, Ramirez A, Mata I, Ruiz A, Gan-Or Z, Lambert JC, Greicius MD, Mignot E. Proc Natl Acad Sci U S A 120 e2302720120 (2023)
  29. Multiple Factors Influence the Incubation Period of ALS Prion-like Transmission in SOD1 Transgenic Mice. Ayers JI, Xu G, Lu Q, Dillon K, Fromholt S, Borchelt DR. Viruses 15 1819 (2023)
  30. New SNCA mutation and structures of α-synuclein filaments from juvenile-onset synucleinopathy. Yang Y, Garringer HJ, Shi Y, Lövestam S, Peak-Chew S, Zhang X, Kotecha A, Bacioglu M, Koto A, Takao M, Spillantini MG, Ghetti B, Vidal R, Murzin AG, Scheres SHW, Goedert M. Acta Neuropathol 145 561-572 (2023)
  31. Reconstitution of the Alzheimer's Disease Tau Core Structure from Recombinant Tau297-391 Yields Variable Quaternary Structures as Seen by Negative Stain and Cryo-EM. Glynn C, Chun JE, Donahue CC, Nadler MJS, Fan Z, Hyman BT. Biochemistry 63 194-201 (2024)
  32. Saturation mutagenesis of α-synuclein reveals monomer fold that modulates aggregation. Chlebowicz J, Russ W, Chen D, Vega A, Vernino S, White CL, Rizo J, Joachimiak LA, Diamond MI. Sci Adv 9 eadh3457 (2023)
  33. Selective Detection of Misfolded Tau From Postmortem Alzheimer's Disease Brains. Wu L, Wang Z, Lad S, Gilyazova N, Dougharty DT, Marcus M, Henderson F, Ray WK, Siedlak S, Li J, Helm RF, Zhu X, Bloom GS, Wang SJ, Zou WQ, Xu B. Front Aging Neurosci 14 945875 (2022)
  34. Shapeshifting tau: from intrinsically disordered to paired-helical filaments. Mengham K, Al-Hilaly Y, Oakley S, Kasbi K, Maina MB, Serpell LC. Essays Biochem 66 1001-1011 (2022)
  35. Solid-state NMR of paired helical filaments formed by the core tau fragment tau(297-391). Al-Hilaly YK, Hurt C, Rickard JE, Harrington CR, Storey JMD, Wischik CM, Serpell LC, Siemer AB. Front Neurosci 16 988074 (2022)
  36. Specific detection of tau seeding activity in Alzheimer's disease using rationally designed biosensor cells. Lathuiliere A, Jo Y, Perbet R, Donahue C, Commins C, Quittot N, Fan Z, Bennett RE, Hyman BT. Mol Neurodegener 18 53 (2023)
  37. Structural analysis and architectural principles of the bacterial amyloid curli. Sleutel M, Pradhan B, Volkov AN, Remaut H. Nat Commun 14 2822 (2023)
  38. Structure of the nonhelical filament of the Alzheimer's disease tau core. Duan P, Dregni AJ, Mammeri NE, Hong M. Proc Natl Acad Sci U S A 120 e2310067120 (2023)
  39. Subtle change of fibrillation condition leads to substantial alteration of recombinant Tau fibril structure. Li X, Zhang S, Liu Z, Tao Y, Xia W, Sun Y, Liu C, Le W, Sun B, Li D. iScience 25 105645 (2022)
  40. Tau and Amyloid β Protein in Patient-Derived Aqueous Brain Extracts Act Concomitantly to Disrupt Long-Term Potentiation in Vivo. Ondrejcak T, Klyubin I, Hu NW, O'Malley TT, Corbett GT, Winters R, Perkinton MS, Billinton A, Prenderville JA, Walsh DM, Rowan MJ. J Neurosci 43 5870-5879 (2023)
  41. Tau filaments from amyotrophic lateral sclerosis/parkinsonism-dementia complex adopt the CTE fold. Qi C, Verheijen BM, Kokubo Y, Shi Y, Tetter S, Murzin AG, Nakahara A, Morimoto S, Vermulst M, Sasaki R, Aronica E, Hirokawa Y, Oyanagi K, Kakita A, Ryskeldi-Falcon B, Yoshida M, Hasegawa M, Scheres SHW, Goedert M. Proc Natl Acad Sci U S A 120 e2306767120 (2023)
  42. Tau seeds occur before earliest Alzheimer's changes and are prevalent across neurodegenerative diseases. Manca M, Standke HG, Browne DF, Huntley ML, Thomas OR, Orrú CD, Hughson AG, Kim Y, Zhang J, Tatsuoka C, Zhu X, Hiniker A, Coughlin DG, Galasko D, Kraus A. Acta Neuropathol 146 31-50 (2023)
  43. The Cryo-EM structures of two amphibian antimicrobial cross-β amyloid fibrils. Bücker R, Seuring C, Cazey C, Veith K, García-Alai M, Grünewald K, Landau M. Nat Commun 13 4356 (2022)