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The Drug Discovery Challenge 

right molecule, right target  



High throughput automation 
 High-throughput screening Combinatorial chemistry 

Still need to consider carefully what to screen/make 



Choosing the right molecule 

• Goal: to find a lead compound that can be optimised to give a drug 
candidate 

− Optimisation: using chemical synthesis to modify the lead molecule in 
order to improve its chances of being a successful drug 

• The challenge: chemical space is vast 

− Estimates vary 
• Reymond et al. suggest there are ~1 billion compounds with up to 13 heavy 

atoms 

• There are ~30 million known compounds 

• A typical pharmaceutical compound collection contains ~1 million 
compounds 

• High throughput screening allows large (up to 1 million) numbers of 
compounds to be tested  

− But very small proportion of “available” compounds 

− Large scale screening is expensive 

− Not all targets are suitable for HTS 

Blum, L.C. & Reymond, J.-louis . J.  Am. Chem. Soc. 131, 8732-8733(2009). 



Virtual Screening 

• Virtual screening refers to a range of in-silico techniques used to 
search large compound databases to select a smaller number for 
biological testing  

• Virtual screening can be used to  

− Select compounds for screening from in-house databases  

− Choose compounds to purchase from external suppliers  

− Decide which compounds to synthesise next 

 

• The technique applied depends on the amount of information 
available about the particular disease target 
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Rationale for similarity 
searching 

 

• The similar property principle states that structurally 
similar molecules tend to have similar properties (cf 
neighbourhood principle) 

 

 

 

 

• Basis of medicinal chemistry efforts and of all ligand-
based virtual screening methods 

− Despite the existence of “activity cliffs” 
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Similarity-based virtual screening  

• Given an active reference structure rank order a 
database of compounds on similarity to the reference 

• Select the top ranking compounds for biological testing 

• Requires a way of measuring the similarity of a pair of 
compounds 

 

• But similarity is inherently subjective, so need to provide 
a quantitative basis, a similarity measure, for ranking 
structures 

• There is no single measure of similarity 



Which two are most similar? 

Banana Orange Basketball 



Three components of a similarity 
measure 

• Molecular descriptors 
− Numerical values assigned to structures 

• Physicochemical properties, e.g., MW, logP, MR, PSA,.... 
• 2D properties: fingerprints, topological indices,  maximum 

common substructures 
• 3D properties: fingerprints, molecular fields 

 

• Similarity coefficient 
− A quantitative measure of similarity between two sets of 

molecular descriptors 

 

• Can also use a weighting function to ensure equal (or 
non-equal) contributions from all parts of the measure 

Todeschini &  Consonni, Handbook of Molecular Descriptors  
Wiley-VCH, 2009 



2D fingerprints: molecules 
represented as binary vectors 

• Each bit in the bit string (binary vector) represents one molecular 
fragment. Typical length is ~1000 bits 

• The bit string for a molecule records the presence (“1”) or absence 
(“0”) of each fragment in the molecule 

• Originally developed for speeding up substructure search 

− for a query substructure to be present in a database molecule each bit set to “1” 
in the query must also be set to “1” in the database structure 

• Similarity is based on determining the number of bits that are 
common to two structures 
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a. Augmented Atom 
    C rs C rd C rs C 

b. Atom Sequence 
    C rs C rs C rd C 

c. Bond Sequence 
    AA rs AA rs AA rd AA 

d. Ring Composition 
    N rs C rd C rs C rs C rs 

e. Ring Fusion 
    XX3 XX3 XX3 XX2 XX2 

f. Atom Pair 
    N 0;3 - 2 - C 0;3 

Example fragments 

Dictionary-based fingerprints: pre-defined fragments each of 
which maps to a single bit. Examples include MACCS Keys, BCI fps 



Hashed Fingerprints 

• Fragments are generated algorithmically without the need for a 
dictionary eg, all paths up to seven non-hydrogen atoms 

• Each fragment is processed using several different hashing 
functions, each of which sets a single bit in the fingerprint 

• There is a one-to-many mapping between a fragment and bits in the 
bit string and a given bit may be set by different fragments 

• Examples: Daylight, UNITY fingerprints 
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Other descriptors: Circular 
substructures 

• Each atom is represented by a string of 
integers obtained by an adaptation of 
the Morgan algorithm 

• Pipeline Pilot (Accelrys) descriptors, 
e.g., ECFP2, ECFP4, ECFP6, FCFP2,.... 

• ECFP fragments encode atomic type, 
charge and mass  

• FCFP fragments encode six generalised 
atom-types 

• 2, 4 or 6 denotes the diameter (in 
bonds) of the circular substructure 

 

• RDKit variant: Morgan, FeatMorgan 
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Similarity coefficients 

• Tanimoto coefficient for binary bit strings 

 

 

 

− C bits set in common in the reference and database structure 

− R bits set in reference structure 

− D bits set in database structure 

• More complex form for use with non-binary data, e.g., 
physicochemical property vectors 

• Many other types of similarity coefficient exist that can 
be applied, e.g., cosine coefficient, Euclidean distance, 
Tversky index 

CDR
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Limitations of traditional 2D 
descriptors 
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Scaffold Hopping 

• 2D fingerprints are very good at identifying close 
analogues 

• Scaffold Hopping: “Identification of structurally novel 
compounds by modifying the central core structure of 
the molecule”  

 

− Patent reasons: move away from competitor compounds 

− Provide alternate lead series if problems arise due to difficult 
chemistry or poor ADME properties 

• Descriptors for scaffold hopping 

− Reduced graphs 

− Topological pharmacophore keys 

− 3D descriptors 

 

 

Bohm, Flohr & Stahl, Drug Discovery Today: Technologies, 2004, 1, 217-224 

Langdon, Ertl & Brown, Molecular Informatics, 2010, 29, 366-385 



Scaffold Hops 

Cyclooxygenase inhibitors 

Bohm, Flohr & Stahl, Scaffold hopping. Drug Discovery Today: Technologies, 2004, 1, 217-224 



Pharmacophore Vectors: 
Similog 

• Similog keys 

• Atom typing scheme based on four 
properties: hydrogen-bond donor, 
hydrogen-bond acceptor, bulkiness 
and electropositivity 

• Atom triplets of strings encoding 
absence and presence of 
properties, plus distance encoding 
form a DABE key 

• Vector contains a count for each of 
the 8031 possible DABE keys  
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0100

0010

1100

6

6

4

O

O

H

O

Schuffenauer et al. Similarity metrics for ligands reflecting the similarity of target proteins 
Journal of Chemical Information and Computer Sciences, 2003, 43, 391-405 



Reduced Graphs 

Gillet, Willett & Bradshaw, Similarity searching using reduced graphs 
Journal of Chemical Information and Computer Sciences, 2003, 43, 338-345 



3D similarity searching 

• Systems for 3D substructure searching are widely 
available – see pharmacophore searching 

• Extension to 3D similarity searching is a natural one 

• What the receptor sees? 

 

• Alignment independent  

− Fingerprint approaches 

• Alignment-based  

− Field-based and surface-based methods 

• No consensus as to the most effective method 



3D fingerprints 

• Presence or absence of geometric features 
− Pairs of atoms at given distance range 

− Triplets of atoms and associated distance 

− Pharmacophore pairs and triplets (donors, acceptors, 
aromatic centres,....) 

− Valence angles 

− Torsion angles 

 



Alignment-based 3D similarity 

• Shape-based 
− ROCS (Rapid Overlay of Chemical Structures) 

− Molecules are aligned in 3D 

− Similarity score is based on common volume 

 

 

 

Nicholls et al, Molecular Shape and Medicinal Chemistry; A Perspective.  
Journal of Medicinal Chemistry, 2010, 53, 3862-3886 

Copyright © 2010 American Chemical Society 
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Conformational flexibility 
• Conformations are different three-dimensional structures of 

molecules that arise from  

− Rotation about single bonds (torsion angles) 

− Different rings conformations  

• Having several rotatable bonds results in a “combinatorial explosion” 

• For a molecule with N rotatable bonds, if each torsion angle is 
rotated in increments of θ degrees, number of conformations is 
(360º/ θ)N 

− If the torsion angles are incremented in steps of 30º, this means 
that a molecule with 5 rotatable bonds with have 12^5 ≈ 250K 
conformations 

 
 

 



Two approaches to handling 
conformational flexibility 

Conformer selection 

• When a new molecule is to be 
registered in a database, a 
conformational analysis is used to 
select diverse conformers 
spanning the low-energy 
conformational space 

• Each such conformer is loaded 
into the database and then 
searched as if it was a single, rigid 
structure 

• Trade-off between effectiveness of 
coverage (selection of many 
conformers) and efficiency of 
searching (selection of few 
conformers) 

 

Exploration of  
conformational space 
• Use of  triangle smoothing to 

identify min-max distances 
between each atom-pair 

• Creation of a distance-range 
(rather than a distance) graph for 
each database structure 

• Screen and graph search of the 
min-max distance data using 
appropriately modified algorithms 

• Final conformational analysis (by 
varying torsional angles) of the hits 
resulting from the screen/graph 
searches 



3D similarity 

• Computationally more expensive than 2D methods 

• Requires consideration of conformational flexibility 
− Rigid search - based on a single conformer  

− Flexible search 
• Conformation explored at search time 

• Ensemble of conformers  generated  prior to search time with each 
conformer of each molecule considered in turn 

• How many conformers are required? 

 

• Methods that require aligning molecules are more costly 
than vector-based calculations 

 



Evaluation of similarity methods 

• Retrospective search 

• For a reference compound of known activity, search against a 
database that contains other actives and decoy compounds 

− Determine where the active compounds appear in the ranked list 

− A good similarity measure will cluster the known actives at the top of the 
ranking 

− Performance measures: enrichment factors, AUC, BEDROC, ..... 

• Comparative studies suggest that 2D fingerprints are most effective 

− Good at identifying "me-too" compounds but less good at scaffold 
hopping 

• R.P. Sheridan and S.K. Kearsley (2002) Drug Discovery Today, 7, 903-
911 

− “We have come to regard looking for ‘the best’ way of searching chemical 
databases as a futile exercise.  In both retrospective and prospective studies, 
different methods select different subsets of actives for the same biological 
activity and the same method might work better on some activities than others” 

 



Data fusion 

• Fusion of ranked lists generated for same active compound 
(similarity fusion) 

− Do a similarity search for a reference structure and rank the database in 
order of decreasing similarity 

− Repeat with different representations, coefficients, etc. 

− Sum the rank positions for a given structure to give an overall fused rank 
position 

− The fused rankings form the output from the search 

• Consistency of search performance across a range of reference 
structures, types of fingerprint, biological activities etc. 

• Analogous approaches (called consensus scoring) used in docking 
studies 

 



Multiple active structures 

• Fuse the results of searches carried out using different 
reference compounds 

− Same descriptors, same coefficient, different active compounds 

• Results are generally improved relative to using a single 
reference structure 

• Best performance is achieved for diverse actives 
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Multiple actives known: 
phamacophore searching 

(with thanks to Stefan Senger, GSK) 



• A pharmacophore is the ensemble of steric and 
electronic features that is necessary to ensure the 
optimal supramolecular interactions with a specific 
biological target structure and to trigger (or to block) its 
biological response 
 

 

 

Pharmacophore Definition 

Glossary of terms used in Medicinal Chemistry (IUPAC Recommendations 1998) Pure & Appl. 
Chem. 1998, 70(5), 1129-1143 http://dx.doi.org/10.1351/pac199870051129).  

http://dx.doi.org/10.1351/pac199870051129
http://dx.doi.org/10.1351/pac199870051129


H. Wang et al. J. Med. Chem. 2008, 51, 2439-2446 

hydrogen bond acceptor 
(HBA) feature + projected 

point 

hydrophobic 
feature 

hydrophobic 
feature 

aromatic ring 
feature + projected 

point 

Cannabinoid 
Receptor 1 (CB1) 
antagonist 
pharmacophore 

other common feature types (not used here): 
• hydrogen bond donor 
• positive/negative features (charged/ionizable) 
• customized features 
• inclusion/exclusion volume spheres (shape) 

Example: Rimonabant 
 
  



Generating pharmacophore 
models: Ligand-based 

 

Foloppe et al. Bioorg. Med. Chem. Lett. 2009, 19, 4183-4190 

Rimonabant 

(alternative) CB1 antagonist 
pharmacophore 

Trying to predict how the ligands will bind to the receptor 
without knowing the structure of the receptor  



Pharmacophore generation 
methods 

• Pharmacophoric features in each ligand identified 

− Donors, acceptors, hydrophobic groups,... 

− Often SMARTs-based to allow user-definitions 

• Ligands aligned such that corresponding features are overlaid 

• Conformational space explored 

− On-the-fly eg using a genetic algorithm 

− Generating ensemble of conformations with each conformer considered 
in turn 

• Given the undetermined nature of the problem it is unlikely that a 
single correct solution will be found 

• Pharmacophore hypotheses are scored 

− eg number of features, goodness of fit to features, conformational 
energy, volume of the overlay, rarity of the pharmacophore,.... 



Ligand-based pharmacophores: 
practical aspects 

• Select a ‘representative’ set of actives  

− Most methods assume similar binding modes 

− One or more rigid molecules are preferred 

− The ligands should be diverse (otherwise too many common features 
that are not involved in binding) 

• Prepare molecules (e.g. tautomeric form, protonation state), 
generate 3D structure and conformations (if required) 

• Use pharmacophore software/tool to generate pharmacophores 
(biased or unbiased?) 

• Select preferred pharmacophore model(s) and validate them 

− Visual inspection 

− Do the “actives” fit the pharmacophore? 

− Can the pharmacophore separate actives from decoys? 



D. Schulster et al. Bioorg. Med. Chem. 2011, 19, 7168-7180 
(http://dx.doi.org/10.1016/j.bmc.2011.09.056) 

U. Grienke et al. Bioorg. Med. Chem. 2011, 19, 6779-6791 
(http://dx.doi.org/10.1016/j.bmc.2011.09.039) 

Pharmacophore contains five 
hydrophobic features, one 
hydrogen bond acceptor feature, 
and 27 exclusion spheres 

PDB entry 1osh, 
farnesoid X receptor 
(FXR, a ligand-dependent 
transcription factor) 

Structure-based pharmacophores 
 

http://dx.doi.org/10.1016/j.bmc.2011.09.056
http://dx.doi.org/10.1016/j.bmc.2011.09.039


Pharmacophore searching 
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Database searching 
• Conformational search 

− On-the-fly 

− Ensemble of conformers 

• Database search should be “compatible” with parameters used to 
generate the pharmacophore 

− The same pharmacophore feature definitions should be used to 
describe the database structures as were used to generate the 
pharmacophore 

− The database should be generated using the same protocol as used to 
generate the pharmacophore 

− What tolerance should be used to allow a match? 

• If two pharmacophore features are separated by 5Å what distance 
range is acceptable: 4.5-5.5Å; 4-6Å? 

• Should all tolerances be the same? 

• What effect does this have on recall and precision? 

− Can exclusion/inclusion volumes be used? 

 



Select 
actives 

Generate 
conformers 

Generate 
(Modify) 

pharmacophore 
models 

Validation 1: 
Map actives back on 

pharmacophore 

Validation 2: 
Search validation 

database – enrichment, 
specificity, sensitivity? 

Prioritise/select 
pharmacophore 

model(s) 

Perform 
search/mapping(s) 

Generate/select 
‘compatible’ 
compound 
database 

Select actives + 
inactives/decoys 

for validation 

Generate 
‘compatible’ 
validation 
database 

Filter (availability, 
properties, 

novelty, visually 
inspect 

mappings,…) 

Select 
compounds 

for screening 

Virtual screening 

Pharmacophore-based VS: workflow 
 



H. Wang et al. J. Med. Chem. 2008, 51, 2439-2446 
(http://dx.doi.org/10.1021/jm701519h)  

Rimonabant 

Cannabinoid 
Receptor 1 (CB1) 

antagonist 
pharmacophore 

 

Example - Cannabinoid CB1 receptor 
antagonists  

• No CB1 crystal structure, only very limited 
success with homology models 

• Aim was to assay 420 compounds selected using 
a pharmacophore model 

− 8 CB1 selective antagonists/inverse agonists were 
selected from the literature including rimonabant  

− A maximum of 250 unique conformations were 
generated for each molecule (with Macromodel  using 
the MMFF94s force field) 

− Pharmacophores were generated with Catalyst. 

− The model that yielded the most reasonable mapping 
for Rimonabant was selected for the database search 

− The database contained about 500k compounds (max. 
of 150 conf. per molecule, generated with Catalyst) 

http://dx.doi.org/10.1021/jm701519h
http://dx.doi.org/10.1021/jm701519h


• The pharmacophore search resulted in 22794 hits (approx. 5% of the 
database) 

• Stepwise filtering 
 300 < MW < 550   (18693 compounds remaining) 
 availability as solid > 2 mg  (10581 compounds remaining) 
 modified Lipinski’s rule of five (7247 compounds remaining) 

• A Bayesian model built from compounds in the MDDR database was 
used to rank the remaining compounds (using the FCFP6 fingerprints 
in Pipeline Pilot)  

• The top ranking 2100 were selected 

• Clustering using the maximum dissimilarity clustering algorithm.  420 
clusters were generated and from each cluster the compound with 
the highest Bayesian score was selected. 

 
H. Wang et al. J. Med. Chem. 2008, 51, 2439-2446 

(http://dx.doi.org/10.1021/jm701519h)  

Example (continued)  
 

http://dx.doi.org/10.1021/jm701519h
http://dx.doi.org/10.1021/jm701519h


• 420 compounds were screened at a single concentration. Five 
compounds showed more than 50% inhibition. All five compounds 
confirmed in the full curve assay. 

− Approx. 1% screening hit rate 

• One compound has a Ki of less than 100 nM. 
 

Rimonabant 

Cannabinoid Receptor 1 
(CB1) antagonist 
pharmacophore 

H. Wang et al. J. Med. Chem. 2008, 51, 2439-2446 
(http://dx.doi.org/10.1021/jm701519h)  

Example (continued) 

http://dx.doi.org/10.1021/jm701519h
http://dx.doi.org/10.1021/jm701519h


Software Source Recent published use cases 

Catalyst (Discovery 
Studio) 

Accelrys http://dx.doi.org/10.1007/s00894-011-1105-5  
http://dx.doi.org/10.1016/j.bmcl.2010.12.131  

GASP Tripos http://dx.doi.org/10.1016/j.jmgm.2010.02.004  

GALAHAD Tripos http://dx.doi.org/10.1016/j.bmc.2011.09.016  
http://dx.doi.org/10.1016/j.ejmech.2010.09.012  

Ligandscout Inte:ligand http://dx.doi.org/10.1016/j.eplepsyres.2011.08.0
16  

MOE Chemical 
Computing 
Group 

http://dx.doi.org/10.1007/s10822-011-9442-0  
http://dx.doi.org/10.1016/j.ejmech.2010.07.020  

Phase Schrödinger http://10.1111/j.1747-0285.2011.01130.x  
http://cs-
test.ias.ac.in/cs/Volumes/100/12/1847.pdf  

Examples (by no means comprehensive): 

(Commercial) software  
 

http://dx.doi.org/10.1007/s00894-011-1105-5
http://dx.doi.org/10.1007/s00894-011-1105-5
http://dx.doi.org/10.1007/s00894-011-1105-5
http://dx.doi.org/10.1007/s00894-011-1105-5
http://dx.doi.org/10.1007/s00894-011-1105-5
http://dx.doi.org/10.1007/s00894-011-1105-5
http://dx.doi.org/10.1007/s00894-011-1105-5
http://dx.doi.org/10.1016/j.bmcl.2010.12.131
http://dx.doi.org10.1016/j.jmgm.2010.02.004
http://dx.doi.org/10.1016/j.bmc.2011.09.016
http://dx.doi.org/10.1016/j.ejmech.2010.09.012
http://dx.doi.org/10.1016/j.eplepsyres.2011.08.016
http://dx.doi.org/10.1016/j.eplepsyres.2011.08.016
http://dx.doi.org/10.1007/s10822-011-9442-0
http://dx.doi.org/10.1007/s10822-011-9442-0
http://dx.doi.org/10.1007/s10822-011-9442-0
http://dx.doi.org/10.1007/s10822-011-9442-0
http://dx.doi.org/10.1007/s10822-011-9442-0
http://dx.doi.org/10.1007/s10822-011-9442-0
http://dx.doi.org/10.1007/s10822-011-9442-0
http://dx.doi.org/10.1016/j.ejmech.2010.07.020
http://10.0.4.87/j.1747-0285.2011.01130.x
http://10.0.4.87/j.1747-0285.2011.01130.x
http://10.0.4.87/j.1747-0285.2011.01130.x
http://cs-test.ias.ac.in/cs/Volumes/100/12/1847.pdf
http://cs-test.ias.ac.in/cs/Volumes/100/12/1847.pdf
http://cs-test.ias.ac.in/cs/Volumes/100/12/1847.pdf


Some references for pharmacophores 

• A. R. Leach, V. J. Gillet, R. A. Lewis, R. Taylor Three-Dimensional Pharmacophore 
Methods in Drug Discovery J. Med. Chem. 2010, 53, 539-558 
(http://dx.doi.org/10.1021/jm900817u) 

• T. Seidel, G. Ibis, F. Bendix, G. Wolber Strategies for 3D pharmacophore-based virtual 
screening Drug Disc. Today: Technologies 2010, 7, e221-e228 
(http://dx.doi.org/10.1016/j.ddtec.2010.11.004) 

• G. Hessler, K.-H. Baringhaus The scaffold hopping potential of pharmacophores Drug 
Disc. Today: Technologies 2010, 7, e263-e269 
(http://dx.doi.org/10.1016/j.ddtec.2010.09.001) 

• M. Hein, D. Zilian, C. A. Sotriffer Docking compared to 3D-pharmacophores: the scoring 
function challenge Drug Disc. Today: Technologies 2010, 7, e2229-e236 
(http://dx.doi.org/10.1016/j.ddtec.2010.12.003) 

• F. Caporuscio, A. Tafi Pharmacophore Modelling:  A Forty Year Old Approach and its 
Modern Synergies Curr. Med. Chem. 2011, 18, 2543-2553 

• I. Wallach Pharmacophore Interference and its Application to Computational Drug 
Discovery Drug Dev. Res. 2011, 72, 17-25 (http://dx.doi.org/10.1002/ddr.20398) 

 

http://dx.doi.org/10.1021/jm900817u
http://dx.doi.org/10.1016/j.ddtec.2010.11.004
http://dx.doi.org/10.1016/j.ddtec.2010.09.001
http://dx.doi.org/10.1016/j.ddtec.2010.12.0013
http://dx.doi.org/10.1002/ddr.20398
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Structure-Activity Relationship 
Modelling 

• Use knowledge of known active and known inactive 
compounds to build a predictive model 

• Quantitative-Structure Activity Relationships (QSARs) 

− Long established (Hansch analysis, Free-Wilson analysis)  

− Generally restricted to small, homogeneous datasets eg lead 
optimisation 

• Structure-Activity Relationships (SARs) 

− “Activity” data is usually treated qualitatively 

− Can be used with data consisting of diverse structural classes 
and multiple binding modes 

− Some resistance to noisy data (HTS data) 

− Resulting models used to prioritise compounds for lead finding 
(not to identify candidates or drugs)  
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Top Ranked 
Compounds Picked 

for Testing 
Training Set 

Known active compounds 
Known inactive compounds 

Model of Activity 

Analyse 
actives  

inactives 

Untested compounds 
C1, C2, C3, C4, C5 …  

Compute 
scores 

Generalised machine learning 
method 

 

•Substructural analysis 
•Recursive partitioning 
•Support vector machines 
•K nearest neighbours 
•Neural networks 



Substructural analysis 
• The first (1973) machine learning method to be applied to large 

activity datasets (before HTS methods became available) 

• Based on the idea that each fragment substructure makes a 
constant contribution to a particular type of activity, irrespective of 
its environment 

− Normally used with fragment-based fingerprints 

• A weight is assigned to each fragment to reflect its differential 
occurrence in the training-set actives and inactives 

− Many different types of weighting scheme 

• An unknown molecule is scored by summing the weights for all the 
fragments it contains  

• The scores are used to rank the test-set molecules in decreasing 
probability of activity 

 



Calculation of weights 

• The weight for a fragment substructure comprises some 
or all of the following 

− ACT and INACT, the numbers of active and inactive molecules in a 
training set 

− ACT(I) and INACT(I), the numbers of active and inactive 
molecules in the training set that contain the I-th fragment 

• Many weights have been suggested: a typical example is 
of the form: 

 

 

• Closely related to the now widely used naïve Bayesian 
classifier  
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Recursive Partitioning 
• Classification approach that constructs a decision tree 

from qualitative data 

− active/inactive, soluble/insoluble, toxic/non-toxic 

• Identification of a rule that gives the best statistical split 
into classes, with the lowest rate of misclassification 

− Example drug|non-drug: MW < 500|MW > 500 

• Repeat on each set coming from the previous split until 
no more reasonable splits can be found 

• Can generate good models but with poor predictive 
power if used without care 

− Use leave-many-out strategies to validate 

− Easy to interpret/drive what-next decisions 

Hamman F, Gutmann H. Voigt N, Helma C, Drewe J. Prediction of adverse drug reactions using 
decision tree modeling. Clin Pharmacol Ther, 2010, 88, 52-59. 



Example 

Test compounds are dropped through the tree. Prediction depends 
on whether they fall into “active” or inactive nodes” 



Virtual Screening 
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Protein-Ligand Docking  

 

 

• How does a ligand (small molecule) bind into the active 
site of a protein? 

• Docking algorithms are based on two key components 

− search algorithm  

• to generate “poses” (conformation, position and orientation) of the 
ligand within the active site 

− scoring function  

• to identify the most likely pose for an individual ligand 

• to assign a priority order to a set of diverse ligands docked to the 
same protein – estimate binding affinity 

 



The search space 
• The difficulty with protein–ligand docking is in part 

due to the fact that it involves many degrees of 
freedom 

− The translation and rotation of one molecule relative to 
another involves six degrees of freedom 

− These are in addition the conformational degrees of freedom 
of both the ligand and the protein 

− The solvent may also play a significant role in determining the 
protein–ligand geometry (often ignored though) 

• The search algorithm generates poses, orientations of 
particular conformations of the molecule in the 
binding site 
− Tries to cover the search space, if not exhaustively, then as 

extensively as possible 

− There is a tradeoff between time and search space coverage 



Examples of Docking Search 
Algorithms 

 

• DOCK: first docking program by Kuntz et al. 1982 

− Based on shape complementarity and rigid ligands 

• Current algorithms 

− Fragment-based methods:  FlexX, DOCK (since version 4.0) 

− Monte Carlo/Simulated annealing:  QXP(Flo), Autodock, Affinity 
& LigandFit (Accelrys) 

− Genetic algorithms:  GOLD, AutoDock (since version 3.0) 

− Systematic search:  FRED (OpenEye), Glide (Schrödinger) 

 

R. D. Taylor et al. “A review of protein-small molecule docking methods”, J. 
Comput. Aid. Mol. Des. 2002, 16, 151-166. 

 

 



DOCK (Kuntz et al. 1982) 

• Rigid docking based on shape 

 

• A negative image of the cavity 
is constructed by filling it with 
spheres 

• Spheres are of varying size 

• Each touches the surface at 
two points 

• The centres of the spheres 
become potential locations for 
ligand atoms 
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DOCK 

• Ligand atoms are matched to 
sphere centres so that 
distances between atoms 
equals distances between 
sphere centres 

• The matches are used to 
position the ligand within the 
active site 

• If there are no steric clashes 
the ligand is scored 
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DOCK 

• Many different mappings (poses) are possible 

• Each pose is scored based on goodness of fit 

• Highest scoring pose is presented to the user 



Exploring conformational space 
of ligands 

• Ensemble of conformations 

− A series of conformations is generated before docking 

− Each conformer is docked in turn as a rigid body 

− FLOG (variant on DOCK) 

− Glide, FRED: often use filters and approximations to identify 
conformations of interest 

 

• Conformational space explored at run time 

− The accessible conformations of the ligands are explored at the 
same time as the docking 

− GOLD: Genetic Algorithm  

− AutoDOCK: Monte Carlo/Simulated annealing 

− FlexX: Incremental construction 

 



Example of Flexible Docking 
Program: GOLD 

• Full ligand flexibility and partial receptor flexibility (side chains can 
rotate) 

• Genetic algorithm 

− A population of potential solutions is maintained 

− Each solution represents one conformation of the ligand together with 
one mapping between the ligand and the binding site 

− The mapping is used to generate a “pose” – orientation and position of a 
ligand conformation within the binding site 

− The “pose” is then scored using a function that includes vdw 
interactions; internal energy of ligand and h-bonding of complex 

− The GA iterates (modifying the population members) until an optimum 
value of the scoring function is obtained 

 



Gold uses a Genetic Algorithm 
Generate initial population 

Select operator, parent 

Replace least fit member 

Select operator, parents 

Replace least fit members 



GOLD: chromosome composition 

• Ligand torsions 
 

• Protein OH and NH3 torsions, if not fixed by H-bonding 
 

• Mapping of H-bonding points on ligand with 
complementary points on protein 
 

• Mapping of hydrophobic points on protein to ligand C(H) 
atoms  

 



GOLD: Bond Mappings 
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Flexible Docking: FlexX 

• Incremental construction: flexible ligand; rigid protein 

− The conformation of the ligand is constructed step-wise within 
the active site 

− The ligand is broken down into fragments 

− Base fragments of ligand are docked first 

− A systematic conformational search of the ligand is carried out as 
each new fragment is added in all possible ways 

− The protein binding site is used to prune the search tree 
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Fragment-based docking:  FlexX  
 

FlexX matches triangles of interaction 
sites onto complementary ligand atoms. 

Interaction model: 
Interaction centre of first group lies 
approximately on interaction surface 
of second group. 

http://www.biosolveit.de  

B. Kramer et al. 
“Ligand Docking and Screening 
with FlexX”, Med. Chem. Res. 
1999, 9, 463-478 



Energetics of protein-ligand 
binding 

vibrtrotconfsolventbind GGGGGGG  /int

• Ligand-receptor binding is driven by 

• electrostatics (including hydrogen bonding interactions) 

• dispersion or van der Waals forces 

• hydrophobic interactions 

• desolvation: surfaces buried between the protein and the ligand 
have to be desolvated 

• Conformational changes to protein and ligand 

• ligand must be properly orientated and translated to interact and 
form a complex 

• loss of entropy of the ligand due to being fixed in one conformation 

• Free energy of binding 



Scoring Functions: I 

• Molecular mechanics/force field 

− Attempt to calculate the interaction terms directly 

• eg Lennard-Jones potential for vdw’s interactions 

− Only account for some of the contributions 

 

• GOLD Score 

− Protein-ligand hydrogen bond energy S(hb_ext) 

− Protein-ligand van der Waals (vdw) energy S(vdw_ext)  

− Ligand internal energy S(int) 

 

 

 



Scoring Functions: II 

• Empirical 
− Böhm J. Comput. Aided Mol. Design 8 (1994) 243-256 

 

 

 

− equation proposed based on linear combination of simple 
properties – hydrogen bonding, ionic interactions, lipophilic 
interactions, loss of internal conformational freedom of ligand 

− multiple linear regression used to calculate values for 
coefficients by attempting to fit the equation to experimental 
binding data (eg 45 protein-ligand complexes) 

  Ghb=-1.2kcal/mol, Gionic=-2.0kcal/mol, Glipo=-0.04kcal/mol Å2, 
 Grot=+0.3kcal/mol, G0=+1.3kcal/mol 

 

− Examples include ChemScore, PLP, Glide SP/XP 
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Scoring Functions: III 

• Knowledge based methods 

− Based on statistics of observed inter-atomic contact frequencies and/or 
distances 

− Assume that statistical preferences reflect favourable/unfavourable 
interactions between functional groups 

− eg PMF: Potential Mean Force; DrugScore; ASP 

 

 

• Main effort is now in developing more effective scoring functions 

− No single scoring function is uniformly superior 

− Consensus/Data fusion approaches combine results from several 
scoring schemes 

− Rescoring uses one scoring function during the docking and another to 
evaluate the final poses 



Evaluating a Docking Program 

• Take a known protein-
ligand complex from the 
PDB 

• Extract the ligand 

• Minimise the conformation 
of the ligand 

• Dock back into the protein 

• Compare the docked pose 
with the experimental data 



Evaluating a Docking 
Program 

The docked result (red) is superimposed on the X-ray crystal 
(experimental) structure  

 

Root Mean Square Deviation 
N

zzyyxx

RMSD N

bababa 



222 )()()(



Evaluating a docking program 

The GOLD result (dark) superimposed on the Xray structure 
(light) 

4PHV: Good 
HIV Protease 
15 rotatable bonds 

1GLQ: Close 
Peptidic ligand 

1CIN: Wrong 
Fatty acid binding protein 



GOLD: Validation 

• GOLD validation 

− 305 complexes found in PDB (CCDC/Astex dataset) 

− ligand extracted from complex 

− ligand minimised 

− docked back to protein 

− GOLD prediction compared with original crystal structure 

 

• ~72% success rate using stringent criteria 

 

• G. Jones, P. Willett, R. C. Glen, A. R. Leach & R. Taylor, J. Mol. Biol  
1997, 267, 727-748  

• J. W. M. Nissink et al. “A New Test Set for Validating Predictions of 
Protein-Ligand Interaction”, Proteins 2002, 49, 457-471. 
 

 

 

 



Issues related to the protein 

• Need to ensure all residues are in the correct 
protonation and tautomeric states 

• Protein conformation 

− Can be several examples of the same protein but with different 
ligands bound 

− The conformation of the binding site can vary from one complex 
to another 

− Which should be used in the virtual screening experiment? 

• Ensemble docking to different protein conformations 
may be required where there are large changes in the 
binding site 

 

 



Where there’s no chicken wire, 
there are no electrons..atoms 

An X-ray crystal structure is one 
crystallographer’s subjective 
interpretation of an observed electron-
density map expressed in terms of an 
atomic models 

 
A Davis, S Teague G Kleywegt 
Angew. Chem. 2003, 24, 2693 

 
 
Homology models can be even more 
subjective 



Issues related to the ligands 

• The protonation state and tautomeric form of a ligand 
can influence its hydrogen bonding ability 

− Need to ensure all ligands are in the correct protonation and 
tautomeric states or enumerate and dock all possibilities 

 

 

 

• Conformations 

− Need to ensure sufficient sampling of conformational space has 
been carried out 

− Can we be sure the bioactive conformation has been generated? 

− May want to apply filtering techniques to prune unlikely 
candidates prior to carrying out the docking 
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Current Status of Docking: 1 
• Most docking programs take account of conformational flexibility of 

the ligand but very flexible ligands are still difficult 

• Some protein-ligand interactions occur via a water molecules 

− Can switch waters on and off in the binding site but usually based on 
positions seen in the x-ray structure 

• Some docking programs allow protein side chain flexibility 

− Full protein flexibility cannot yet be handled except by molecular 
dynamics with is extremely computationally demanding  

• Scoring functions  

− Reasonably good at finding the correct pose for a given protein-ligand 
complex 

− Less good at ranking different ligands against the same protein (virtual 
screening) 

• Variety of different post-processing procedures are available to help 
reorder the output 

 



Current Status of Docking: 2 

• Despite its limitations docking is very widely used and there are 
many success stories 

− see Kolb et al. Curr. Opin. Biotech., 2009, 20, 429, and 
Waszkowycz et al., WIREs Comp Mol. Sci., 2011, 1, 229) 

• Performance varies from target to target, and scoring function to 
scoring function 

− See for example, Plewczynski et al, “Can we trust docking 
results? Evaluation of seven commonly used programs on 
PDBbind database”, J. Comp. Chem., 2011, 32, 742. 

• Care needs to be taken when preparing both the protein and the 
ligands 

• The more information you have (and use!), the better your chances 

− Targeted library, docking constraints, filtering poses, seeding 
with known actives, comparing with known crystal poses 

 

 



Conclusions 

• Wide range of virtual screening techniques have been 
developed 

• The performance of different methods varies on 
different datasets 

• Increased complexity in descriptors and method does 
not necessarily lead to greater success 

• Combining different approaches can lead to improved 
results 

• Computational filters should be applied to remove 
undesirable compounds from further consideration 
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