spacer
spacer

PDBsum entry 1pyo

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase/hydrolase inhibitor PDB id
1pyo

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
159 a.a. *
98 a.a. *
Ligands
ACE-LEU-ASP-GLU-
SER-ASJ
×2
Waters ×385
* Residue conservation analysis
PDB id:
1pyo
Name: Hydrolase/hydrolase inhibitor
Title: Crystal structure of human caspase-2 in complex with acetyl-leu-asp- glu-ser-asp-cho
Structure: Caspase-2. Chain: a, c. Fragment: subunit p18, sequence database residues 151-316. Synonym: casp-2, ich-1 protease, ich- 1l/1s. Engineered: yes. Caspase-2. Chain: b, d. Fragment: subunit p12, sequence database residues 331-435. Synonym: casp-2, ich-1 protease, ich- 1l/1s.
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: casp2 or ich1. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes. Saccharomyces cerevisiae (baker's yeast). Organism_taxid: 559292.
Biol. unit: Hexamer (from PQS)
Resolution:
1.65Å     R-factor:   0.189     R-free:   0.213
Authors: A.Schweizer,C.Briand,M.G.Grutter
Key ref:
A.Schweizer et al. (2003). Crystal structure of caspase-2, apical initiator of the intrinsic apoptotic pathway. J Biol Chem, 278, 42441-42447. PubMed id: 12920126 DOI: 10.1074/jbc.M304895200
Date:
09-Jul-03     Release date:   26-Aug-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P42575  (CASP2_HUMAN) -  Caspase-2 from Homo sapiens
Seq:
Struc:
452 a.a.
159 a.a.
Protein chains
Pfam   ArchSchema ?
P42575  (CASP2_HUMAN) -  Caspase-2 from Homo sapiens
Seq:
Struc:
452 a.a.
98 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D: E.C.3.4.22.55  - caspase-2.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1074/jbc.M304895200 J Biol Chem 278:42441-42447 (2003)
PubMed id: 12920126  
 
 
Crystal structure of caspase-2, apical initiator of the intrinsic apoptotic pathway.
A.Schweizer, C.Briand, M.G.Grutter.
 
  ABSTRACT  
 
The cell death protease caspase-2 has recently been recognized as the most apical caspase in the apoptotic cascade ignited during cell stress signaling. Cytotoxic stress, such as that caused by cancer therapies, leads to activation of caspase-2, which acts as a direct effector of the mitochondrion-dependent apoptotic pathway resulting in programmed cell death. Here we report the x-ray structure of caspase-2 in complex with the inhibitor acetyl-Leu-Asp-Glu-Ser-Asp-aldehyde at 1.65-A resolution. Compared with other caspases, significant structural differences prevail in the active site region and the dimer interface. The structure reveals the hydrophobic properties of the S5 specificity pocket, which is unique to caspase-2, and provides the details of the inhibitor-protein interactions in subsites S1-S4. These features form the basis of caspase-2 specificity and allow the design of caspase-2-directed ligands for medical and analytical use. Another unique feature of caspase-2 is a disulfide bridge at the dimer interface, which covalently links the two monomers. Consistent with this finding, caspase-2 exists as a (p19/p12)2 dimer in solution, even in the absence of substrates or inhibitors. The intersubunit disulfide bridge stabilizes the dimeric form of caspase-2, whereas all other long prodomain caspases exist as monomers in solution, and dimer formation is driven by ligand binding. Therefore, the central disulfide bridge appears to represent a novel way of dimer stabilization in caspases.
 
  Selected figure(s)  
 
Figure 2.
FIG. 2. Comparison of the enzyme inhibitor interaction network of caspase-2 and caspase-3. Schematic drawing of the caspase-2 Ac-LDESD-cho inhibitor complex (a) and the caspase-3 Ac-DEVD-cho inhibitor complex (b) (1PAU [PDB] ; 37) with hydrogen bond interactions drawn as dashed lines (length: 2.6-3.4 Å). The diagram was produced by ChemDraw.
Figure 3.
FIG. 3. Binding pockets of caspase-2, caspase-3, and caspase-7. Comparison of the substrate binding region of caspase-2/Ac-LDESD-cho (a) with caspase-3/Ac-DEVD-cho (b) (1PAU [PDB] ; 37) and caspase-7/Ac-DEVD-cho (c) (1F1J [PDB] ; 35) using molecular surface representations. The inhibitors are drawn as stick models, the P5 Leu is colored in green as well as the N-terminal acetyl groups of the tetrapeptidic inhibitors. Surfaces are colored according to their electrostatic potential: positive and negative regions are indicated in blue and red, respectively. The figures were generated using the program GRASP (48).
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2003, 278, 42441-42447) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21095569 M.J.Leyva, F.Degiacomo, L.S.Kaltenbach, J.Holcomb, N.Zhang, J.Gafni, H.Park, D.C.Lo, G.S.Salvesen, L.M.Ellerby, and J.A.Ellman (2010).
Identification and evaluation of small molecule pan-caspase inhibitors in Huntington's disease models.
  Chem Biol, 17, 1189-1200.  
19283487 B.Fang, G.Fu, J.Agniswamy, R.W.Harrison, and I.T.Weber (2009).
Caspase-3 binds diverse P4 residues in peptides as revealed by crystallography and structural modeling.
  Apoptosis, 14, 741-752.
PDB codes: 3gjq 3gjr 3gjs 3gjt
19023332 G.Krumschnabel, B.Sohm, F.Bock, C.Manzl, and A.Villunger (2009).
The enigma of caspase-2: the laymen's view.
  Cell Death Differ, 16, 195-207.  
19332555 M.Madesh, W.X.Zong, B.J.Hawkins, S.Ramasamy, T.Venkatachalam, P.Mukhopadhyay, P.J.Doonan, K.M.Irrinki, M.Rajesh, P.Pacher, and C.B.Thompson (2009).
Execution of superoxide-induced cell death by the proapoptotic Bcl-2-related proteins Bid and Bak.
  Mol Cell Biol, 29, 3099-3112.  
19278658 N.Keller, J.Mares, O.Zerbe, and M.G.Grütter (2009).
Structural and biochemical studies on procaspase-8: new insights on initiator caspase activation.
  Structure, 17, 438-448.
PDB code: 2k7z
19479377 T.Kitevska, D.M.Spencer, and C.J.Hawkins (2009).
Caspase-2: controversial killer or checkpoint controller?
  Apoptosis, 14, 829-848.  
18780184 G.Fu, A.A.Chumanevich, J.Agniswamy, B.Fang, R.W.Harrison, and I.T.Weber (2008).
Structural basis for executioner caspase recognition of P5 position in substrates.
  Apoptosis, 13, 1291-1302.
PDB codes: 3edq 3edr
18238895 N.Baptiste-Okoh, A.M.Barsotti, and C.Prives (2008).
A role for caspase 2 and PIDD in the process of p53-mediated apoptosis.
  Proc Natl Acad Sci U S A, 105, 1937-1942.  
17502107 A.Schweizer, H.Roschitzki-Voser, P.Amstutz, C.Briand, M.Gulotti-Georgieva, E.Prenosil, H.K.Binz, G.Capitani, A.Baici, A.Plückthun, and M.G.Grütter (2007).
Inhibition of caspase-2 by a designed ankyrin repeat protein: specificity, structure, and inhibition mechanism.
  Structure, 15, 625-636.
PDB code: 2p2c
17594508 A.Yoshimori, J.Sakai, S.Sunaga, T.Kobayashi, S.Takahashi, N.Okita, R.Takasawa, and S.Tanuma (2007).
Structural and functional definition of the specificity of a novel caspase-3 inhibitor, Ac-DNLD-CHO.
  BMC Pharmacol, 7, 8.  
17008913 D.Chauvier, S.Ankri, C.Charriaut-Marlangue, R.Casimir, and E.Jacotot (2007).
Broad-spectrum caspase inhibitors: from myth to reality?
  Cell Death Differ, 14, 387-391.  
17697120 J.Agniswamy, B.Fang, and I.T.Weber (2007).
Plasticity of S2-S4 specificity pockets of executioner caspase-7 revealed by structural and kinetic analysis.
  FEBS J, 274, 4752-4765.
PDB codes: 2ql5 2ql7 2ql9 2qlb 2qlf 2qlj
17082814 J.C.Timmer, and G.S.Salvesen (2007).
Caspase substrates.
  Cell Death Differ, 14, 66-72.  
16977332 Q.Bao, and Y.Shi (2007).
Apoptosome: a platform for the activation of initiator caspases.
  Cell Death Differ, 14, 56-65.  
16770683 S.R.Dunn, W.S.Phillips, J.W.Spatafora, D.R.Green, and V.M.Weis (2006).
Highly conserved caspase and Bcl-2 homologues from the sea anemone Aiptasia pallida: lower metazoans as models for the study of apoptosis evolution.
  J Mol Evol, 63, 95.  
16200200 I.N.Lavrik, A.Golks, and P.H.Krammer (2005).
Caspases: pharmacological manipulation of cell death.
  J Clin Invest, 115, 2665-2672.  
16212486 N.Yan, and Y.Shi (2005).
Mechanisms of apoptosis through structural biology.
  Annu Rev Cell Dev Biol, 21, 35-56.  
16262685 P.K.Ho, and C.J.Hawkins (2005).
Mammalian initiator apoptotic caspases.
  FEBS J, 272, 5436-5453.  
16103367 S.Kasibhatla, K.A.Jessen, S.Maliartchouk, J.Y.Wang, N.M.English, J.Drewe, L.Qiu, S.P.Archer, A.E.Ponce, N.Sirisoma, S.Jiang, H.Z.Zhang, K.R.Gehlsen, S.X.Cai, D.R.Green, and B.Tseng (2005).
A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid.
  Proc Natl Acad Sci U S A, 102, 12095-12100.  
15314233 J.A.Hardy, J.Lam, J.T.Nguyen, T.O'Brien, and J.A.Wells (2004).
Discovery of an allosteric site in the caspases.
  Proc Natl Acad Sci U S A, 101, 12461-12466.
PDB codes: 1shj 1shl
15520809 S.J.Riedl, and Y.Shi (2004).
Molecular mechanisms of caspase regulation during apoptosis.
  Nat Rev Mol Cell Biol, 5, 897-907.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer