8fef Citations

Structure of an endogenous mycobacterial MCE lipid transporter.

Nature (2023)
Related entries: 8fed, 8fee

Cited: 16 times
EuropePMC logo PMID: 37495693

Abstract

To replicate inside macrophages and cause tuberculosis, Mycobacterium tuberculosis must scavenge a variety of nutrients from the host1,2. The mammalian cell entry (MCE) proteins are important virulence factors in M. tuberculosis1,3, where they are encoded by large gene clusters and have been implicated in the transport of fatty acids4-7 and cholesterol1,4,8 across the impermeable mycobacterial cell envelope. Very little is known about how cargos are transported across this barrier, and it remains unclear how the approximately ten proteins encoded by a mycobacterial mce gene cluster assemble to transport cargo across the cell envelope. Here we report the cryo-electron microscopy (cryo-EM) structure of the endogenous Mce1 lipid-import machine of Mycobacterium smegmatis-a non-pathogenic relative of M. tuberculosis. The structure reveals how the proteins of the Mce1 system assemble to form an elongated ABC transporter complex that is long enough to span the cell envelope. The Mce1 complex is dominated by a curved, needle-like domain that appears to be unrelated to previously described protein structures, and creates a protected hydrophobic pathway for lipid transport across the periplasm. Our structural data revealed the presence of a subunit of the Mce1 complex, which we identified using a combination of cryo-EM and AlphaFold2, and name LucB. Our data lead to a structural model for Mce1-mediated lipid import across the mycobacterial cell envelope.

Articles - 8fef mentioned but not cited (1)

  1. Protein target highlights in CASP15: Analysis of models by structure providers. Alexander LT, Durairaj J, Kryshtafovych A, Abriata LA, Bayo Y, Bhabha G, Breyton C, Caulton SG, Chen J, Degroux S, Ekiert DC, Erlandsen BS, Freddolino PL, Gilzer D, Greening C, Grimes JM, Grinter R, Gurusaran M, Hartmann MD, Hitchman CJ, Keown JR, Kropp A, Kursula P, Lovering AL, Lemaitre B, Lia A, Liu S, Logotheti M, Lu S, Markússon S, Miller MD, Minasov G, Niemann HH, Opazo F, Phillips GN, Davies OR, Rommelaere S, Rosas-Lemus M, Roversi P, Satchell K, Smith N, Wilson MA, Wu KL, Xia X, Xiao H, Zhang W, Zhou ZH, Fidelis K, Topf M, Moult J, Schwede T. Proteins 91 1571-1599 (2023)


Reviews citing this publication (4)

  1. Flipping the switch: dynamic modulation of membrane transporter activity in bacteria. Elston R, Mulligan C, Thomas GH. Microbiology (Reading) 169 (2023)
  2. Cell envelope diversity and evolution across the bacterial tree of life. Hashimi A, Tocheva EI. Nat Microbiol 9 2475-2487 (2024)
  3. Molecular Modeling and Simulation of the Mycobacterial Cell Envelope: From Individual Components to Cell Envelope Assemblies. Brown T, Chavent M, Im W. J Phys Chem B 127 10941-10949 (2023)
  4. Terrabacteria: redefining bacterial envelope diversity, biogenesis and evolution. Beaud Benyahia B, Taib N, Beloin C, Gribaldo S. Nat Rev Microbiol (2024)

Articles citing this publication (11)