spacer
spacer

PDBsum entry 5e6e

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Oxygen transport PDB id
5e6e

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
141 a.a.
146 a.a.
Ligands
CMO-HEM ×2
MBN ×2
PO4
Waters ×441
PDB id:
5e6e
Name: Oxygen transport
Title: Crystal structure of carbonmonoxy sickle hemoglobin in r-state conformation
Structure: Hemoglobin subunit alpha. Chain: a. Synonym: alpha-globin, hemoglobin alpha chain. Engineered: yes. Hemoglobin subunit beta. Chain: b. Synonym: beta-globin, hemoglobin beta chain. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: hba1, hba2. Expressed in: homo sapiens. Expression_system_taxid: 9606. Gene: hbb. Expression_system_taxid: 9606
Resolution:
1.76Å     R-factor:   0.193     R-free:   0.243
Authors: M.K.Safo,M.H.Ahmed
Key ref: M.S.Ghatge et al. (2016). Crystal structure of carbonmonoxy sickle hemoglobin in R-state conformation. J Struct Biol, 194, 446-450. PubMed id: 27085422 DOI: 10.1016/j.jsb.2016.04.003
Date:
09-Oct-15     Release date:   28-Oct-15    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P69905  (HBA_HUMAN) -  Hemoglobin subunit alpha from Homo sapiens
Seq:
Struc:
142 a.a.
141 a.a.
Protein chain
Pfam   ArchSchema ?
P68871  (HBB_HUMAN) -  Hemoglobin subunit beta from Homo sapiens
Seq:
Struc:
147 a.a.
146 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
DOI no: 10.1016/j.jsb.2016.04.003 J Struct Biol 194:446-450 (2016)
PubMed id: 27085422  
 
 
Crystal structure of carbonmonoxy sickle hemoglobin in R-state conformation.
M.S.Ghatge, M.H.Ahmed, A.S.Omar, P.P.Pagare, S.Rosef, G.E.Kellogg, O.Abdulmalik, M.K.Safo.
 
  ABSTRACT  
 
The fundamental pathophysiology of sickle cell disease is predicated by the polymerization of deoxygenated (T-state) sickle hemoglobin (Hb S) into fibers that distort red blood cells into the characteristic sickle shape. The crystal structure of deoxygenated Hb S (DeoxyHb S) and other studies suggest that the polymer is initiated by a primary interaction between the mutation βVal6 from one Hb S molecule, and a hydrophobic acceptor pocket formed by the residues βAla70, βPhe85 and βLeu88 of an adjacent located Hb S molecule. On the contrary, oxygenated or liganded Hb S does not polymerize or incorporate in the polymer. In this paper we present the crystal structure of carbonmonoxy-ligated sickle Hb (COHb S) in the quaternary classical R-state at 1.76Å. The overall structure and the pathological donor and acceptor environments of COHb S are similar to those of the isomorphous CO-ligated R-state normal Hb (COHb A), but differ significantly from DeoxyHb S as expected. More importantly, the packing of COHb S molecules does not show the typical pathological interaction between βVal6 and the βAla70, βPhe85 and βLeu88 hydrophobic acceptor pocket observed in DeoxyHb S crystal. The structural analysis of COHb S, COHb A and DeoxyHb S provides atomic level insight into why liganded hemoglobin does not form a polymer.
 

 

spacer

spacer