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Abstract

Metabolomics is a rapidly expanding field with applications in areas such as

medicine, agriculture, or food safety. Tandem mass spectrometry (MSn) is one

of the main technologies that drives the field forward. Optionally coupled to a

chromatographic element, MSn can capture detailed snapshots of an organism’s

metabolome. The resulting data sets are complex and difficult to analyse due to

the multitude of external, biologically irrelevant influences. In particular metabo-

lite identification – the ultimate goal of MSn metabolomics – is a highly challeng-

ing exercise with inherently uncertain results.

We have developed the data processing tool MassCascade to rapidly analyse and

visualise chromatography MSn data. MassCascade features methods for data

(pre-)processing from initial file input to the compilation of the final result ma-

trix. To simplify use and break down the complex analysis process, the tool has

been made available in the form of a plug-in for the workflow platform KNIME:

MassCascade-KNIME offers a visual representation of each processing function

that can be utilized following the concept of visual programming. To further

support metabolomics data analysis, cheminformatics methods have been added

separately to the workflow platform from the Chemistry Development Kit to

enable digital small molecule handling, essential for semi-automated metabolite

identification.

To demonstrate the MSn analysis process and test MassCascade and its plug-

in, two scenarios typical in metabolomics were chosen: spectral fingerprinting

and metabolite identification. A set of metabolomics tomato samples from a

long-term study about chromatography MSn system stability was processed and

interpreted. Distinct trends and clustering could be extracted and explained veri-

fying correct processing by the tool. Metabolite identification of spectral features

was applied on a study about tomato ripening. Features differentiating ripening

of four different tomato genotypes were singled out to that end. The implemented

information-driven identification methodology enabled the selection of putative

metabolite identifications from large lists of chemical compounds.
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CHAPTER 1

General Introduction

1.1 Metabolomics

Metabolomics is defined as the study of the total small molecule complement of

an organism. It is a highly data-generating and knowledge-driven science. The

study of the small molecule complement creates a large amount of information-

rich data that provides unprecedented insights into an organism’s biology within

different biological levels such as the tissue, cell type, or compartment level. The

metabolome is the dynamic system comprised of the small molecules and their

interactions. In the context of an abstract, all-encompassing metabolome, the

metabolome can be considered as the ultimate expression of the genome. It

provides insights into direct and indirect control and regulation mechanisms of

systems. By comparison to other omics such as transcriptomics or proteomics, the

metabolome is the closest measurable representation of the phenotype currently

available, making its potential incalculable [1].

The concept of metabolomics – the word itself is derived from the Greek word

for change (µεταβoλή) – was described by C. H. Waddington in 1942: he re-

ferred to the study of the causal relationships between genotype and phenotype

as epigenetics [2].

1



1. GENERAL INTRODUCTION

Today, Waddington’s definition of epigenetics describes multiple omics disciplines

of which metabolomics forms a part of. In contrast to other omics, metabolomics

has several unique characteristics that make its study particularly demanding:

chemical diversity, chemical dynamic range, and time resolution [3].

Chemical diversity: Metabolomics studies small molecules within a molecular

mass range of 50 to 1500 Da. Chemical classes include amino acids, sugars, alka-

loids, phenolic compounds, lipids, and many more. Each class has dramatically

different physicochemical properties and biological functions. A simple exchange

of a functional group – the smallest functional unit – of a molecular species can

change its biological function entirely. A change in stereochemistry can have the

same effect. Furthermore, metabolites are not only chemically diverse, they are

also hard to enumerate because of the lack of sensible structural and biological

constraints.

Wherever enumeration is possible, it is applied. For instance, lipids encompass

well defined chemical classes with discrete building blocks. Enumerating biologi-

cal relevant lipid species is a heavily studied exercise [4,5]. Beyond the well defined

lipids, in vivo phase I and II reactions in addition to other catabolic and anabolic

reactions, produce chemical diversity that is challenging to manage [6].

Chemical dynamic range refers to the concentration range at which metabo-

lites occur in vivo. Depending on the chemical class and location of a metabo-

lite, these can easily span three orders of magnitude or more, e.g. from µmol/L

(hormones) to high mmol/L (sugars) concentrations [7]. The co-occurrence of

metabolites with a 1,000-fold difference in concentration make their simultaneous

detection demanding.

Time resolution relates to the kinetics and dynamics of metabolites, e.g. the

rate at which metabolites degrade over time. Concentrations of metabolites can

rapidly change over time. For example, in blood plasma catecholamines have a

half-life in the order of minutes whereas the thyroid hormone can have a half-life

in the order of hours [8,9]. Consequently, any multiparameteric responses mea-

sured over time can vary significantly from one another, thus constraining the

reproducibility of studies.

2



1. GENERAL INTRODUCTION

The characteristics outlined above explain why it is inaccurate to talk about

the metabolome of an organism when referring to discrete biological functions.

The notion of a single metabolome is further countered by more recent stu-

dies on genome mosaicism [10]. Metabolomics experiments acquire snapshots of

a metabolome, which properties depend on the sample type. The snapshots can

reflect a spatially or temporally constrained aspect of an organism’s state under

partially defined conditions.

The aim of metabolomics studies is typically to characterise biological samples or

identify metabolites or both based on metabolomics snapshots [11,12]. Depending

on the study, the set-up can either be targeted (hypothesis-driven) or untargeted

(data-driven) [13]. The four principal approaches are [14,15]:

• fingerprinting, spectral pattern recognition for clustering or identification;

• profiling, description of known chemical classes;

• target analysis, measurement of specific compounds;

• metabolomics, identification of all molecular species in a sample.

The total size of a metabolome is hard to estimate. Any estimation depends on

criteria such as the molecular mass cut-off of included metabolites or whether

exogenous molecules are included.

Estimates have been attempted for the total number of metabolites for whole

kingdoms, e.g. 200,000 for the plant kingdom [14], and for individual organisms,

e.g. 9,000 for homo sapiens [16]. Given our limited understanding of the chemi-

cal rules that define observed biological subsets in chemical space, these numbers

should be considered with caution. At the moment, all chemical and metabolomics

databases do not contain sufficient information to comprehensively retrieve all

known metabolites [17]. In a recent Nature Review, the authors concluded that

“an astounding number of metabolites remain uncharacterized with respect to

their structure and function. . . ” [18].

Metabolomics, following in the footsteps of proteomics, is a rapidly growing

field [19]. The Metabolomics Standards Initiative (MSI) [20] was founded in 2007

to address issues related to reporting standards and consolidating community ef-

3



1. GENERAL INTRODUCTION

forts – much alike efforts carried out by the Proteomics Standards Initiative (PSI)

earlier [21]. Experimental studies to characterise different metabolomes on various

biological levels have been undertaken, slowly increasing the available knowledge

base [22]. These efforts have been supplemented by computational approaches for

in silico metabolite generation and database design to consolidate and stratify

collected data on an organism-specific level.

Recent efforts include the development of cross-species metabolomics resources

such as MetaboLights [23], the Plant Metabolomics Resource [24], and MeltDB [25].

These resources attempt to capture all evidence from a study. This includes,

inter alia, metabolite structures and their reference spectra, biological roles, lo-

cations and concentrations, as well as experimental data. With the aggrega-

tion of metabolomics data, the study of data fusion, e.g. from proteomics and

metabolomics studies, has gained more attention [26], pushing towards a more

integrative and systemic view of analytical sciences.

1.1.1 Experimental Methods in Metabolomics

Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) are the two

principal methods used in metabolomics experiments. These highly accurate and

sensitive methods are often combined with a chromatographic technique such

as High-Performance Liquid Chromatography (HPLC) or Gas Chromatography

(GC) to increase spatial resolution (separate molecular species), adding a time

dimension to the already complex signal landscape. Sizes of information-dense

MS and NMR data range from several to hundreds of Gigabytes.

Chromatography is an important step in metabolomics experiments to separate

individual molecular species in a mixture. Advances in chromatographic technol-

ogy enable the separation of complex mixtures under a variety of experimental

conditions [27,28]. Denser and more orderly packed columns in combination with

higher pressures have the potential to produce sharper signals and shorten run

time while maintaining appropriate resolution. In gas chromatography, two di-

mensional approaches have gained acceptance, yielding unparalleled separation

of complex mixtures [29].

4



1. GENERAL INTRODUCTION

NMR and MS technologies are complementary, detecting different chemical classes

or molecular species. In general, NMR requires less time-consuming sample

preparation, is reproducible, and quantitative. MS is more sensitive and high-

throughput in comparison [30]. These technologies have been shown to produce

similar results for high-level applications such as fingerprinting [31]. Combinations

of technologies result in a great number of systems each suited for individual

studies. For a review, please see Aliferis and Shulaev et al. [13,32].

Here, we focus on liquid chromatography coupled to tandem mass spectrometry

(LC-MSn), a routine technique used to investigate the small molecule complement

of organisms. Modern LC-MSn systems can detect more mass traces than ever

before thanks to high mass accuracy (ma ≤ 2 ppm [33]) and high resolution (R ≥
100, 000 [34]), producing complex, information-rich data for every sample. LC-

MSn has been applied across different fields in biology [11,35]. The diverse variety

of available instrumental platforms and configurations [36,37] reflect that no single

platform or method can cover the whole metabolome [12].

Nevertheless, LC-MSn can be applied to the study of lipids and core metabolism in

combination with different approaches [38]. In environmental science [39] and plant

science [40], non-targeted metabolomics have been predicted to become of partic-

ular importance owing to LC-MSn’s ability to resolve a huge range of semi-polar

compounds. The basics for the measurement of small molecules, are captured in

best practice guides such as published by Webb et al. [41]. Efforts on quantitative

MS are mostly limited to GC-MS due to higher reproducibility of results, which

is important for studies involving instrument calibration [42].

1.1.2 Applications of Metabolomics

Metabolomics has been applied to a wide variety of areas. For example, mass

spectrometry methods have been used in medical diagnostics [43], studies about

cancer [44,45] and neurological disease [46]. Fluids commonly studied by metabo-

lomics in the context of medical studies include urine [47], plasma (serum) [48,49],

and cerebrospinal fluid [50]. Lipidomics – part of metabolomics but due to its

complexity considered a separate field – has drawn attention from the pharma-

5



1. GENERAL INTRODUCTION

ceutical sector because of its relevance to diseases like diabetes or obesity [51,52].

Metabolomics’s non-invasive nature and extremely high time resolution makes it

an ideal tool for the pharmaceutical industry.

Metabolomics has also been used in the characterisation and identification of bac-

terial strains [53], serving as an early-detection system in clinical environments [54].

In addition to these specific applications, metabolomics is used in systems biology

as one of the many omics disciplines that this field tries to combine [11].

Plant metabolomics is particularly interesting because of the range and functions

of primary and secondary metabolites in plants [55]. About 300 distinct metabo-

lites could be routinely identified a decade ago, a number that has not changed

much over time [56]. Applications of plant metabolomics include basic research

(untargeted approaches [57,58]), environmental studies [59], targeted studies [60], pro-

filing of varieties of cultivars [61,62], plant lipidomics [63], and untargeted chemical

identification of plants [64].

1.1.3 Mass spectrometry

Mass spectrometry is an analytical technique to measure small molecules, either

directly injected into the MS or via an interfaced chromatographic technology.

The analytes are ionised at an ion source before they can be detected in a coupled

mass detector. The resulting data consists of mass-to-charge (m/z ), time, and

intensity triplets that describe for every detected ion mass the strength of the ion

beam and the time it is detected (Figure 1.1).

The most common chromatographic technologies used in mass spectrometry are

gas and liquid chromatography, distinguished by the state of their mobile phase.

These technologies are not as high throughput as direct infusion techniques but

suffer less from ion suppression and unresolved isobaric compounds [65]. Chro-

matography adds an additional dimension to the MS data landscape. Through

interactions of analytes with a mobile and stationary phase, compounds are re-

tarded and elute off a chromatographic column at different time points due to

their physicochemical properties. This allows isobaric species to be resolved.
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(a) Flow diagram of a typical mass spectrometry pipeline

(b) Three dimensional mass spectrometry data landscape

Figure 1.1: Schematic of a typical mass spectometry pipeline and three dimensional
data landscape. (a) Flow diagram of a typical mass spectrometry pipeline from design
of experiments to the final interpretation of results. A mass spectrometer can be
interfaced with a chromatographic technique or used via direct infusion. The dotted
rectangle shows the building blocks of a mass spectrometer. The central parts, ion
source, mass analyser, and detector, are a separate unit under high vacuum. (b) Data
landscape of chromatography-interfaced MS data. The detector scans over a mass range
at discrete time intervals, picking up mass-to-charge ratio (m/z ) of ions arriving at the
detector.
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Ionisation techniques are grouped into hard and soft. Hard ionisation such as

electron impact ionisation (EI), heavily fragments a compound by creating high

energy electrons that interact with an analyte. In contrast, soft ionisation tech-

niques, such as electron spray ionisation (ESI), ionise a compound but create only

few fragments, for example, based on the principle of Coulomb repulsion. Those

techniques can be used separately or in combination [66].

Generated ions are separated by their mass-to-charge ratio (m/z ) in the mass

analyser. For simplicity charge is often assumed to be equal to one. Consequently

a mass-to-charge ratio approximately equals the molecular mass of an ion. All

mass analysers exploit the mass and electrical charge properties of ions but use

different separation methods and vary in performance [67]. Finally, separated ions

are captured by a mass detector that scans a pre-defined mass range at close

intervals. The chromatographic profile of an ion, i.e. the generated continuous

ion beam, is captured across multiple scans at discrete time intervals. For a review

of LC-MS technologies in metabolomics, see Forcisi [68] and Draper et al. [69].

Mass spectrometers can be operated in tandem with two (MS/MS) or more (MSn)

spectrometers working in sequence, fragmenting selected ions further in collision

chambers in between individual mass spectrometers. Ions are selected for frag-

mentation in a data-dependent manner based on the scan mode, e.g. parent ion

scan or product ion scan [70]. The resulting data does not vary in its structure

but has a greater depth. Parent ions from MS1 have associated scans in MS2,

MS3, et cetera. In addition, mass spectrometers can run in positive and negative

ion mode, where the mass analyser filters for positive and negative ions respec-

tively. Compounds show different fragmentation patterns for each ion mode.

Instruments in positive ion mode have been shown to create more fragments than

machines run in negative ion mode [47].

The resulting partially convoluted, densely populated signal landscape contains

systematic and random noise amongst true signals of varying intensity and shape.

Due to fragmentation and the inevitable presence of contaminants and interfer-

ents, compounds are represented by many signals [71]. The following provides a

breakdown of different signal sources other than fragmentation stemming from the

same compound. With soft ionisation techniques, main ions are formed through
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addition or loss of a hydrogen ([M+H]+ or [M−H]−). Adducts can form through

interaction with other molecular species such as sodium: [M+Na]+. Clusters re-

sult from aggregation of the compound under investigation with itself: [2M+H]+.

In addition, charge is not restricted to one. Species with higher charges such as

[M+2H]2+ can be observed.

Properties of Mass Spectrometers

The type and configuration of mass spectrometers dramatically influence the

quality of the resulting data in all three dimensions: mass-to-charge (m/z), time,

and intensity. This section introduces common terms that describe instrumental

parameters and characteristics of data acquired by mass spectrometers coupled

to a chromatographic method. Depending on the quality of the data landscape,

data processing and analysis parameters have to be adjusted, e.g. to account for

poor resolution in the m/z dimension. Therefore, it is essential to understand

these descriptors. For an overview and in-depth summary of terms relating to

mass spectrometers please see Moco [36] and Price et al. [72].

A chromatographic component adds a time domain to the signal landscape, which

increases the resolution of isobaric compounds. Peaks in chromatograms ideally

follow a Gaussian distribution. Chromatograms of a single ion as detected by

a mass spectrometer are also known as mass chromatograms or extracted ion

chromatograms (Figure 1.2a). They are defined by a characteristic retention

time (rt), measured at the apex of the Gaussian-distributed peak, and a max-

imum peak height. If one chemical species elutes at two different time points,

the second peak is referred to as shadow peak. If two compounds of similar or

identical mass elute at a similar time point, the two chromatograms are said to

be convoluted, i.e. they overlap. The two compounds can either be resolved via

peak picking (deconvolution) on the data processing side or by increased mass

or chromatographic resolution on the instrumental side. In addition to increased

resolution, chromatography also reduces ion suppression in the ion source [73]. Ion

suppression prevents low abundance species to get ionised. Consequently, these

species cannot be detected. For a review on ion suppression, please see Furey [74]

9
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and Annesley et al. [75]. Sensitivity refers to the change in ion current for a com-

pound against the background. It is described by the signal-to-noise ratio (S/N).

Higher sensitivity enables the detection of more signals from compounds of lower

concentration and less strict background filtering should be considered for data

processing. As established previously, mass detectors scan a given mass range at

discrete intervals. These intervals are defined by the scan rate. Higher scan rates

yield more data points per chromatographic signal.

Narrow signals, e.g. chromatographic traces that consist of less than four data

points, carry less significance than signals with more data points that follow a

well-behaved Gaussian shape [76]. Scan rate inversely affects mass resolution or

mass resolving power. Both terms refer to the ability to distinguish two over-

lapping signals. Following IUPAC’s Gold Book recommendations [77], the mass

resolving power R of two overlapping signals is defined as R = m/z1
∆m/z

, where m/z

is the mass of the indexed signal and ∆m/z equals m/z1 −m/z2. The extend to

which the signals overlap must be indicated by either a percentage (10%) or by

FWHM (full-width-at-half-maximum, 50%) of the signal height where the overlap

occurs (Figure 1.2b). Closely related, mass accuracy describes how precisely a

known mass (m) can be measured. Deviations from the exact value are specified

in parts per million (ppm) [78]. Consequently, mass tolerance or mass error, i.e.

the allowed m/z wobble of an ion trace over time, is typically defined in ppm.

Mass accuracy of instruments decreases with increasing mass. The parts-per no-

tation is particularly useful because it describes a dimensionless fraction. A mass

tolerance of 10 ppm gives 0.001 Da tolerance for a compound of mass 100 Da and

0.008 Da tolerance for a compound of mass 800 Da.

For data processing and exchange, it is convenient to collapse signals of multiple

scans into a single spectrum. A spectrum refers to a collection of signals that can

originate from multiple scans. Here, the technically more correct term scan will

be used interchangeably with the term spectrum.

10
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(a) Schematic mass chromatogram

(b) Schematic mass spectrum

Figure 1.2: Schematic of a mass chromatogram and a spectrum. (a) Example chro-
matogram of two partially overlapping ion species. Each species has a characteristic
retention time (rt) and peak height measured from the baseline. Subsequent peaks of
the same ion (m/z 1) are referred to as shadow peaks. (b) Example spectrum of two
overlapping m/z signals. Mass resolution (R) can be measured at full-width-at-half-

maximum (FWHM) via R = m/z1
∆m/z , where ∆m/z = m/z1 −m/z2.
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Trends in Mass Spectrometry Metabolomics

A diverse array of mass spectrometers exist, each with unique advantages [67].

This section outlines current trends in instrumentation. In-depth reviews and

comparisons of existing platforms can be found in the literature [79,80].

Almost all properties of mass spectrometers have improved over the last decade,

including mass accuracy, scan rate, and resolution [65,81]. Two dimensional gas

chromatography (GCxGC) has continued to grow in popularity over recent years,

offering increased separation capacity and thus selectivity [39,82]. With the fun-

damental issues addressed, the field is moving into tandem mass spectrometry,

catered for by MS vendors [83,84].

While instrumental hardware is constantly improving, mass spectrometry-based

metabolomics is lagging behind in comparison to Proteomics with regard to soft-

ware [85] and analysis standards [86], which are only slowly emerging. Most notably,

improved instrumentation has enabled advances in untargeted metabolomics [87,88]

and quantification [89]. Cross-sample retention time stability and analyte ionisa-

tion paired with high resolution has simplified calibration procedures and in-

creased system stability.

Tandem mass spectrometry refers to the combination of mass spectrometers in

sequence (MSn). Selected ions from one mass spectrometer are fragmented fur-

ther in the next mass spectrometer through a collision chamber. The number

of spectrometers in sequence (n) is limited by the increasing engineering com-

plexity and diminishing signal, i.e. ion concentration, with every appended mass

spectrometer [87]. Proof-of-principle studies have employed systems of up to MS

level four [90]. Four common data-driven methods for ion selection exist that allow

study-based control over MSn spectra generation, where all MSn spectra follow

the precursor/fragment relationship. The precursor isolation window determines

the purity of the detected MSn spectra. Narrow isolation windows reduce contam-

inating and interfering ions through increased selectivity but also remove relevant

information like isotope patterns [70].
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Tandem mass spectrometry is gaining popularity for the elucidation of unknown

compounds and in data-driven untargeted metabolomics. However, decreasing

mass accuracy of MSn levels greater than one and complex fragmentation be-

haviour of small molecules make the interpretation of MSn spectra difficult and

computationally expensive [91]. To complement these technological and computa-

tional advances, standard reference materials are under development to facilitate

efforts in metabolite identification and quantification [92].

1.1.4 Data Pre-Processing

LC-MSn data processing includes many steps, most of which modify or remove raw

data. Consequently, it is important to establish a good understanding of the steps

involved [93]. The endpoint of mass spectrometry-based metabolomics studies is

an annotated feature matrix extracted from a set of samples (raw data). A feature

is defined as signal (m/z, intensity value pair) that is believed to represent an ion.

Multiple features that represent different ions can belong to the same compound

due to fragmentation, different ionisation states, adduct formation, or clustering.

In contrast, signals originating from noise are not considered features.

Figure 1.3: Schematic of the mass spectrometry data analysis process. A set of raw data
files is read after file conversion to non-proprietary formats. Data cleaning prepares
raw data for feature extraction through noise reduction and background correction.
Feature extraction isolates ion traces from raw data that are believed to represent a
compound, before cross-sample alignment is carried out to compile a feature matrix for
statistical analysis. Additionally, features can be identified using spectral and chemical
compound databases.
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To compile the feature matrix, noise reduction and background correction are

essential before feature extraction, which greatly clean up the data. Extracted

features of individual samples are then aligned across samples to compensate for

retention time drifts introduced by the chromatographic component (Figure 1.3).

Following, aligned features can be aggregated in a feature matrix, where a feature

has a characteristic mass used as column header and the samples represent row

identifiers.

File Formats and Conversion

Mass spectrometry data is stored in a file-based manner where one file typically

represents one MS run. Vendor software that operate MS instruments use pro-

prietary file formats that are rarely supported by non-proprietary software tools.

Exceptions may occur when (a) the vendor offers an intelligible application pro-

gramming interface and (b) implementation is easy. In any case, closed propri-

etary formats impede data exchange and isolate tools that can only implement a

limited number of those formats.

Open file formats such as mzXML [94] and mzData [95] were developed to ad-

dress this issue. Originally developed for proteomics, metabolomics has adopted

these markup-based standards. The newer HUPO PSI mzML 1.1.0 [96] format

has become the de facto standard superseding the older formats [97]. Notably,

netCDF [98], a generic common data format, is still used in MS. For an update on

the efforts of the HUPO PSI, please see Orchard et al. [99].

File format conversion tools bridge the gap between closed proprietary and open

formats, partially relying on vendor libraries for accurate conversion. They allow

software developed for MS to ignore the plethora of vendor formats by taking

over the responsibility of format conversion. This is facilitated by the accepted

open data standards outlined above [100].
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Data Cleaning

Data cleaning is important to remove irrelevant signals and reduce data size. It

includes an array of processes that manipulate raw data that should be applied

with care. Baseline drift is a common problem in LC-MSn where the gradient

of the mobile phase causes the chromatographic baseline to be trending up- or

downwards. This complicates analysis because of the baseline’s effect on chro-

matographic peak shapes, introducing fronting or tailing. Distorted peak shapes

complicate peak detection and feature extraction (Figure 1.4). Background cor-

rection methods have been developed to address this problem [101–105]. These

algorithms reduce systematic background drift by subtracting either a reference

or an estimated background intensity value from the sample chromatogram.

Background correction methods account for systematic errors in the data but do

not remove random noise. Random noise produces signal spikes and discontin-

uous data that could be mistaken for meaningful data. In order to distinguish

random noise from meaningful signals, criteria have been developed to evaluate

chromatographic signal traces. These include the Component Detection Algo-

rithm (CODA) that measures the mass chromatographic quality (MCQ) [106] and

the Durbin-Watson (DW) criterion that quantifies randomness [107]. Chromato-

graphic traces above a given threshold are considered noise and are removed.

Data smoothing forms part of the noise removal process. Smoothing algorithms

remove spikes from traces, for example by polynomial regression [108,109]. Peak

smoothing simplifies feature detection and extraction by modelling chromato-

graphic traces into ideal shapes, smoothing algorithms can also mask noise by

modelling random signals into real ones.

Additional data cleaning operations include simple m/z, time, and intensity filter,

which crop raw data and remove irrelevant parts of the data landscape. Removal

of traces of known contaminants and interfering ions, such as acetonitrile and

methanol products, is also used to remove background noise [110].
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(d) Components overlay

Figure 1.4: Summary of components contributing to signal distortions. (a) Random
noise adds variation to a signal around mean zero. (b) Systematic noise, e.g. baseline
drifts, introduces a systematic drift or bias in the data that needs to be removed
before data analysis. Systematic noise can impact heavily on signal intensities and
derived signal areas. (c) The actual signal follows – in theory – a Gaussian distribution.
Deviations from this distribution reflect external factors. (d) Overlay of components
(a), (b), and (c), and the resulting “measured” signal (black).
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Feature Detection

Feature detection and deconvolution describe the process of isolating chromato-

graphic traces of individual ions and splitting these traces into separate peaks [111].

A trace is the chromatographic profile of a single ion. A single chromatographic

trace with multiple peaks can result from a single compound – eluting off the col-

umn at different time points due to matrix effects – or from multiple compounds.

Hence, peaks in the same trace need to be distinguished in case they overlap

through deconvolution. For a review on feature detection algorithms, please see

Zhang et al. [112].

Many methods for feature detection of varying complexity have been published.

These range from simple procedural approaches [113–115] to model-based [116] and

more abstract approaches using signal segmentation [117] or self-modelling curve

resolution [118]. Routinely applied tools use simple detection methods because of

their robustness, speed, and ease-of-use (see section 1.1.7). For a single feature,

limitations of a mass detector to reduce the m/z measurement error to zero,

i.e. a mass accuracy of zero ppm, result in a range of detected m/z values for

multiple scans. Because higher intensity signals yield better mass accuracy than

lower intensity signals due to instrumental limitations, detected m/z values are

intensity-weighted to determine the most precise mass-to-charge ratio of a fea-

ture. A feature’s representative retention time and intensity are then taken from

its apex. A m/z search window – defined by a mass tolerance – is typically de-

scribed in parts-per-million to define the maximum allowed m/z deviation of a

trace.

Overlapping chromatographic traces, i.e. traces of individual ions that are close

or below the mass resolution, need to be flagged. The flagged traces need to

be separated by assigning individual data points to the most likely feature or

via deconvolution if the traces are indistinguishable. Deconvolution can either

be a separate step or part of the feature detection step. Algorithms working on

the shape of chromatographic traces try to identify individual features either by

finding local maxima [113] or by modelling and fitting (ideal) peak shapes [119].
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Sample Alignment

Retention times of compounds vary from sample to sample due to matrix effects,

altered column conditions, pressure differences, and additional technical limita-

tions. These retention time drifts can range from a few to several seconds and

pose a major obstacle for cross-sample comparisons of features [120]. Experimen-

tally, retention time drifts can be reduced through column conditioning. Initial

column conditioning and between-run column equilibration to the original condi-

tions ensure that column performance remains as constant as possible.

Computationally, algorithms for time warping have predominantly been devel-

oped for spectroscopy applications in general. However, the same algorithms

can be used for metabolomics LC-MS data. They work on either raw data or

extracted features and group signals/features across samples by correlation, ac-

counting for the non-linear nature of retention time deviations. Existing methods

are based on time warping [121–123], clustering followed by time corrections [124,125],

or variance-based approaches [126].

Spectrum Extraction

An extracted spectrum consists of a set of correlated signals. In the ideal case,

all signals result from the same molecular species captured, i.e. the spectrum

may contain signals from fragments and adducts as well as ion clusters. Such

a spectrum is called a compound spectrum or feature set and can be used in

identification [127].

The primary criterion for correlation is retention time. Ions that arrive at the de-

tector simultaneously have either eluted off the chromatographic column together

or have formed during the ionisation process. For high chromatographic resolu-

tion, these sets of signals result only from few molecular species. Consequently,

the dominant approach to spectrum extraction is the aggregation of signals across

individual scans around a given retention time.

More elaborate methods use additional criteria such as the shape of an ion chro-

matogram. Signals are only grouped together into a compound spectrum if the
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retention time and the elution profile are similar. This enables separation of co-

eluting compounds. Adduct information can also be used for correlation. These

methods yield cleaner, less noisy, compound spectra [128,129].

1.1.5 Data Post-Processing

Data post-processing refers to the statistical analysis and interpretation of pro-

cessed data. Extracted and aligned features (or compound spectra) can be col-

lected in a feature matrix, where a feature has a characteristic mass used as

column header and the samples represent row identifiers. The values at the

sample-feature intersections are intensities. Analysis of the matrix includes data

normalization and annotation of related features and, ultimately, interpretation

of the results [130,131]. Feature annotation includes identification as discussed in

the following subsections.

Statistical Analysis

Statistical analysis methods can be grouped into univariate and multivariate, each

offering unique insights into the data. Multivariate analysis works on a matrix

of variables. It highlights characteristics based on the relationships between all

variables. Univariate analysis takes only one variable into account, resulting in

differently weighted results.

The goal of statistical analysis is the categorisation and prediction of sample

properties through generation of models that capture the information contained

in data matrices. In mass spectrometry, the m/z -ratio and signal intensity are

the two most important variables [132].

Without venturing far into the area of Chemometrics, principal component anal-

ysis (PCA) and (orthogonal) partial least squares (PLS) are established methods

for multivariate analysis of mass spectrometry data. These methods extract la-

tent variables by maximum variance and maximum covariance to the dependent

variable respectively. The dimensionality-reduction methods can be used in clas-

sification, regression, and prediction exercises [133,134]. The quality of statistical
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models built from the data depend significantly on data pre-processing as well as

scaling and normalization. This requires careful investigation of multiple models

for consensus building [135,136].

1.1.6 Identification of Metabolites

Metabolite identification of signals or compound spectra is an important goal

of metabolomics mass spectrometry experiments. Identified metabolites yield

in-depth biological insight in addition to information retrieved from spectral fin-

gerprinting. The challenge of metabolite identification lies in the vast tangible

chemical space and limitations in available reference data. As little as 10% of ex-

tracted features may be of true biological origin [110], where non-biological features

result from adduct formation, clustering, interferents, and noise. The available

chemical solution space covers most of those irrelevant features, which increases

the chance of false identifications. Even for signals of biological origin, multiple

identification results are feasible for a single feature, complicating the ranking of

these results. The possibility to narrow down the solution space through experi-

mental reference data is hampered by limited numbers of reference data and by

issues related to cross-comparisons of reference spectra from different instruments

or methods.

The Identification Process

The identification process starts from features and compound spectra that are

queried against databases that contain relevant metabolites and reference spec-

tra. In case of a single feature, a characteristic m/z -value is used as query criterion

for which, within a given mass tolerance, matching chemical structures are re-

trieved. Stereoisomers cannot be resolved by mass spectrometry alone because

identification methods are mass based. For compound spectra, spectra queries

provide a powerful and less generic way to retrieve putative metabolite identi-

fications. Instead of querying a single m/z -value, the complete spectral vector

that characterizes a metabolite is used for the search. Spectra queries depend
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on databases that contain reference spectra from identical or similar instruments

with similar configurations to be reliable, dramatically reducing the available

query space. The problem of reference data is more relevant for LC-based than

GC-based metabolomics because of the more consistent GC retention time and

GC-MS fragmentation pattern [137]. Thus, rich databases are corner stones for

metabolite identification [138]. Queries can return zero to many results – possibly

already ranked by similarity – that need to be re-ranked on additional information

and interpreted in biological context before a single compound can confidently

be chosen as identity for the query feature or compound spectrum. Additional

information include fragmentation spectra, isotope patterns, or orthogonal infor-

mation such as time-of-flight or retention time. These help to narrow down a

list of potential metabolite identifications based on molecule specific properties.

Biological information, e.g. through utilization of pathway maps or modelling,

provides the necessary context to increase the confidence in identifications.

Reporting Standards

Capturing the minimum set of information to reproduce a metabolomics study

is of paramount importance to simplify data exchange and ultimately guarantee

good quality of work. Reporting standards outlining the information required for

particular technologies such as MS [139] or NMR [140] are under development. These

frameworks need to be adopted by the community and consumed by software

tools to be effective [141]. To this end, the mzML file format has already started

to replace older file formats and the mzTab file format has been developed for

the reporting of identification results. The mzTab file format is still undergoing

review within PSI at the time of this writing. In parallel, an increasing number

of software tools support the new file formats and projects have been launched

to collect metabolomics data adhering to minimum reporting standards and to

harmonise existing standards further [142,143].
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1.1.7 Software

A variety of software tools have been developed for MSn data processing and

analysis. Given the complexity of the task, the majority of released software

packages focus on individual steps, e.g. feature alignment or noise reduction, and

some offer an all-in-one approach. These include processing algorithms as well

methods for metabolite identification or statistical analysis (Table 1.1).

However, even all-in-one tools cannot offer all of the functionality needed because

of the heterogeneous nature of metabolomics data and unforeseeable advances in

the field. Consequently, pipelines concatenating existing tools are constantly

being built [171–174]. These, in turn, act as guide for the development of the next

generation of expert all-in-one tools.

Both proprietary and free software libraries can be grouped into three categories:

command-line, stand-alone graphical user interface (GUI), and web-based tools.

Each offering unique advantages, frequently reviewed and discussed in litera-

ture [70,175,176]. A further distinction must be made with regard to the chromato-

graphic method being used. Independent of the actual experimental method,

data properties vary for different instruments. Subsequently most tools are opti-

mized for either gas or liquid chromatography, or are even more specific for one

technology, e.g. capillary electrochromatography or time-of-flight mass spectrom-

etry. This, in combination with the continuous increase in mass accuracy and

throughput of modern machines [177], also acts as driver for software development

in MS. Leaps in technology, such as the advent of two dimensional gas chromatog-

raphy instruments (GCxGC), followed by the rise of GCxGC software, e.g. for

alignment [178], illustrate this point nicely [179,180].
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1. GENERAL INTRODUCTION

1.2 Cheminformatics support for Metabolomics

Increasing computational power has enabled the rise of cheminformatics [181]. The

principles of cheminformatics – the fusion of computer science and chemistry –

were first described in the 1970s and 1980s, but only attracted wide recognition

with the dawn of powerful personal computers a couple of decades ago [182]. Similar

to bioinformatics, cheminformatics has developed into a separate field of study

that penetrates into many areas of modern life science [183].

Data-driven metabolomics inherently depends on cheminformatics [184]. Experi-

mental methods generate information-rich data that at their core describe molec-

ular structures. For example, chemistry databanks such as PubChem [185] and

ChemSpider [186], with over 47 million and 29 million structures respectively, are

back-ends for metabolomics applications. Querying those databases in a semi-

or fully-automated fashion and analysing the results is at the very core of chem-

informatics. Model building for clustering, prediction of chemicals or chemical

properties, and pathways modelling for biological interpretation are further use

cases of cheminformatics in metabolomics. Cheminformatics tool kits are in high

demand to enable small molecule library management and processing [187]. To this

end many, cheminformatics tool kits and scripting frameworks [188,189] have been

developed such as chemf [190], RDKit [191], CDK [192], and OpenBabel [193].

1.2.1 Small Molecule Library Management

The management of a small molecule library comprises conversion, canonicaliza-

tion, and normalization of molecular structures as well as the application of search

and descriptive algorithms to filter and characterize small molecule libraries [194].

Functionality includes, inter alia, the removal of mixtures, inorganics, and salts,

tautomer normalization, pH calculations, substructure searches, and descriptor

calculations.

Cheminformatics libraries, such as the afore mentioned Chemistry Development

Toolkit (CDK), offer functionality for the bulk of cheminformatics tasks and are
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consumed by front-end tools for user interaction [195]. In addition, specialised ser-

vices exist that focus on single steps such as parsing IUPAC names (OPSIN [196])

or cross-reference and identifier tracking (UniChem [197]). Because the library

management process involves many different steps and software, expert tools

have become popular that aggregate different software to facilitate the process,

hence reducing the number of tools and steps a cheminformatician has to deal

with [198,199].

1.2.2 Representation of Small Molecules

Representation concerns the storage, transfer, and visualization ability of small

molecular structures. Over the last 60 years, various systems have been proposed,

of which some have become accepted community standards [200]. Representations

should encode all relevant information about a chemical structure while being as

concise as possible and while maintaining efficient readability for either humans

or computers. The choice of representation affects speed, resource requirements,

and data handling of cheminformatics tools.

Notations and Conventions

File formats represent small molecular structures in a precisely defined way and

serve as the smallest unit for structure storage and transfer. The most funda-

mental chemical file formats are described.

The Simplified Molecular Input Line Entry System (SMILES) is one of the

most commonly used line notations. Older notations include the less promi-

nent Wiswesser Line Notation (WLN) [201] and the DARC system [202]. SMILES

encodes a molecular structure in a single sequential character string that is both

human- and machine-readable. In contrast to other notations mentioned herein,

no comprehensive and formal specification of the line notation has ever been

published. For this reason, different implementations of SMILES can differ in

functionality, making SMILES unreliable if used across different cheminformatics

toolkits. This – taking into account that no official canonicalisation model exists
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either – is the biggest weakness of SMILES. Issues around SMILES are being

addressed by developments in the community sector (OpenSMILES as part of

the Blue Obelisk group [203]) and academia [204].

A MDL molfile contains a redundant connection table that stores atom and bond

connectivity in an atom and bond block respectively. The blocks contain all

relevant information about the structure such as charge, atom stereo parity, and

valence. Structure-Data files (SDfile) extend MDL molfiles, accommodating any

number of molecules in a single file.

InChI, the IUPAC International Chemical Identifier, is a standardized open source

line notation that uses layers to represent different levels of chemical structure in-

formation [205]. Theses layers encompass constitution (atoms and bonds), charge,

stereochemistry, isotopes, fixed hydrogens, and reconnections, i.e. reconnected

atoms such as coordinated metal atoms.

The line notation comes in two flavours: the InChI itself and a 27 character-

long hashed representation called InChIKey – a more condensed representation

of the full InChI targeted at database queries. The standardized IUPAC InChI

guarantees proper interoperability across different platforms. Its application is

currently limited by its range of unsupported structures, e.g. polymers, Markush

structures, mixtures, conformers, and topological isomers [206].

The Chemical Markup Language (CML) is a XML-based file format that encodes

a chemical structure in a highly human readable way [207]. Extending XML, CML

is customisable to accommodate any additional information about the structure

in a pre-defined manner. This makes CML useful for problems encountered in

the area of data persistence.

Graphical Representation

Graphical representations of small molecules act as interface between the digital

internal representation of a molecular structure and the user. Therefore the

graphical representation needs to depict the molecule in its entirety and correctly.

This statement is true in most cases for the depiction of molecular graphs with
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(a) Marvin (b) CDK (c) RDKit

Figure 1.5: Comparison of graphical representations of chlorophyll f [CHEBI:61290] by
(a) Marvin, (b) KNIME-CDK, and (c) RDKit. The alipathic esther chain is not shown
for depiction purposes. The coordination bond shown in Marvin is ignored in KNIME-
CDK and shown as covalent bond in RDKit. Aromaticty is not visually indicated by
Marvin but, partially, in KNIME-CDK and RDKit using circles and dashed bonds
respectively.

regard to connectivity. In the case of coordination bonds, depictions already

start to vary from one toolkit to another. More subtle problems occur with

the depiction of stereochemistry and aromaticity, where representations can be

misleading for the unprepared user (Figure 1.5).

Whereas most graphical representations of organic molecule are correct and ef-

forts focus on visualisation of molecule clouds [208] or chemical space [209,210], it is

important to be aware of current limitations to efficiently deal with single small

molecules in cheminformatics.

1.2.3 Properties of Small Molecules

Descriptors are used to study physicochemical properties of small molecules. Ap-

plied in modelling, those quantitative structure-property relationships (QSPR)

enable the clustering and prediction of molecular properties [194]. Descriptors can

be grouped into four classes, where:

• topological descriptors describe properties of the molecular graph in 2D
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• geometrical descriptors describe properties of the molecular structure in

space (3D)

• electronic descriptors describe the energy and charge state of molecular

structures

• hybrid descriptors are combinations of the other classes of descriptors

Hundreds of descriptors exists in different toolkits that are often used in com-

bination for model building [211]. Subtle differences in implementations of the

algorithms and differing molecular representations give QSPR descriptors an in-

voluntary cross toolkit complementarity. Because descriptors act on the internal

molecular representation of a molecular structure to describe its physicochem-

ical properties, any cheminformatics toolkit needs to exercise great care when

it comes to structure conversion into its own molecular representation in order

to configure the molecular structure correctly for QSPR descriptor calculations.

For example, utilization of the same aromaticity model across all molecules in a

library is essential for consistent results.

1.2.4 Workflow Environments for Cheminformatics

Workflow environments have become increasingly popular over the last decade

with the promise to simplify integration and coordination of different software

packages [212,213]. Researchers often face the challenge of processing and analysing

complex data sets. This involves the use of various tools, frequent saving and

loading of data in different formats, and data transformation or manipulation [131].

In addition, these activities should be recorded to ensure reproducibility and ex-

tendibility. Workflow tools address the problem of orchestrating these processes

and offer a potential all-in-one solution, bringing together numerical, textual,

chemical, and biological data [214]. The concept behind those tools can be under-

stood as visual programming [215].

This introduction concentrates on platforms that support bioinformatics and

cheminformatics tasks, not on generic workflow environments for business in-

telligence. The first group comprises Galaxy [216], Taverna [217], KNIME [218], and
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Pipeline Pilot [219]. Galaxy is a web-based platform that focuses on genomic data

and offers only rudimentary cheminformatics functionality, e.g. in the form of

“ballaxy” [220]. Taverna, KNIME, and Pipeline Pilot are desktop applications,

with the latter being the de facto standard for cheminformatics. Developed by

Accelrys, Pipeline Pilot has been specifically developed for bio- and cheminfor-

matics needs in life sciences. In contrast, the free-of-charge open source workflow

management systems Taverna and KNIME are more generically targeted at work-

flow generation for data transformation, largely relying on contributions from the

scientific community in the form of plug-ins and shared workflows [221].

Most workflow platforms follow the same principle (Figure 1.6). Tasks or pro-

cesses are carried out by discrete entities, that – based on the platform – are

Figure 1.6: Schematic of the principle mechanism of workflow platforms. Data is either
loaded from external sources or created within the workflow environment. Loaded data
is then sequentially passed on to individual entities that carry out their tasks (Task
1, Task 2, et cetera). Workflows can include branches as indicated with Task 3.I and
Task 3.II, where different intermediate results are generated. Task results are stored
for persistence or usage outside the workflow environment. The middle and lower part
of the figure depicts workflows that follow the same pattern from Taverna v2.3 and
KNIME v2.7 respectively.
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called nodes, workers, components, et cetera. These entities either create input,

e.g. by reading a file or querying a database, or take input from another entity.

It follows that entities can also output data – typically after an operation has

been applied on the data – or remove data by storing it outside the platform.

The way in which data is transferred from one entity to another depends on the

platform. For example, the transfer could either be file based or tabular. The

parameters of a specific function are typically set through a configuration dia-

logue of an entity and define the behaviour of the function for that entity. A

workflow is made up of individual entities that are connected to each other under

the constraints of their input and output requirements. Workflows are intrinsi-

cally linear, i.e. execution flows from an input to an output operation, but allow

for branching. More advanced structures, such as loops, are supported in some

environments, rendering the pipeline design process more flexible. On workflow

execution, entities in a pipeline execute either sequentially – one after another –

or in batch, where pieces of data are processed downstream when they become

available. Intermediate results can be stored for inspection.

In summary, workflow environments enable scientists to build complex data pro-

cessing and analysis pipelines, record how the data is processed, and share their

workflows, all through the concept of visual programming. Whereas properties

like user-friendliness, ease of debugging, and the ability to inspect intermediate

results are distinct advantages of workflow platforms, disadvantages come from

the limited functionality offered, forcing scientists to go beyond their pipelines,

the need to cache data impeding scalability, and the initial overhead of imple-

menting new entities [214].

Konstanz Information Miner

The Konstanz Information Miner (KNIME) [218] is a Java-based open-source work-

flow platform that supports a wide range of functionality. It has an active de-

veloper community with plug-ins for bio- and cheminformatics [150,222–224]. For a

detailed description of the KNIME data analysis platform see [225].
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Figure 1.7: Screenshot of the KNIME workbench with an opened project. The Editor
in the middle serves as work pane where workflows can be build via addition of nodes
from the Node Repository via drag-and-drop. Supporting information about a selected
node is displayed in the Node Description pane. The KNIME Explorer and Console
hold the list of workflows and system message respectively.

The KNIME workbench follows a simple layout, as can be seen in Figure 1.7,

comprising the following components: A KNIME Explorer holding all workflows,

a Node Repository listing all available entities (nodes), a Console that displays

system messages, a Node Description that displays additional information about

any selected node, and an Editor where individual nodes can be put together to

build a workflow. Nodes can be added to the editor pane via drag-and-drop from

the Node Repository.

KNIME follows a sequential execution pattern. Nodes in a pipeline are executed

one after another after previous nodes have finished execution. Intermediate

results are cached and, depending on their size, serialized to disk. Nodes exchange
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data in tabular format with rows and column, where every column must have a

data type specification. Rows consist of one to many cells that span one to many

columns. A cell is an atomic unit of information that cannot be split further.

Each cell has a data type that defines its content based on the column it is in. It

is important to note that KNIME nodes can only deal with cell types that match

their input requirements.

Internal KNIME plug-ins are available via the standard in-build repository. Ex-

ternal third party plug-ins can either be added from an archive file or update

site. An official community repository and forum is available to support the

development of third party plug-ins.

KNIME is developed in Java version 1.7 and is based on the Eclipse framework,

an integrated development environment. Consequently, individual nodes and full

plug-ins can be developed against the Eclipse framework and the Java Software

Development Kit. The development process is guided by a node extension wizard

that creates four Java classes (Table 1.2). These four Java classes determine the

node behaviour and are sufficient for node development. More advanced struc-

tures are documented in the KNIME Application Programming Interface.

Java class Responsibilities

NodeModel.java validates dialog and node port parameters, saves/loads

internal settings, and defines the main function body

NodeDialog.java defines the settings window and node parameters

NodeView.java defines a custom view of the stored data

NodeFactory.java orchestrates instantiation of the model, dialog, and view

Node.xml markup-language based node description

Table 1.2: Java classes for KNIME node development. The KNIME node extension
wizard facilitates the development of external nodes. The four base classes created by
the wizard are listed including their main responsibilities, i.e. the behaviour that can be
defined. In addition, a markup language file is created that contains meta information
about the node.
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1.3 Aim of this Thesis

The aim of this thesis is to provide effective yet usable software tools that simplify

data analysis and exploration for the general scientific community. By narrowing

the gap between metabolomics data and metabolomics data analysis, I attempt to

bridge life science and computer science. Informed data processing and analysis

is a difficult problem that demands expertise knowledge and time-intense manual

labour. The plethora of data available and the accelerating pace at which new

data is acquired, increase the demand for semi- or fully-automated pipelines that

make the data analysis process more manageable and efficient.

The non-linear, multi-parametric metabolic responses captured in metabolomic

snapshots – typically taken from two or more sample groups – contain crucial

information. Information that could be used in early-stage detection of disease.

However, the quality of the available data depends on the design of a study,

its sample set-up, instrumental configuration, et cetera. These factors demand

attention to detail from an analyst, but also require adequate software to offer

support [3].

To achieve the aim of narrowing the gap between metabolomics data and meta-

bolomics data analysis, the objectives are to develop a modular library for pro-

cessing of LC-MSn data and integrate this library as external plug-in in a work-

flow environment. Methods for LC-MSn-based metabolite identification are to be

implemented to broaden the scope of the application and address the need for

identification frameworks that go beyond current metabolomics databases [17,38].

Visual programming is to be explored as a method of choice to make these data

processing functions accessible to analysts without programming experience and

ensure reproducibility of analysis [226]: the building-block approach of the chosen

workflow platform, KNIME, is to serve as platform to combine the tool’s function-

ality with more generic, already existing, methods. In addition, cheminformatics

methods are to be explored to enable small molecule management, ultimately

feeding back into LC-MSn analysis.
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CHAPTER 2

Informatics for LC-MSn

Analysis

2.1 Introduction

Metabolomics studies aim to characterise biological samples and identify meta-

bolites [11,12]. To investigate the small molecule complement of organisms, liquid

chromatography coupled to tandem mass spectrometry (LC-MSn) is a routine

technique commonly used. LC-MSn is applied in profiling, fingerprinting, or

untargeted mode [14] in a variety of areas including environmental [39], plant [58,63],

and biomedical research [227]. Modern LC-MSn systems can detect more mass

traces than ever before thanks to high mass accuracy (ma ≤ 2 ppm [33]) and

resolution (R ≥ 100, 000 [34]), producing complex, information-rich data for every

sample.

Data typically consists of mass-to-charge (m/z ), time, and intensity triplets that

describe for every detected ion mass the strength of the ion beam and the time it

is detected by the spectrometer. Processing and interpreting these data matrices

is extraordinarily difficult because of the high dynamic range, chemical diversity,

and metabolite numbers typically found in metabolome samples. The partially

35



2. INFORMATICS FOR LC-MSn ANALYSIS

convoluted, densely populated signal landscape contains systematic and random

noise amongst true signals of varying intensity and shape. Additionally, formation

of ion clusters, adducts, or fragmentation implies that many of the extracted peaks

or features can belong to the same compound.

Both proprietary and free libraries addressing the data processing problem have

been developed and are routinely applied in LC-MSn metabolomics [37,175]. Due to

the inherent nature of metabolomics data, processing and analysis requires com-

plex workflows, bundling different programs, traversing parameter space, pulling

in additional information from databases, and performing statistical multivari-

ate analysis. Consequently, pipelines have been built concatenating existing

tools [93,155,171,228].

Workflow platforms such as the Konstanz Information Miner (KNIME) [218] offer

the potential for an all-in-one solution. OpenMS [150], a library for LC-MS data

management and analyses, primarily geared towards proteomics, has already been

added to KNIME’s bioinformatics suite. Workflow-based data processing can

be described as visual programming. It has the advantage of ease-of-use for

computational and experimental scientists alike and enables rapid development

of complex pipelines while maintaining flexibility due to modularity.

We have developed MassCascade and its plug-in MassCascade-KNIME, a library

and node-suite for stepwise LC-MSn metabolomics data processing. In the fol-

lowing sections, we give an overview of the architecture of the library and plug-in,

summarise the implemented features, and demonstrate the performance and ad-

vantages of a unified workflow environment for fingerprinting.

2.2 MassCascade’s Implementation

The library MassCascade comprises various methods for data processing, visua-

lisation, and feature identification. Each method is implemented using Java’s R©

concurrency framework [229] for multi-threading to increase execution speed. The

library is thread-safe and can be executed in a server environment. MassCascade

has been developed in the programming language Java R© version 1.7.
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Structure

MassCascade works based on a set of essential instances that represent abstract

mass spectrometry entities. These core instances are passed between processing

methods (Figure 2.1). The MS Data type contains raw data taken from indi-

vidual scans, the Feature Data type contains extracted features and associated

annotations, and the Feature Set type contains a collection of features that are

correlated, i.e. compound spectra . They are defined as follows: S (scan) is a set

of m/z-intensity value pairs si at a given acquisition time t :

St = {s1, s2, s3, ... , sm} (2.1a)

si = (m/z, I) (2.1b)

For a given m/z, F (feature) is a triplet containing a time vector ~t, an intensity

vector ~I, and a retention time rt. The time and intensity vector are of identical

length and represent the chromatographic profile of the feature. The retention

time is the characteristic time of the feature, typically indicating the apex of the

chromatographic profile. FS (feature set) is a set of features F at a time point t,

which is the consensus ‘retention time’ of the complete feature set:

Fm/z = (~t, ~I, rt) (2.2)

FSt =
{
Fm/z1 , Fm/z2 , Fm/z3 , ... , Fm/zn

}
(2.3)

Each method takes a set of parameters including one or many MS instances,

applies the method’s function on the instance, and returns a new MS instance.

It is apparent that those instances essentially are data containers. This way a

snapshot of the data can be serialised to disk after any processing step if required.

That is essential for workflow environments, where intermediate results need to

be accessible after every execution step.

Too many disk input and output operations are not desirable however because

they slow down execution. Unless constrained by computer memory, the library

can be run in memory mode. All MS instances can either be file- or memory-

based, i.e. their underlying data is serialized to external files or kept in memory
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Figure 2.1: Overview of MassCascade data types and their representations. The MS
Data type contains raw data taken from individual scans: S (scan) is a set of m/z-
intensity value pairs s at a given scan time t. The Feature Data type contains extracted
features and associated annotations: for a given m/z, F (feature) is a triplet containing
a time vector ~t, an intensity vector ~I, and a retention time rt. The Feature Set type
contains feature sets FS : a set of features F at a time point t.

(Figure 2.2). The latter mode is desirable for server-side applications because

of its increased execution speed. To facilitate file- or memory-mode selection,

respective ContainerBuilder have been implemented that automatically prop-

agate the correct mode from one method to another when a new container is

generated. The builders only need to be explicitly utilized once at the beginning

of the execution script.

Core Framework

The core library contains methods for LC-MSn data processing. As outlined

above, every method takes an instance of a data type and returns another in-

stance of the same or a different data type. For example, the ProfileBuilder

method accepts a MS Data instance, extracts features, and returns a Feature

Data instance. Each method is defined as predefined constant (enum type) in

CoreTasks that defines the method’s Java R© class and unique identifier. By de-

fault, each method also extends CallableTask. This interface represents the
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Figure 2.2: UML diagram of MassCascade’s data structure. The library can run
in either file- or memory-mode, determining whether the data of the employed
data containers is serialized to disk or kept in memory. For every data type,
a file- and memory-container exists. The respective FileContainerBuilder and
MemoryContainerBuilder ensure automatic propagation of the selected mode when
different methods of the library are used in succession.

contract that all methods must follow within the core framework. This design

pattern guarantees seamless usage and integration of the tool in various environ-

ments.

Input and output parameters are clearly defined in the methods’ annotations.

Annotations are provided in the form of JavaDoc for the case of the core library.

Parameters can be passed to methods via a ParameterMap as Paramter-value

pairs (Figure 2.3). This highly verbose way of adding parameters to methods

facilitates easy usage and readability of written code, essential for maintainability.

Parameters are centrally defined in the Parameter class with a short description

and – where applicable – default values.

Visualisation Framework

The visualisation framework enables data inspection for data type instances. It

comprises a spectrum viewer to visualise spectra and chromatograms. Textual

annotations can be added on demand. Data traces can be displayed with various

styles: impulse, line, polyline, spline, and point. The viewer also offers common

interactive viewing functions: zooming, highlighting, and coordinate labels.
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Figure 2.3: Example of JavaDoc documentation for the PsiMzmlReader method (left)
and minimalistic source code to read a data file in mzML file format (right). The
parameter requirements of the reader method are defined in its documentation. A
memory-based instance is chosen to serve as container for the read raw file. The file
and data type instance are passed to the reader method via a ParameterMap. The
map uses pre-defined parameters that correspond to the parameters defined in the
documentation.

In addition, the visualisation framework contains a set of pre-defined tables for

block-like use in software applications that consume the library. Caching and

lazy loading are have been used to enable responsive user-table interactions, e.g.

with large numbers of features loaded.

Identification Framework

The identification framework contains methods for metabolite identification, in-

cluding web-based and local services for metabolite and spectra databases. Ex-

tracted features can either be queried via m/z lookups or spectra queries. Pseudo

spectra contained in the Feature Set type serve as spectra for the latter type.

After databases lookup, putative metabolite identifications can be ranked based

on isotope, adduct, and tandem mass spectrometry using a custom scoring scheme.

Aggregated information is used to filter out irrelevant metabolites and narrow

down the search space. Identified metabolites and signal lists can be exported for

further analysis with other programs.
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2.3 MassCascade’s Functionality

MassCascade’s methods are grouped into pre-processing, processing, and post-

processing. Pre-processing deals with the manipulation of raw data up to the

point of feature extraction. Processing addresses the extracted features and ends

with post-processing, the annotation and identification of signals or compound

spectra. Throughout development, care was taken to incorporate adaptive ap-

proaches that work close to the raw data and avoid binned data. Binned data

offers many advantages including, inter alia, increased execution speed and lower

memory costs, but introduces the danger of lowering the granularity of high-

resolution data beyond informative thresholds, thus deleting information. Wher-

ever binned data is a prerequisite algorithmically, equidistant binning is utilized

with non-flexible boundaries. Equidistant binning creates equally spaced bins.

Values that fall within a particular bin are integrated and assigned to that bin.

Default parameters are provided for all implemented methods but these may need

refinement based on the quality of the data.

2.3.1 Data Pre-Processing

The library supports the HUPO PSI mzML 1.1.0 specification [96], superseding

the older mzXML [94] and mzData [95] formats, and Thermo Scientific’s RAW file

format. The methods have been optimised for centroid data. Input data should be

centroided with one of the many available file converters such as ProteoWizard [230]

or by using the implemented wavelet-based centroider after profile data has been

read in. The wavelet method uses a Ricker wavelet of the form:

ψ(t) =
2

√
3σπ

1
4

(
1− t2

σ2

)
e
−t2
2σ2 (2.4)

ψ denotes the wavelet with offset t and spread σ. The Ricker wavelet is the

negative normalized second derivative of a Gaussian function. This wavelet is

convoluted over every scan to find centroids in the profile signals, assuming the

ideal case where these follow a Gaussian distribution [231].
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Figure 2.4: Overlay of a section of a scan in profile mode (blue, with envelope), wavelet
centroided (red), and vendor centroided (green). The vendor methods picks up two
additional centroids (highlighted) and – for the largest centroid – sits at the apex of
the profile envelope. The wavelet algorithm finds only one centroid and chooses the
closest discrete signal of the profile set, resulting in a m/z deviation of 0.0002.

The resulting centroid of a single profile does not represent an interpolated cen-

troid from the apex of the distribution but the closest discrete signal taken from

the profile (Figure 2.4). This can result in a small m/z error in the region of

∆m/z ≈ 0.0001.

Systematic and random noise reduction are supported following an approach out-

lined by Zhu et al. [102]. The algorithm consists of two parts:

1. Systematic noise (background) can be subtracted through a blank reference

sample containing only solvent. Instrument-dependent drifts and back-

ground ion traces, e.g. from the solvent or ubiquitous contaminants, are

represented in these blank injections. Subtraction of a blank reference from

a sample effectively removes these spurious traces. This method assumes

that systematic noise or background is linearly added to the desired signals

and can thus be removed via subtraction of a blank reference. For every

data point si in every scan of a sample, a two-dimensional control area is

created in the blank reference for a given time range ∆t and m/z tolerance

range ∆m/z (Figure 2.5a). A data point is considered noise and removed
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if a similar data point sj is present in the control area of the reference:

(m/z)si −∆m/z ≤ (m/z)sj < (m/z)si + ∆m/z (2.5)

tsi −∆t ≤ tsj < tsi + ∆t (2.6)

2. Data points resulting from random noise are removed by inspecting adjacent

scans in the same sample for similar data points (Figure 2.5b). A data point

si is considered noise and removed if it does not have a set of adjacent

neighbours S = sj, sj+1, ..., sj+n within a given m/z tolerance ∆m/z and

the total length of the chain of adjacent neighbours, i.e. the length of the

putative ion trace, falls below a scan number threshold n. In addition,

the data point or at least one of its adjacent neighbours has to exceed a

minimum intensity threshold Imin:

(m/z)si −∆m/z ≤ (m/z)sj < (m/z)si + ∆m/z (2.7)

length(S) ≥ n (2.8)

Imax(S) ≥ Imin (2.9)

Data filters operating in all three domains – time, m/z, and intensity – allow

raw data trimming. The chromatographic element of a LC-MS system can be

significantly inconsistent at the beginning and end of each run due to column

properties and the mobile phase mixture typically used at those phases. Regions

above or below a certain m/z value may not be of interest experimentally or

signals below a certain minimum intensity that have not been filtered out by

the instrument may be considered noise a priori. Data filters crop the data

based on threshold values or ranges and remove unwanted or unreliable data

segments.

Feature extraction refers to the detection and isolation of distinct ion traces. Fea-

tures are build using a simple adaptive incremental approach. Scans are visited

in chronological sequence. Every data point in a scan is either assigned to a pre-

viously created ion trace – originating at an earlier scan – or becomes the source

of a new ion trace. Only one data point per scan be assigned to an ion trace.
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(a) Systematic noise removal (b) Random noise removal

(c) Total ion chromatograms before and after noise removal

Figure 2.5: Illustration of noise removal pre-processing methods. (a) Time versus m/z
plot of signals pre (blue) and post (red, covering blue) systematic noise removal. Blue
and green bands indicate the m/z tolerance window of the blue and green trace. An
ion trace of the background reference (green) falls within the window of the upper trace
around 119.085. Consequently, the sample ion trace is removed. (b) Time versus m/z
plot of signals pre (blue) and post (red, covering blue) random noise removal. Traces
lower than eight successive scans are removed (circled). (c) Total ion chromatograms of
the pre- (blue), post-processed (red) sample and background reference (green). Noise
reduction dramatically reduces baseline distortions while leaving large features intact.

Assignment is conditional on the m/z value of the data point being closest to the

weighted average of all m/z values captured by the ion trace from previous scans

and falling within the given m/z tolerance calculated around the trace’s weighted

average (Figure 2.6). The weighted average is updated on every assignment based
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Figure 2.6: Illustration of the feature extraction process. Data points of the ion trace
m/z = 119.0984 are shown with regard to their individual m/z values (red) and inten-
sity (blue). The red points demonstrate the m/z measurement error. The course of the
characteristic m/z value determined by a weighted average is shown in green. After the
trace’s maximum, the value is set to 119.0984. Subsequent low-intensity values only
introduce marginal deviations.

on the data point’s intensity, placing higher emphasise on high-intensity, i.e. more

accurate, m/z values. Finally, an ion trace qualifies as feature if it exceeds a given

minimum length (number of adjacent data points) and the distribution’s apex is

above a minimum intensity threshold.

To eliminate baseline drifts in the absence of a blank reference, a morphological

Top Hat filter has been implemented acting on individual features. The specific

implementation is described by Herk et al. [232]. Top Hat by opening is applied,

i.e. erosion followed by dilation, with a structuring element B on a feature f

(Figure 2.7). Erosion shaves off the peaks and reduces their width. Following,

dilation widens the flattened peaks. It reconstructs the shape without the shaved

off peaks. By applying dilation after erosion, i.e. opening, the baseline under

the peaks is first estimated and can subsequently be subtracted from the original

feature. The structuring element is characterised by a window width in the time

domain where the baseline drift occurs. The element itself can be understood as a

simple window that defines the granularity of the method. A wider window width

is more coarse. Peaks within the window width are flattened and the resulting

baseline estimate is more conservative.
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Figure 2.7: Illustration of the TopHat algorithm. The input chromatogram (1.Input)
is eroded with a structuring element of length six resulting in the ‘peak-shaved’ green
line (2.Erosion). Dilation takes the eroded data and reconstructs the original shapes
without the peaks (3.Dilation). Subtraction of the estimated baseline (3.Dilation) from
the original input (1.Input) yields the baseline-corrected chromatogram (4.Output).

Dilation :(f ⊕B)(x) = max {f(x− x′)|x′ ∈ B} (2.10)

Erosion :(f 	B)(x) = min {f(x+ x′)|x′ ∈ B} (2.11)

Opening :f ◦B = (f 	B)⊕B (2.12)

TopHat :f ′ = f − (f ◦B) (2.13)

Note that ⊕ and 	 indicate operations that should be understood as additions

and subtractions in a non-numeric context. Here, the application of the struc-

turing element widens and reduces the peak shapes. The symbol ‘◦’ indicates

function composition. The baseline subtracted from the original feature gives the

new baseline-corrected feature. The remaining features, after noise reduction,

feature extraction, and – if required – baseline correction, still contain many bio-

logically irrelevant features. To further narrow down the solution space to extract

only high-quality ion traces, two criteria have been implemented: The mass chro-

matographic quality from the Component Detection Algorithm (CODA) and the

Durbin Watson score based on a combination of CODA with a Durbin Watson

statistic [233].
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The mass chromatographic quality ‘mcq’ describes the similarity between a raw

(length-scaled x(λ)i) and a smoothed (auto-scaled x(r, s)i) version of a feature.

xi denotes the intensity value at position i in the feature’s intensity vector. λ,

s, and r indicate that the value is length-scaled or standardised and smoothed.

Higher quality features that are less likely to be random variations have a score

closer to one. The smoothed and raw version of the signal region are almost

identical. Noisy features show greater discrepancy and give a score closer to zero.

The window width w defines the granularity of the method in the time domain

and n corresponds to the total number of data points of the feature.

mcq =
1√
n− w

n−w+1∑
i=1

x(λ)ix(w, s)i {mcq ∈ < | 0 ≤ mcq ≤ 1} (2.14a)

x(λ)i =
xi√∑n
i=1 x

2
i

(2.14b)

x(r)Ri =
1

w

i+w−1∑
k=i

xk (2.14c)

x(s)i =
xi − µ
σ

(2.14d)

The mass chromatographic quality gives good results for baseline-free ion traces.

If solvent signals or baseline artefacts are present, the mcq score gets dispro-

portionally worse because the smoothed version of the feature appear to contain

more random signal. To reduce this problem, the Durbin Watson score ‘dw’ has

been implemented as alternative (Figure 2.8). It acts on elements x′ of the first

derivative of a feature and summarizes the relative change in the feature through

the normalized sum of squared intensities. For noisy features, the relative change

will give higher dw values. The window width w defines the granularity of the

method in the time domain.

dw =

∑w
i=2

(
x′i − x′i−1

)2∑w
i=1 x

′2
i

{dw ∈ < | 0 ≤ dw ≤ ∞} (2.15a)

x′i = xi+1 − xi (2.15b)
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(a) Total ion chromatograms before and after Durbin Watson filtering

(b) (Total) ion traces pre-filter (c) (Total) ion traces post-filter
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(d) Bar chart summarising pre-processing steps

Figure 2.8: Illustration of Durbin Watson filtering and bar chart summary of pre-
processing steps. (a) Total ion chromatograms of the pre- (blue) and post-filtered (red)
sample using a strict Durbin Watson filter (dw = 1.5). The green circles highlight
areas of difference. (b) Close up of the unfiltered area around 224 s. (c) Close up of the
filtered area around 224 s. In (b) and (c) the total ion trace is shown in black, individual
features are shown coloured. Irregular features are removed by the Durbin Watson
filter leaving only well behaved features. (d) Bar chart summarising the decrease of the
number of features during pre-processing. The 260 fold reduction demonstrates the
necessity for pre-processing for efficient data handling.
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The threshold values for the CODA and Durbin Watson filters depend on the

individual sample sets and need to be adjusted accordingly. For data exploration,

traversal of percentiles of the total score distribution is recommended. This way

the impact of lower quality signals, which may be relevant, can be evaluated on

the final model.

A Savitzky-Golay filter has been implemented for feature smoothing, increasing

the signal-to-noise ratio without distorting the ion trace. For high signal-to-noise

data, smoothing can recover ion traces that would be filtered out as noise by

other pre-processing methods. The data is assumed to be spaced equally (h = 1),

allowing the use of convolution coefficient (a) lookup tables. A smoothing window

of length n is convoluted over a feature and a polynomial Y of low degree k is

iteratively fitted through the data points that lie within the smoothing window.

The midpoint x of the smoothing window is replaced by the value derived from

the fitted function. The window indices are defined by z where the midpoint x

equals zero. Afterwards, intensities of smoothed features are restored to the same

magnitude of the raw feature to avoid distortion.

Y = a0 + a1z + a2z
2 + a3z

3 + . . . akz
k (2.16a)

z =
x− x
h

(2.16b)

To remove features that are believed to be genuine but not of experimental in-

terest, e.g. contaminants and interferrents, features can be filtered by their exact

ion mass, further trimming the data set.

2.3.2 Data Processing

Data processing addresses extracted features and refines those intra- and inter-

sample. Features need to be deconvoluted and peak-picked to isolate compounds

of similar or identical mass that eluted at different time points (Figure 2.9a).

A popular second derivative polynomial approach and a more robust modified

Bieman [113] approach have been implemented. For the first approach, a higher

order polynomial is fitted through coefficient-lookup. The second derivative of
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the function determines the boundaries (zero-intercepts) and maximum intensities

(local minima/maxima) of individual peaks in the trace. The method is sensitive

to the quality of the initial polynomial fit and was found to be less effective

for diverse peak shapes. The modified Bieman algorithm for peak picking is

purely-shape based: it finds local minima (boundaries) and maxima (peak apices)

through iterative data point traversal from the ion trace’s global maximum. The

trace is split into individual peaks based on the slope of the declining trace (see

Stein et al. [113]).

For both deconvolution methods, intensity-based thresholds are in place to remove

low-level – noisy – signals. For the polynomial approach, the second derivative

needs to exceed a pre-defined threshold to qualify as separate peak. the Bieman

algorithm carries out a least squares background estimation from the lower half

of the total set of background-subtracted ion trace data points.

To remove retention time shifts across samples, Obiwarp – a tool for ordered

bijective interpolated warping – can be utilized [121]. The parameters required by

Obiwarp are extensively documented on its official web page and are mostly self-

explanatory, e.g. the parameters for gap initiation and extension penalties. Before

alignment of a collection of features of a sample to another collection of feature of

a reference, i.e. the adjustment of the feature landscapes, these collections need

to be binned in the time and m/z domain to create a regular grid that is shared

by all samples and the reference. Equidistant binning is used for both domains.

The smaller the bin size in either domain, the higher the resolution and more

fine-grained the resulting alignment. Too small bin sizes result in poor alignment

due to sparseness. Because MassCascade and Obiwarp store MS data differently,

binned grids are stored temporarily in Obiwarp-compatible ASCII ‘lmat’ format

for every sample and reference. Lmat files can subsequently be used as input for

Obiwarp, spawned in parallel in separate threads. Obiwarp returns a vector or

adjusted time values of equal length to the number of bins in the time domain

of the input grid. Nearest-point linear interpolation is used to translate these

adjusted time values into corrections for the unbinned features in the original

feature collection (Figure 2.9b).
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(a) Bieman-based deconvolution (b) Obiwarp bin size response landscape

(c) Feature set: signals (d) Feature set: ion traces

Figure 2.9: Illustration of deconvolution, alignment, and feature set methods. (a) Ex-
ample of Bieman-based deconvolution. The outer ion trace (blue, scaled up) represents
the chromatogram of a single ion. The green and red traces result from the decon-
volution process. The original ion trace has been truncated at its local minima. (b)
Response landscape of the mean difference of target-to-reference distances before (∆t)
and after (∆t′) alignment with Obiwarp: ∆T = 1

n

∑n
i=0 (|∆t′i| − |∆ti|), where n equals

the number of aligned features; the times ∆t and ∆t′ correspond to the differences in re-
tention time rt: ∆t(

′) = tSr −tRr with S and R being the target and reference. Bin widths
in the time and m/z domain have been increased in steps of 0.5 from 0.1 to 3.0. Lower
∆T values indicate better overall alignment. The graph shows that best alignment re-
sults are achieved with larger bin sizes for the time domain, which should approximate
the time interval between scans. Obiwarp was run with default settings. (c) Spectrum
and (d) ion traces of a feature set representing Cytidine ([M+H]+ = 244.092) grouped
via cosine similarity.
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Atypical for LC-MS software, MassCascade does not compile fragmentation mass

spectra by default. One or more fragmentation spectra, i.e. MS2+, are typically

generated for selected precursor ions. For these ions, every MS1 scan results

in one or more MS2+ scans that are recorded . These can be collapsed into a

single representative fragmentation spectrum similar to ion extraction in MS1

(see paragraph 2.3.1). Representative fragmentation spectra of MS depth n are

subsequently assigned to the extracted feature (ion trace) of the precursor ion in

recursive fashion, e.g. for structure fragment assignment. Note that only selected

features with experimentally acquired MS2+ scans can have associated consensus

spectra. It should be noted that collapsed fragmentation spectra are consensus

spectra that only contain signals present in all fragmentation scans of a parent ion.

This process has been kept separate in line with the principle of modularity.

A collection of features is highly redundant by itself. Multiple signals can result

from a single molecular compound. Cosine similarity and a modified Bieman

approach have been implemented to group related features into feature sets (see

chapter 2.2).

The cosine similarity function creates a pairwise similarity matrix from all features

of a sample. To reduce memory load, only features within a pre-defined time

interval are considered simultaneously. Non-overlapping ion traces are excluded

by default. The spectral vectors, i.e. the features’ ion trace intensity vectors(
~Ia, ~Ib

)
, are used to calculate their similarity (angle θ) using the dot product and

magnitude:

sim = cos(θ) =
~Ia · ~Ib

‖ ~Ia ‖‖ ~Ib ‖
sim ∈ {0 ≤ sim ≤ 1} (2.17a)

Correlated features show similarities greater than 0.95. Any features below the

defined similarity threshold are not clustered together in a single feature set

(Figure 2.9c and 2.9d). If multiple features exists that have overlapping but

gradually shifting ion traces, the algorithm will follow these shifts in the time

domain to group the features together. Higher similarity thresholds restrict that

behaviour automatically.
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Figure 2.10: Illustration of the modified Bieman algorithm to group related features.
Overlapping features are binned in the time domain using a bin size of 10. Three
features are shown in gray, yellow, and brown. Individual features are binned by
their sharpness value s, i.e. a value describing the steepest slope from their apex to
a neighbouring data point (indicated by the red line). To estimate the uncertainty
range, the number of bins is divided by the sum of values of populated neighbouring
bins: 10

9+8 ≈ 0.6. If no bin within the uncertainty range contains a higher sharpness
value than the maximum value in the bins that gave rise to the uncertainty range,
features captured in those bins are believed to be correlated (the yellow and brown
peaks). The figure is adapted from Stein et al. [113].

The modified Bieman approach uses a shape-based approach described by Stein et

al. [113], Figure 2.10. The granularity of the clustering can be adjusted by the num-

ber of bins. A single bin is defined by a given length (parameter A) divided by the

given number of bins (parameter B). For this method, the length should approx-

imate the distance of two adjacent scans for fine resolution. Higher length values

will yield larger feature sets with less similar features grouped together.

2.3.3 Data Post-Processing

The annotation and identification of features or feature sets forms the last part

of an LC-MSn analysis. The identification of metabolites is discussed in detail in

the next chapter. This section deals with the annotation and low-confidence iden-

tification only. MassCascade stores meta data extracted from raw files, such as a
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sample’s ion mode, internally to simplify usage. Thus, the number of parameters

for annotation methods has been reduced to the greatest degree possible because

information about MSn levels or ion modes does not need explicit input.

Adducts, neutral losses, and any other relations that are based on differences of

m/z signals within a feature set can be annotated: pairwise signals for which a

relationship evaluates to ‘true’ are annotated with the corresponding feature iden-

tifiers and type of relationship (Figure 2.11a). For example, a m/z difference of

21.9819 represents a replacement of a hydrogen atom with a sodium atom in pos-

itive ion mode: [M+H]+ → [M+Na]+. Feature sets can be queried for any two-

column list of annotations and m/z differences. The m/z differences are matched

for every feature pair within a given ppm tolerance. Comprehensive adduct and

neutral loss lists have been published that can be used as template [110].

Isotopes are detected using a combinatorial approach with a quality check for

final assignment based on a heuristic model. The average isotope difference is set

to ∆mz = 1.0033 [234]. Isotopic signals can be detected up to a distance of three,

i.e. [M+3]. Abundances of single-step isotopic signals with distances greater than

three are considered to be of too low intensity to be relevant: with an isotopic

abundance of 13C = 1.10, C66 would result in a signal at [M+4] that equals

1% of the intensity of the main signal. Elements that have ‘irregular’ isotopic

patterns, e.g. 32S = 95.02%, 33S = 0.75%, 34S = 4.21%, are not fully detected. A

m/z tolerance can be defined in ppm to account for mass defects. The algorithm

sorts all features of a feature set in ascending m/z order before traversing the

list in recursive fashion, pairwise matching all features lower in the list to the

current index. If a m/z difference equals the theoretical isotope difference, the

relative intensity of the isotope signal, i.e. its intensity divided by the main signal

intensity, is matched to the theoretical relative intensity of an isotopic signal

within the corresponding m/z range in which the signal falls. A positive match

results in isotope annotation.

The heuristic model for the theoretical relative intensity of m/z ranges was de-

rived in the following way: small molecules were downloaded in bulk in SD-

File format from the metabolomics databases HMDB [235], Golm [236], and Mass-

Bank [237]. Molecular formulas were extracted and filtered for subsets contain-
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(a) Isotope and identity annotations for Cytidine

(b) Diagram of feature identification methods and their mode of action

Figure 2.11: Illustration of annotation and identification methods. (a) Feature set
(compound spectrum) of Cytidine (structure shown) with annotations for isotopes as
perceived by MassCascade. Relations such as the Cytidine cluster (Cyt-2) or its sugar-
removed fragment (Cyt-Sugar) were annotated through a list with m/z differences. (b)
Diagram of feature or feature set identification methods including their mode of action.
ChemSpider, Metlin, and MassBank are online databases. Reference library and m/z
list queries are local operations. Whereas a ‘Spectrum match: MS1+’ matches the
feature set at MS1 as well as relevant fragmentation spectra (MS2+), the ‘Parent ion &
MS2+’ match by Metlin only matches a single feature in MS1 and subsequently proceeds
to its fragmentation spectra. Matching features are annotated with a small molecule’s
database identifier, chemical name, line notation (SMILES or InChI if provided), and
query score.

55



2. INFORMATICS FOR LC-MSn ANALYSIS

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 500 1000 1500 2000 2500
Molecular Mass

R
el

at
iv

e 
A

bu
nd

an
ce

Isotope_Ratio

1

2

3

Figure 2.12: Linear regression for molecular masses vs. isotope abundances. Data series
for isotope ratios 1 (red), 2 (green), and 3 (blue) are shown. The molecular masses and
theoretical isotope patterns were calculated from the molecule collections of HMDB,
Golm, and MassBank.

ing only the elements CHNOPS + F + Cl. Bromide was excluded because

of its atypical isotopic abundance pattern, 79Br = 50.69%, 81Br = 49.31%,

which would significantly skew the relative intensity distribution for isotopic

distances. Sulfur, 32S = 94.93%, 33S = 0.76%, 34S = 4.29%, and Chlorine,
35Cl = 75.78%, 37Cl = 24.22%, did not impact significantly on the intensity dis-

tribution. Their isotopic abundance patterns’ ‘irregularities’ were absorbed in the

overall measurement error. The representative, non-unique set contained 47,849

molecular formulas. The theoretical isotopic envelopes were calculated for the

whole set and a linear regression applied for the relative intensities of every iso-

topic ratio (Figure 2.12). The resulting linear formulas of form I = a ∗m/z + b

describe the deduced intensity I for any m/z with the coefficients a and b.

Putative feature or feature set identifications, i.e. metabolite annotations, are

facilitated by methods for direct ion identification, local library queries, and web-

based searches (Figure 2.11b). Direct ion identification refers to simple m/z

lookup in a reference list that can directly be fed into MassCascade. The reference

list has to contain exact molecular masses and molecule labels. The molecular

masses are automatically (de-)protonated based on the ion mode.
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Local library queries depend on the creation of a ReferenceContainer instance,

containing ReferenceSpectrum instances. The reference spectra have a m/z -

intensity list for each set MS level and compound information such as the name,

line notation, molecular mass, and formula. Fragmentation spectra are traversed

if defined. Local queries are dramatically faster than web-based searches.

Web-based searches include the databases ChemSpider [186], MassBank [237], and

Metlin [238]. ChemSpider and Metlin queries require a security token issued by

the individual websites. For the databank ChemSpider a subset of databases

can be selected for simple m/z lookups from the total list of databases available.

The MassBank and Metlin integration offers feature set (MS1) and fragmentation

spectra matching (MS2+) in addition to simple m/z lookups, resulting in more

reliable feature annotation. Input parameters correspond to the web interfaces.

Results from local or web-based queries are assigned to the respective features

or features sets including the chemical name, line notation (SMILES or InChI),

query score, and database identifier.

2.4 MassCascade for KNIME

A plug-in for the workflow environment KNIME has been developed. The plug-

in MassCascade-KNIME wraps the functionality of the MassCascade core library

and exposes the functions as graphical nodes. A node can be considered an atomic

unit of interaction. Manipulator nodes take one to many inputs and produce one

to many outputs. Source nodes take no input from other nodes whereas sink

nodes do not pass any output further. Similar to a scripted pipeline, individual

functions, i.e. nodes, can be inserted or deleted at any point in the workflow.

2.4.1 Structure

The plug-in serves as interface between the open-source platform KNIME and the

MassCascade library. It manages node-user and node-node interactions and de-

legates jobs to the task classes of its back-end. These jobs are grouped into three

57



2. INFORMATICS FOR LC-MSn ANALYSIS

(a) Plug-in architecture (b) KNIME node model

Figure 2.13: Overview of the MassCascade-KNIME architecture and KNIME’s node
model. (a) The plug-in forms part of the KNIME Desktop and serves as interface be-
tween the three frameworks of the MassCascade library and the KNIME workbench.
(b) The adapted KNIME node model distinguishes between source, sink, and manip-
ulator nodes. These node types have distinct input and output ports and facilitate
intuitive usage of the plug-in. The ‘traffic light’ color scheme indicates the state of a
node: Executed nodes are green, configured nodes are yellow, and unconfigured nodes
are red.

categories based on their purpose: jobs that address the core framework (data

processing), the visualisation framework (plots and charts), or the identifica-

tion framework (signal or spectrum identification, rationalisation of results) (Fig-

ure 2.13a). Each category is handled differently in the plug-in (section 2.4.3).

In contrast to the internal design, nodes are grouped by the kind of interaction

they provide: Source nodes read data from files or convert external tabular data

to a format that can be processed by the plug-in, manipulator nodes change the

data, sink nodes write data to files or convert internal tabular data to generic

data types, and visualisation nodes provide views of data in tabular or graphical

form (Figure 2.13b).

Underneath the nodes, data processing jobs are executed concurrently using

Java’s R© concurrency framework [229]. Each thread deals with a single sample,

i.e. reads the data container, applies a function, and writes the data out into

a new container. The number of threads available depends on the global confi-

guration of KNIME. Raw data is serialized to disk by the MassCascade library

in a temporary directory specified by the user whereas access pointers to the
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raw data are stored through KNIME’s persistence framework. Employing this

split serialisation scheme guarantees efficient data handling: The KNIME plug-in

only deals with small XML-based files that contain pointers to large data chunks.

These small files can be modified and swapped back and forth between nodes at

low cost, e.g. memory. For operations on the LC-MSn data, the files are con-

verted to their respective container types and passed on to the main task class.

The main task class reads the data on demand and returns a new container, as

described in section 2.2. The returned container is again serialised to XML for

persistence.

2.4.2 Node Types

Nodes of different types can be concatenated to build a workflow as depicted

in Figure 2.14. Every MassCascade-KNIME workflow must start with a source

node and typically ends with a sink node to output results. Manipulator nodes

in between a source and sink node are for data processing. Visualisation nodes

can be employed at any step in the workflow to inspect the data at that node.

In contrast to all other node types, visualisation node types do not require any

input parameters.

Figure 2.14: Typical MassCascade-KNIME workflow demonstrating how different node
types can be used in combination. LC-MSn files are read in via the File Reader node
before the extraction of meta information. Following, random noise is eliminated and
features are extracted. The features are converted to a generic tabular KNIME format
that can be used with generic KNIME nodes. The Spectrum Viewer allows interactive
inspection of the noise-reduced samples.

59



2. INFORMATICS FOR LC-MSn ANALYSIS

2.4.3 Node Interactions

Two types of node interactions are distinguished: Node-node and node-user in-

teractions. Both types of interactions are defined by the plug-in. To render

the node coding process more efficient, abstract custom models have been built

on top of the four key parts of a default KNIME node model (see section 1.2.4).

These abstract classes are extended by all MassCascade-KNIME nodes, enforcing

standardised behaviour across all interactions levels and reducing time spend de-

veloping nodes (Figure 2.15). Because of the common base classes, any new node

implementation requires only the implementation of a model and – if required –

view, in addition to the definition of node parameters.

Node-Node Interactions

Node-node interactions are based on KNIME’s tabular data model (see sec-

tion 1.2.4). Three distinct data cell types have been developed to represent MS,

profile, and spectrum data containers of the core library (see section 2.2). In-

stances of these cell types are serialized to disk for persistence by the KNIME

environment. Node-node interactions are only possible when a required input cell

type of one node matches an output cell type of a preceding node. This compa-

tibility of cell types is enforced by an automated mechanism in the DefaultModel

class. Input or output of multiple data tables must be specifically provided in

the model implementation but follows the same principle. MassCascade cells

types depict their content in KNIME tables: MS data cells sketch a total ion

chromatogram, profile data cells depict a histogram of time bins (ascending) to

number of binned profiles, and spectrum data cells show a plot of time versus

m/z values, where every point represents a found profile.

Node-User Interactions

Node-user interactions are provided through node dialogues, depictions, input-

output tables, and data views. MassCascade-KNIME provides interactive param-

eter dialogues with parameter validation, default values, and auto-configuration
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(a) Noise Reduction node dialogue (b) Profile Converter node dialogue

Figure 2.16: Configuration dialogues of the (a) Noise Reduction and (b) Profile Con-
verter nodes. The dialogues take a set of input parameters in the ‘Parameters’ section
and define the required input cell type in the ‘Source’ section of the tab.

(Figure 2.16). Erroneous parameters are not accepted and render the node dis-

abled. Node dialogues are loaded with default parameters. Auto-configuration

checks if the input table(s) contain the data types required. The outcome of

the node configuration is reflected in the traffic light representation of the nodes’

execution status.

Data views visualise data cells of a particular type. Execution of the visualisation

nodes does not change data in the respective data cells. All visualisation nodes

follow the same layout: input data cells are listed on the right of the visualisation

window, optionally with an added section for further listings for loading data.

The main part of the window is taken up by an interactive two dimensional

plot. Depending on the individual node, plots offer different data representations,

accessible via the file menu (Figure 2.17).
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Figure 2.17: Demonstration of the Spectrum Viewer node. The central area of the
window shows two spectra selected via the spectrum list in the bottom right. The data
cells for the spectrum list are shown in the top right.

2.5 Evaluation

2.5.1 Spectral Fingerprinting of Tomato Samples

Metabolomic fingerprinting is one of the key applications of LC-MSn. Metabolomic

fingerprinting is based on a sample by feature matrix, where features have reliably

been found across samples. These features are believed to be characteristic for the

samples and can thus be used for multivariate clustering and subsequent genera-

tion of predictive models. Fingerprinting relies on the extraction of real features,

i.e. m/z -intensity value pairs that represent ions stemming from metabolites, and

on correct alignment of features across samples to generate the feature matrix.

The quality of the resulting matrix depends heavily on the feature extraction

and alignment process, as well as on the overall data pre-processing. Insufficient

or incorrect data pre-processing could introduce noise to the matrix in the form

of irrelevant features, e.g. m/z -intensity value pairs that stem from background

ions or impurities, or incorrect features, e.g. value pairs that do not exist or are

not present in all samples indicated. This matrix would show a higher level of

unexplainable variance and could lead to wrong clustering.
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MassCascade was tested for correct fingerprinting using a data set of aliquots

of a pooled standard tomato control with known clustering. The test allows for

exploration of various aspects of the tool, including feature extraction, deconvo-

lution, and alignment, and provides a statistical measures for the quality of the

generated feature matrix.

2.5.2 Materials and Methods

The data set was provided by the Syngenta AG. The data was acquired using

aliquots of a polar extract from wild-type tomato (Solanum lycopersicum), which

was used as pooled in-house control. The 113 samples were used as controls in a

long-term study at the Syngenta AG (section 2.1). Approximately 30 mg of dried

tomato tissue was extracted with ethanol:water 20:80 (v/v) and diluted 10:1 (v/v)

with water for injection. A mixture of citric acid-d4 [CID 16213286], L-alanine-d4

[CID 12205373], glutamic acid-d5 [CID 56845948], and L-phenyl-alanine-d5 [CID

13000995] was added for internal calibration. The samples were measured on a

Thermo Velos Orbitrap coupled to a Waters Acquity UPLC with a HSS T3 150 x 2

mm, 1.7 µm, Acquity UPLC column. The solvents used for the assay consisted of

0.2% formic acid (solvent A) and 98/2/0.2 acetonitrile/water/formic acid (solvent

B). The gradient started at 100% A (hold 2.5 minutes) at 0.25 mL/min followed

by a ramp to 10% B after 7.5 minutes increasing the flow rate of 0.4 mL/min; then

to 100% B after 10 minutes, hold 2 minutes, before equilibrating back to starting

conditions after 18 minutes. The samples were detected in positive ESI mode

at a resolving power of 30,000 FWHM with a scan range from 85-900 Da. MS2

spectra were obtained in a data dependent manner: The two most intense mass

spectral peaks detected in each scan were fragmented to give MS2 spectra. Full

scan data was acquired in profile mode, MS2 spectra were acquired in centroid

mode.

The data files were converted from Thermo Scientific’s RAW format to mzML

using ProteoWizard v2.2 [230] with vendor-based peak picking enabled for MS1.

The data were processed using the MassCascade plug-in for KNIME, following

the steps outlined in Figure 2.18. Feature extraction was carried out with 10
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September October January March

Date Count Date Count Date Count Date Count

2010-09-17 4 2010-10-04 1 2011-01-18 6 2011-03-22 4

2010-09-18 9 2010-10-05 8 2011-01-19 7

2010-09-20 7 2010-10-06 15

2010-09-21 14 2010-10-07 10

2010-09-22 9 2010-10-08 15

2010-10-09 4

Table 2.1: Overview of the number of wild-type tomato samples measured by date.
The samples were measured over a total of four months.

ppm mass accuracy. A minimum width of six scans and a minimum intensity of

100,000 units was used for thresholding of features. In addition, a Durbin-Watson

statistic was used to filter out features that were assigned a score above the third

quartile of the normal score distribution taken from all features, here Qdw
3 = 2.38.

Deconvolution was applied with a signal to noise ratio of two using a modified

Bieman algorithm. Obiwarp was used for cross-sample alignment with default

parameters and aligned features subsequently filtered and selected for presence

of isotopic peaks. Features associated with common interferents were removed.

Figure 2.18: Flow diagram depicting LC-MS data processing steps for metabolomic
fingerprinting. After random noise reduction, features are extracted and filtered using
a statistic describing expected chromatographic behaviour. The filtered features are
smoothed in the time domain and deconvoluted to resolve overlapping isobaric features.
Found features are matched across all samples of a group, filtered for presence of isotopic
peaks for selectivity, and written out in feature matrix. Subsequently, intensity gaps in
the matrix are filled before multivariate analysis.
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The aligned features were written out in a feature matrix and gap filling was

applied: gaps were filled with intensity values from the baseline of the individual

samples at the features’ retention times and m/z values. If no baseline value

could be found, gaps were assigned a default intensity of 10,000 units. A total of

11 result matrices were compiled with allowed missingness ranging from 0-100%

in 10% increments. The matrices were subjected to multivariate analysis in the

statistical computing environment R.

2.5.3 Results

Initial inspection of the total ion chromatograms of all samples revealed two

failed injections for samples 2010-10-09 12 and 2010-10-09 13. Both samples

contain only baseline noise with no apparent features and were removed from

analysis. Cross-sample comparison of mean-centered total ion currents showed

significantly higher intensities for samples 2011-0322 01, 2011-03-22 02, 2011-03-

22 03, and 2011-03-22 04, likely due to wrong sample preparation or over-injection

(Figure 2.19). All four March samples were flagged as outliers and kept.

Sample 2010-09-21 61 was chosen as reference for the feature-based alignment

with Obiwarp based on its representative total ion current and shape of its total

ion chromatogram, minimising overall time shift. The result of the non-linear

alignment is depicted in Figure 2.20a. The stability of the column measured by

sample to reference time deviation appears to dependent on the acquisition date.

Time shifts of features grow bigger with an increase in the time gap between

sample and reference. Samples acquired on the same date show the least varia-

tion in time shifts, followed by variation in between groups acquired in the same

month. This was to be expected. Even though the same instrument was used for

all measurements, it was not used exclusively for the study. Other experiments

were run on the Orbitrap in between the months. Thus, column modifications

such as degradation or insufficient equilibration become more apparent over time.

All samples show uncorrelated shifts before about 80 s and after 750 s, coinciding

with the dead time of the system and end point of the solvent gradient respec-

tively.
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(a) Total ion currents

(b) Total ion chromatograms

Figure 2.19: Summary of the sample intensity domain. (a) The mean-centered total ion
current for each sample is shown in red. The blue line indicates zero intensity. Samples
16, 51, 53, and 62 represent the four March samples and show significant deviation from
the trend. Samples 43 and 108 refer to 2010-10-09 12 and 2010-10-09 13 and contain
baseline noise only, explaining the strong negative deviation. (b) Overlay of all total
ion chromatograms coloured by date. All chromatograms have similar shape. The four
March samples are clearly distinct with dramatically higher intensities. The samples
show slight time deviation and increasing baseline drift from 570 s.
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(a) Time - shift regression

(b) m/z - shift regression

Figure 2.20: Summary of the feature alignment. The data points and regression curves
are coloured by acquisition date. (a) Plot of the elution time versus time shift, i.e. the
time difference before and after alignment. A polynomial regression fit was used. The
regression curves are coloured by acquisition date. Samples measured on the same date
cluster together. Shifts before about 80 s and after 750 s appear to be uncorrelated. (b)
Plot of the m/z values versus time shift with a polynomial regression fit. The linear
trends show that the time shift is almost constant for all m/z values, indicating no
correlation between mass-to-charge ratio and time shift.
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Figure 2.21: Overview of the feature alignment groups. The matrix shows the individual
regression plots for all sample groups. The elution time versus time shift is plotted with
a polynomial regression fit.

The individual groups are shown in Figure 2.21. The mass-to-charge values seem

to be uncorrelated to time shifts and have no impact on the alignment (Fig-

ure 2.20b).

Removal of common interferents (see appendix section 5) in LC-ESI-MS reduced

the number of features by an average of 212 per sample. The matched features

show no significant differences in their distributions compared to the remaining

features (Figure 2.22a). Table 2.2 lists the top five most frequently found contam-

inants. N-methyl-2-pyrrolidone, oleamide, and polyethylene glycol are believed

to come from laboratory equipment used in sample preparation. The acetoni-

trile/acetic acid species stems from the mobile phase. Its putative sodium adduct

shows a higher mass deviation of 19.0 ppm. The mass chromatograms of both

species were compared to verify that they are related. They co-elute at various
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time points during the runs with the acetonitrile/acetic acid species present in

all samples and the sodium adduct absent in up to 11 samples, in consistence

with the assumption that the adduct is detected less often than the main species.

Comparison of the shapes of the feature mass chromatograms at 333 s support

this finding of a main species to sodium adduct relationship (Figure 2.22b).

(a) Intensity boxplot

(b) Mass chromatograms of two interferents

Figure 2.22: Summary of the interferents analysis. (a) Boxplot of the intensity distribu-
tion of features versus filtered out interferents. No outliers are shown. The distributions
are not significantly different. (b) Mass chromatograms of the acetonitrile/acetic acid
species (blue) and its sodium adduct (red) at 333 s. Both species coelute and have simi-
lar elution profiles. The high-intensity chromatograms are artefacts from the erroneous
March samples.
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Name Sum Formula Mass Deviation Ion Type

N-Methyl 2-pyrrolidone C5H10NO 0.8 ppm [M+H]+

Acetonitrile/Acetic acid (CH3CN)n(CH3COOH)m 0.5 ppm [A1B1+H]+

Acetonitrile/Acetic acid (CH3CN)n(CH3COOH)m 19.0 ppm [A1B1+Na]+

Oleamide C18H35NO 0.5 ppm [M+H]+

Polyethylene glycol [C2H4O]nH2O 0.6 ppm [A2B+H]+

Table 2.2: Overview of the five most common interferents. The table shows the com-
pound name, sum formula, mass deviation in ppm between the exact theoretical and
found ion mass, and ion type found.

After alignment, features before 80 s and after 750 s were filtered out before iso-

tope detection and compilation of the feature matrix for multivariate analysis.

The data set was split into two. In the first data set (‘filtered’), all features

without isotope information were filtered out. The second data set contains all

features (‘unfiltered’). Isotopic envelopes serve as additional orthogonal informa-

tion to improve confidence in extracted features. A data set filtered for isotopes

can serve as sanity check for data analysis because features with isotopic en-

velopes are less likely to be irrelevant artefacts. Both data sets were used to

investigate how incremental missingness affects the result matrix. Missingness is

defined as percentage of absence for a feature across samples, i.e. the number of

gaps. Higher missingness allows more features to be included in the matrix but

may potentially distort downstream analysis. Zero missingness is ideal but im-

practical because of imperfections of the instrument and in data processing. The

filtered and unfiltered data sets behave identical with regard to missingness (Fig-

ure 2.23a). The number of aligned features increases with allowed missingness,

with a steep increase from 90% to 100%. Maximum missingness includes features

that are only present in one sample, which should be considered unreliable. Step-

ping up to 100% missingness includes the bulk of features from unfiltered noise,

hence the increase in aligned features. At 0% missingness, a total of 23 and 165

features are observed in the filtered and unfiltered data respectively. The number

of gaps doubles with every 10% increase in missingness.
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Figure 2.23: Overview of the sample by feature missingness analysis. (a) Bubble plot of
the missingness versus number of features, expressed in percent relative to the number
of features at 100% missingness. The plot shows a steep increase at 90% to 100%, where
features only present in one sample are accepted in the matrix. At 0% missingness,
165 features can be observed in the unfiltered data. The area of the data points cor-
responds to the number of gaps (percent relative to the total number of gaps at 100%
missingness). The number of gaps double with every 10% increment in missingness. (b)
Line plot of the sample index versus intensity of Citric acid-d4, Glutamic acid-d5, and
L-phenyl-alanine-d5. Intensity spikes can be observed for all March samples at index
16, 51, 53, and 52. No spike is present for L-phenyl-alanine-d5 at position 16 due to
misalignment.
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Name CID Sum Formula Exact Mass [M+H]+

Citric acid-d4 16213286 C6H4D4O7 196.05211 197.05939

L-alanine-d4 12205373 C3H3D4NO2 93.07279 94.08006

Glutamic acid-d5 56845948 C5H4D5NO4 152.08454 153.09182

L-phenyl-alanine-d5 13000995 C9H6D5NO2 170.11036 171.11764

Table 2.3: Overview of the deuterated internal standards. The table shows the com-
pound name, PubChem compound identifier (CID), molecular formula, exact mass for
the deuterated compound, and exact mass for the main ion in positive ion mode.

Gaps are highly undesirable and typically need to be filled for most multivariate

methods. This introduces an element of uncertainty about why the signal is

absent in the sample and about the method to be used for gap filling. Gaps were

filled by reverse lookup of background signals in the raw data or, in the absence

of a background signal in the vicinity of the feature’s m/z value and retention

time, a default value of 100,000 was set.

Given the identical behaviour of the filtered and unfiltered data sets with regard

to missingness, the features in the unfiltered data set were assumed to be re-

presentative for the samples. The filtered data set was discarded. A maximum

missingness of 10% enabled the detection of the internal standards (Figure 2.23b),

resulting in a matrix with 680 features, and was chosen as optimum value. The

standards listed in Table 2.3 were identified within a mass accuracy of 10 ppm.

Spikes in abundance can be noted for the internal standards of all four March

samples, similar to what is shown in Figure 2.19a, with the exception of sample

2011-03-22 04 at position 16, where no feature was found for L-phenyl-alanine-d5

and gap filling was applied. The missing feature was incorrectly aligned and was

skipped by the semi-automated analysis process. L-alanine-d4 was removed from

the analysis because of its retention time at 85 s, which is borderline to the time

filter at 80 s. The compound was only detected in 60% of all samples in this

inconsistent region.
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The resulting feature matrix was used for principal component analysis (PCA).

The matrix containing 111 samples and 680 features was autoscaled before it was

subjected to PCA. The result is shown in Figure 2.24a, where the first two com-

ponents explain 60% of the variance (Figure 2.24b). The four March samples are

distinct outliers and distort the analysis because of their high feature intensities.

The samples were removed before re-analysis. The corrected matrix is shown in

Figure 2.25a. The explained variance is still 60% but with greater contribution

from the second principal component (Figure 2.25b). The PCA reveals distinct

clustering of samples by date. Ideally, all samples should be indistinguishable

because of the lack of biological variation. The differences could result from sam-

ple preparation, data acquisition, or data processing. Given that the whole data

set was batch processed and the variation is not random, invalid data processing

can be ruled out. The strong clustering by sample date indicates instrument-

introduced variation under the assumption that the minor errors during sample

preparation were random. The observed inter-aliquot variation disappears when

biologically different samples are introduced (see section 3.5, Figure 3.4).

A drift can be noted for five samples acquired on 2010-09-21. Isolation of that

sample group and analysis of the intensity distributions, reveals that samples

acquired earlier on the day (index 2, 3, 9, 15, and 20) have shifted distributions

towards higher intensities (Figure 2.26). Even though the shift is not significant,

it is picked up in this analysis due to the absence of big variation, e.g., biological

variation. This shift is responsible for the drift observed in the PCA.

In this case study, MassCascade was used to process LC-MSn data of 113 quality

control samples from wild-type Solanum lycopersicum. Because of the lack of bio-

logical variation, variation introduced by sample preparation and instrumentation

could be picked up. The clustering seen in PCA are non-random and could be

explained, ruling out significant errors through the actual data processing. This

demonstrates that MassCascade can be used for fingerprinting experiments and

data exploration.
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(b) Variance explained by PCs

Figure 2.24: (a) Principal components analysis of the aligned features of all samples.
The samples are coloured by acquisition date. A confidence region is shown as ellipse
using Hotelling’s T2 statistic. The March samples are strong outliers, obfuscating the
plot. (b) Bar chart of the explained variance by principal components in percent. The
first two principal components explain 60% of the overall variation.
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(b) Variance explained by PCs

Figure 2.25: (a) Principal components analysis of the filtered features of all samples.
The samples are coloured by acquisition date. A confidence region is shown as ellipse
using Hotelling’s T2 statistic. The samples cluster by acquisition date. Five samples
of the group from 2010-09-21 exhibit a drift away from the main cluster. (b) Bar chart
of the explained variance by principal components in percent. The first two principal
components explain 60% of the overall variation.
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(b) Intensity boxplots

Figure 2.26: (a) Principal components analysis of the samples from 2010-09-21. The
samples are coloured by run index. A confidence region is shown as ellipse using
Hotelling’s T2 statistic. Five samples drift away from the main cluster. (b) Corre-
sponding boxplot of the intensity distributions of the samples. The same colour code
is used. Samples at index 2, 3, 9, 15, and 20 show a marginal shift in distribution to
higher intensities. This shift maps to the drift observed in the principal component
analysis.
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2.5.4 Performance and Scaling of the Core Library

In contrast to the core library, the KNIME plug-in is tightly bound to the KNIME

framework and performance varies greatly from architecture to architecture and

available resources. The plug-in is configured to serialize all data to disk, ensuring

scalability within the workflow environment as long as sufficient memory is given

to perform single sample operations. Execution speed is primarily limited by data

read-write cycles. Other factors are negligible. Consequently, only the core library

was systematically benchmarked. The desktop specifications and run time for the

study employed in this chapter are listed at the end as rough guide only.

The core library can be run in file or memory mode. In file mode, execution speed

is limited by data read-write cycles like in the plug-in. It is assumed that the plug-

in is used for data local processing. Hence, the performance of the MassCascade

core library was tested in a server environment with a varying number of threads

from 2 to 20 and 16 GB of memory. Every thread deals with one sample. The

data processing steps of the fingerprinting case study were reproduced for this

test.

The execution time for the program decreases with the number of allocated

threads following a power law. The log-log plot defines the relationship fur-

ther as monomial, y = axk (Figure 2.27). MassCascade uses threads as atomic

unit for sample processing. Thus, it scales well in server environments that deal

efficiently with threading. Given that the total execution time does not decrease

linearly with an increasing number of threads, it can be assumed that MassCas-

cade is primarily I/O or memory bound. That is, the memory accessing costs for

frequent loading of non-aligned data is the limiting factor.

The evaluation (section 2.5) was run in KNIME using the MassCascade plug-in

on a desktop, core i7 740Q @ 1.73 GHZ, with 3 GB memory allocated to the

KNIME environment. The plug-in took 8 hours to run the complete workflow for

the centroided dataset (total file size: 4.6 GB).
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(a) Performance line plot

(b) Log-log plot

Figure 2.27: (a) Line plot of the thread number versus the total execution time. An
increasing number of threads reduces the execution time following a power law. (b)
Log-log plot of (a). The depicted linear relationship can be described as monomial.
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2.6 Technical Validation

A small well described case-control study is used to asses the reliability and

performance of the tool after its use had been demonstrated in the analysis of

tomato samples (section 2.5).

Technical assessment is typically carried out against well-described biological data

sets with known outcome [107,128,147,158,163], mixture samples [155], synthetic data

sets [101,104], or combinations of these [156,231]. Here, a data set from a dilution

series of Arabidopsis thaliana seed and leaf extracts is used. The data set is

freely available as part of the publication by Tautenhahn et al. [231].

The performance of MassCascade is evaluated by its ability to isolate relevant

features from the data set using its data processing methods. Following the

approach by Tautenhahn et al., the problem to isolate relevant features is treated

as information retrieval problem and can thus be evaluated by values for precision

and recall (sensitivity). The centWave method for feature isolation – discussed

in the aforementioned publication – is used as a reference point.

Precision P , the ratio of the number of real features TP to the total number

of features N , and recall R, the fraction of the number of real features TP to

the total number of real features NP , are combined into a F-score F for inter-

pretability. A F-score of 100% equals perfect precision and recall. False positives

and false negatives reduce the F-score [239].

P =
TP

N
(2.18)

R =
TP

NP
(2.19)

F =
2 ∗R ∗ P
R + P

(2.20)

The following section outlines the design of the technical validation, including

a brief description of the data set and the compilation of a ‘ground truth’ to

determine the total number of real features [231].
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2.6.1 Methods

The data set consists of eight samples. Each sample is measured in ten tech-

nical replications. The dilution series contains mixtures of solvent and either

seed or leaf extracts in varying proportions (solvent/seed/leaf [v/v/v]): 0/100/0,

25/75/0, 50/50/0, 75/25/0, and 0/0/100, 25/0/75, 50/0/50, 75/0/25.

The pure seed and leaf samples (0/100/0 and 0/0/100) are separately processed

and the ten technical replications aligned for each case using Obiwarp with default

parameters. Removing features present in less than seven out of the ten technical

replicates yields the ‘ground truth’ for the subsequent analysis of the seed and

leaf dilution series respectively, i.e. the total number of real features.

Because MassCascade is compared to XCMS’s centWave method, the ‘ground

truth’ is also estimated using XCMS centWave. The intersection of both ‘ground

truths’, i.e. matching features within a 75 ppm m/z tolerance window, is used

as the combined ‘ground truth’ for the following analysis. The tolerance window

as well as the parameters for centWave are derived from the original publica-

tion.

Subsequently, the diluted samples are processed by each tool separately and eval-

uated against the combined ‘ground truth’. The samples for the 25%, 50%, and

75% dilutions of the seed and leaf samples are processed identically to the pure

samples – noise reduction, Durbin Watson filtering, feature set generation – with

the exception of feature alignment. Isolated features are then matched to the

total number of real features. Matching features are considered true positives, all

other features false positives. Feature alignment is not required because the pre-

processing and processing algorithms are evaluated in this scenario, which work

on a sample-by-sample basis to isolate relevant features.

The 80 samples (the stock solution plus three dilutions per extract with ten

replications each) are converted from mzXML format to mzML using ProteoWiz-

ard [230] before they are processed using the MassCascade KNIME plug-in. De-

fault parameters are used throughout with intensity thresholds lowered to 10

units.
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2.6.2 Results & Discussion

The combined ‘ground truth’ for the seed and leaf extract contained 1331 and

619 features respectively. The centWave method had picked up 1.5 times more

features than MassCascade after filtering. The centWave method was developed

for peak picking and no further filtering had been applied, e.g. based on a Durbin

Watson statistic.

It should be noted, that the centWave method was run with the recommended

parameters from the publication by Tautenhahn et al. [231]. The algorithm has

been modified and improved since 2008 and the F-score values obtained in this

analysis should be understood as reference points only.

Figure 2.28 summarises the results. The MassCascade pipeline performs equally

well to the centWave method in the case of the leaf extracts and is less successful

by approximately 10% in the case of the seed extracts.
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Figure 2.28: Line plot of the F-scores for the informational retrieval challenge. Mass-
Cascade (blue) is compared to centWave (red) as reference. The leaf and seed scores
are shown as circles and triangles respectively, including their standard errors. The
samples of the dilution series are made up of 25%, 50%, and 75% leaf or seed extract.
In this scenario, MassCascade performs comparable to the centWave method.
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The decrease in centWave’s F-score for the 75% samples is an artefact and should

be evaluated with caution: the ‘ground truth’ is larger for the centWave method.

The MassCascade pipeline is more cautious in this scenario because it filters the

feature set and is thus the limiting factor with regard to the size of the combined

‘ground truth’. Because centWave picked up significantly more low-intensity

features for the 75% samples (high N) but the combined ‘ground truth’ (NP )

was limited in numbers by MassCascade, its F-score decreased.

MassCascade appears to be more conservative with regard to feature selection,

i.e. it restricts the number of final features returned downstream of the analysis

pipeline, but shows good precision and recall for the those features as reflected

in the F-score of the dilution series.

2.7 Conclusion

MassCascade offers a modular, step-by-step solution for processing mass spec-

trometry data. The plug-in enables the prototyping of complex data analysis

workflows to explore data sets. Intermediate results can be inspected after every

processing step. The plug-in’s ease-of-use and the ready availability of additional

nodes with complementary methods for further data analysis are its key fea-

tures. It works reliably for the isolation of relevant features and can help in the

standardisation and structuring of data processing and analysis, much needed in

the field of metabolomics, where the diversity of instruments and variables can be

challenging. Outstanding work involves the need to fine-tune the methods for dif-

ferent types of mass spectrometers to take into account differences between mid-

and high-resolution spectrometers and different chromatographic methods.

2.8 Software Availability

MassCascade and its plug-in MassCascade-KNIME have been released under the

GNU General Public License version 3. External tools such as the alignment
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program Obiwarp, need to be installed separately and are not included in the

release of MassCascade or MassCascade-KNIME.

2.8.1 Update Site

The projects are deposited on the code hosting website BitBucket. Supporting

information is provided in the projects’ wiki pages. An update site for the KNIME

plug-in installer is provided with the latest version. The entry pages are listed

below:

• MassCascade:

https://bitbucket.org/sbeisken/masscascade/

• MassCascade-KNIME:

https://bitbucket.org/sbeisken/masscascadeknime/

• KNIME Update Site:

https://bitbucket.org/sbeisken/masscascadeknime/wiki/release

2.8.2 Extensions

Extensions for the core library or KNIME plug-in can be added following the help

pages provided on the BitBucket’s project page.

2.8.3 Example Workflows

Example data can be retrieved from the MetaboLights database. The qual-

ity control data set used in section 2.5 was obtained from study “MTBLS36:

Metabolomic Study of different Cultivars of Tomatoes”. Several example work-

flows illustrating different aspects of the plug-in are deposited on the project’s

wiki page.

The work has been published: Beisken et al.: MassCascade: Visual programming

for LC-MS data processing in metabolomics. Molecular Informatics 2014
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CHAPTER 3

Knowledge-based Compound

Identification

3.1 Introduction

An identification framework was implemented in MassCascade and tested on a

study about the ripening behaviour of tomato cultivars. Identification in MS-

based metabolomics has been introduced in chapter 1.1.6 of the introduction.

General problems with metabolite identification have been pointed out such as

false positives and lack of stereo-information. Data-driven techniques were ex-

plained – simple m/z lookups, spectra queries – and the idea of additional orthog-

onal information was introduced combined with confidence rankings for multiple

annotations.

In contrast to the challenge of identifying known metabolites, i.e. previously

encountered metabolites that are available in a metabolite database, unknown

metabolites have – by definition – not been previously encountered. Unknown

unknowns are novel compounds that have not been previously described; they

are not contained in compound or spectral databases. Known unknowns refer

to chemical structures that are stored in generic compound databases but have
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not been identified in metabolomics experiments or linked to specific metabo-

lite databases. These metabolites cannot be retrieved via the process described

above. Instead, sum formulas need to be calculated for unknown features based

on their m/z values. Mathematical and chemical rules can be applied to con-

strain the number of resulting sum formulas [240] in combination with high mass

accuracy (ma < 1 ppm), but it has been shown that even sub-ppm mass accuracy

does not necessarily result in a unique sum formula for a given mass [241]. The cal-

culated sum formulas represent large numbers of constitutional isomers. Isotope

and fragmentation information can be used to narrow down the constitutional

isomer space to the point where manual curation and interpretation becomes fea-

sible. Tools for calculation of sum formulas have been developed to automatize

this process [242].

For the identification of unknown metabolites, tandem mass spectrometry has

proven most valuable [243,244]. Either through in silico fragmentation of isomers

and subsequent matching to measured fragmentation spectra [245] or a priori sum

formula calculation of fragments and subsequent re-assembly of the parent mo-

lecule across multiple MSn level under the constraints provided by the fragment

sum formulas [246]. With advances in MS technology, fragmentation approaches

appear to be most promising for untargeted metabolite identification [247–250]. The

identification of true unknown unknowns remains a specialist application [87,242].

At the moment, the challenge is to fast and unambiguously identify signals from

mass spectrometry data in metabolomics without time-consuming manual inter-

vention. This is believed to be best achievable through identification frameworks

that aggregate information for information-guided decision making [17,38].

The aim of this chapter is to evaluate the implemented scoring framework and to

identify metabolites involved in the ripening of tomato. After initial processing

and validation of a metabolomics study about tomato ripening, features believed

to be involved in ripening are singled out for identification with the scoring frame-

work. Study validation is carried out using principal component analysis (PCA)

to investigate batch effects and sample outliers. Features for identification are

determined through a feature orientated approach based on orthogonal partial

least squares (OPLS) rather than through a metabolite orientated approach. The
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selected features are run through three different scenarios to score annotations

retrieved from different sources, simulating the cases of known, known unknown,

and unknown unknown metabolites. The scenarios and subsequent interpretation

of the highest-scoring metabolite annotations are used to evaluate the scoring

framework.

In addition, the study’s data sets and findings are compiled as Datument, i.e. a

“hyperdocument for transmitting and preserving the complete content of a piece

of scientific work” [251], and shared publicly including all information, lending

itself to applications in metabolic cross-study comparisons or investigations into

reproducibility of data analysis in metabolomics.

Finally, technical validation is carried out using an open data set for benchmark-

ing to evaluate the implemented scoring framework using solely MS data without

the context of a biological study.

3.1.1 Open Data

Data cannot be valued without knowledge [252]. Metabolite identification is most

beneficial to the community if all information and raw data from the study is

publicly available. Sharing the totality of collected information also increases

the value of the data itself. Use of established standards, e.g. well accepted

recommendations by the HUPO Proteomics Standards Initiative for reporting

or accepted formats such as IUPAC’s InChI line notation for small molecule

management, and semantic publishing enables re-use of data and may increase

study validity [253].

Datuments, the term was originally coined by Murray-Rust et al., have been

described as scientific enablers that are required by complex data sets [254]. Com-

piling Datuments and sharing data including the underlying semantic models is

an interesting challenge [255] that is met by recent initiatives such as a new con-

tent type called the ‘Data Descriptor’ by the Nature Publishing Group, which

focusses primarily on data. In metabolomics, the challenge, inter alia, is met

by the MetaboLights database [143]. Together, both resources enable the scien-
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tific community to capture standardized Datuments in an open access and open

source way that is semantically accessible.

As part of the work on knowledge-based compound identification, data and tech-

niques used have been standardized and reported using purely open access and

open source solutions while attempting to preserve as much information as pos-

sible, following current efforts in the metabolomics community on standardized

data [141].

3.2 Metabolite Identification

This work assumes certainty of chromatographic selectivity [256] on the premise

that compounds have either been separated during chromatography or that co-

eluting molecular compounds have been resolved using peak picking and deconvo-

lution. The identification process can be broken up into several complementary,

discrete steps [257]. Many studies focus only on the one or two most relevant

of these steps, e.g. fragmentation trees [87,242,258]. Some studies take additional

factors into account as proof-of-principle, e.g. retention time prediction using

artificial neural networks [259]. The following section outlines a semi-automated

approach consuming several factors for initial identification and subsequent ra-

tionalisation and ranking.

3.2.1 Identification Factors

The workflow for known and unknown metabolite identification is shown in Fig-

ure 3.1. The identification process starts from annotated feature sets, where

annotations are retrieved from either compound or spectra databases. Feature

sets can be sample- or consensus-based before initial annotation: Consensus Fea-

ture Sets can be generated in a ratio analysis-like fashion, coined RAMSY by Gu

et al. [260]. For a group of samples, all feature sets are aligned cross-sample and

individual features matched within a given m/z tolerance (in ppm). Contrary

to other methods, equidistant binning has been replaced by adaptive intelligent
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binning [261] to maximise feature matching cross-sample. Because of small time

shifts, equidistant binning is more likely to miss individual features in a small

subset of feature sets. The mean and standard deviation of individually aligned

feature intensity ratios (equation 3.1 with Imain being the most intense feature),

form the basis of the resulting consensus feature set: the division of the average

feature’s intensity ratio (Ir) by the intensity ratio distribution’s standard devia-

tion gives the new intensity (I ′i, equation 3.2) of the feature. Consensus feature

sets that are generated using this approach highlight features that are consis-

tent across samples. In turn variable features with large standard deviations are

de-emphasised in a spectrum match.

Ir =
1

n

n∑
i=0

(
Ii

Imain

)
(3.1)

I ′i =
Ir
σIr

(3.2)

The identification factors are implemented as optional filters that can be turned

on or off. Filters act on pre-perceived information from data processing steps,

e.g. detected isotope annotations. The filters remove identity annotations, i.e.

molecule annotations from queries against spectra or compound libraries, or alter

the identity annotations’ overall score based on the presence or absence of the filter

criteria (see the following section for details on the scoring scheme used).

• Feature sets are used as initial guess about correlated features in MS1 [127].

These serve as basis for information inferred from neutral losses [262] and

isotopes (see chapter 1.1.4).

• If no identity annotation is provided for a feature that has fragmenta-

tion spectra, the feature is regarded a known unknown and the PubChem

database is queried for possible annotations based on the feature’s m/z

value.

• Molecule annotations are filtered by their elemental composition, including

the common organic subset CHNOPS + Halogens.

• The isotope filter selectively removes annotations whose theoretical isotopic
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Figure 3.1: Workflow for known metabolite and known unknown metabolite identifi-
cation. (Consensus) feature sets are annotated through spectra libraries or compound
databases before each identity annotation is filtered for the organic element subset
CHNOPS + Halogens, isotope presence and abundance matching, and adduct support,
before feature sets are expanded for multiply annotated features in the same feature
set. If no initial identity annotations are present for a feature with fragmentation in-
formation, the compound database PubChem is queried for possible annotations. The
MSn filter matches the explained fragmentation features against all fragmentation fea-
tures before the total scoring and ranking is reported. The overall score is the result of
contributions from each individual filter.
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envelope does not correspond to the measured intensity ratios. The filter

selectively checks features with perceived isotope annotations. Theoretical

and computational intensity ratios
(

IM+X

IM

)
have to match within a 10%

tolerance window.

• The adduct filter selectively checks the presence of perceived adduct anno-

tations and lowers the ranking of annotations that do not feature adducts

within a feature set.

• The MSn filter is based on the MSn enumeration function. Enumeration of

fragmentation spectra refers to brute-force feature fragmentation applied on

identity annotated features in MS1 that have fragmentation spectra. Molec-

ular structures are deterministically fragmented in a breadth-first fashion

down to a pre-defined depth of or minimum molecular weight. This ap-

proach is similar to current top-down standards in LC-MSn metabolomics.

Noteworthy, a more systematic approach based on quantum mechanics was

proposed by Galezowska et al. [244]. The MSn filter matches the spectral

vector consisting of the subset of explained, i.e. enumerated, fragmentation

features against the complete spectral fragmentation vector and adjusts the

ranking based on that score.

• The missingness filter works not on the annotation level but directly on the

feature set level. It removes features that cannot be found across more than

x% of samples in its designated group. For sample-by-sample reporting,

rather than batch reporting, the missingness filter can trim identifications

with respect to global metabolite identifications across the batch or sample

group. It shares properties with the approach used for the compilation of

consensus feature sets and should therefore not be used in combination with

these.

This purely annotation or information driven approach results in a ranked list of

metabolite identifications. It has the advantage of ease-of-use due to a lack of

direct dependencies beyond spectral and compound databases, which are required

for any form of known or known unknown metabolite identification. If multiple

features have metabolite identifications in a single feature set, the feature set
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is expanded, i.e. the set is copied and reported individually together with each

metabolite identification. Additional identification factors could include models

based on characteristic spectral fingerprints of individual molecules derived from

large study-specific training sets [263].

3.2.2 Scoring Schemes

The developed scoring scheme is based on the filters for the identification factors.

It starts from an initial score of zero, ignoring the obtained score from the iden-

tity annotation process: the normalized score of a simple m/z lookup or spectrum

match that relates either to the m/z deviation between target and library fea-

ture or the query score returned by the web database. This ‘two-pass’ system –

independent annotation and rationalization – avoids potential biases introduced

by spectrum matching.

For local library queries, a robust weighted scoring scheme (MF ) has been imple-

mented consisting of the dot product (FD) of the weighted target (T ) and library

(L) spectral vectors (with elements z) and their ratio of feature pairs (FR). The

elements of a spectral vector, z, are weighted by their m/z and intensity value

and sorted in ascending order by their respective m/z values. n is the number of

features in either vector or their intersection (nL
⋂

T ) [264,265].

MF =
nTFD + nL

⋂
TFR

nT + nL
⋂

T

{MF ∈ < | 0 ≤MF ≤ 1} (3.3a)

FD =
(
∑
zLzT )2∑
z2
L

∑
z2
T

{FD ∈ < | 0 ≤ FD ≤ 1} (3.3b)

FR =
1

nL
⋂

T

nL
⋂
T∑

i=2

(
zL,izT,i−1

zL,i−1zT,i

)
{FR ∈ < | 0 ≤ FR ≤ 1} (3.3c)

z = Ipmzq (3.3d)

The local search score is normalized between 0 and 1,000. The intensity and m/z

weights are set to p = 0.6 and q = 1.5 according to recommendations by Stein et

al. [264,265], giving greater emphasise to higher m/z values. Adding the term FR to
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Filter Score Evidence

Element {0} Weak

Isotope {0 ≤ x ≤ 200} Medium

Fragment {0 ≤ x ≤ 500} Medium, Strong

Relation {0 ≤ x ≤ 100} Weak

Missingness {0 ≤ x ≤ 200} Weak

Table 3.1: Summary of the ranking score scheme. Five filters are implemented that
contribute between 0 and 500 points to the total score of 1000. The value of the score
depends on the quality with which a metabolite annotation passes a filter. The evidence
column shows a three category scheme to easily cluster ranked results.

the dot product FD gives additional weight to the intensities of matching signals,

improving the power of the score when nL
⋂

T is very large. Alternative scores have

been reported that provide a statistical approach to spectrum matching taking

global spectra similarity and molecular properties into account [266–268]. These

approaches could form highly beneficial extensions when more comprehensive

metabolomics spectral libraries have been established.

The weighting scheme subsequently used by the filters is listed in Table 3.1.

Each filter adds to the overall score of 1,000. Fragment filtering yields the highest

contributions because of its importance in identification, e.g. in contrast to adduct

information (relation), which only adds confidence. The isotope and fragment

filters have intrinsic thresholds: annotations that do not match the isotope filter

and annotations which fragment scores fall below 100 (a spectral match of less

than 10%) are automatically removed.

3.3 Materials and Methods

Two data sets were used for metabolite identification, both provided by the

Syngenta AG. The data sets were co-produced as part of a larger study on

Tomato ripening, which is about to be submitted by the Syngenta AG. The

high-resolution data sets used here were analysed but ultimately not included in
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the final manuscript. The metadata of the two studies was collected and compiled

for submission to MetaboLights [23]. The study has been submitted to Nature Sci-

entific Data: Beisken et al : Metabolic differences in ripening of wild and mutant

cultivars of Solanum lycopersicum. The following outlines the purpose and design

of the studies.

The ripening behaviour of Solanum lycopersicum and three ripening-inhibited

mutants was explored using a LC-MS2 assay. The plant material was harvested in

five to ten day intervals up to the point of flowering and daily after. Each genotype

was grown in triplicate. Each block of 52 plant samples was measured using a

group-randomization setup with interspersed quality controls: blank injections

(solvent), pooled samples (mix, see table below), and aliquots of a pooled in-

house standard tomato reference. Randomization groups were defined by day of

harvest.

The study resulted in a rich metabolic data set about the ripening behaviour of

wild type and mutant tomato. Quality measures were taken into account dur-

ing study design facilitating data analysis and enabling filtering of unintended

biological variation in the data. A total of 58 distinct reference standards were

measured on the same instrumental setup to aid metabolite identification and

consequently model validation via biological interpretation. The reference com-

pounds are those used by Syngenta for their in-house projects.

3.3.1 Tomato Cultivars

Wild type Solanum lycopersicum (Ailsa Craig, AC++) and three ripening inhib-

ited AC++ mutants were used in this study (Table 3.2): non-ripening (NOR),

ripening-inhibited (RIN), and colourless non-ripe (CNR) tomatoes [269–271]. The

plants were grown in 24 cm-diameter pots in M3 compost (Levington Horticul-

ture, Ipswich, and Suffolk, UK) and watered daily under standard greenhouse

conditions. Flowers were sampled in five to ten day intervals up to anthesis (10,

15, 20, 30, 40) and daily post-anthesis (47, 48, 49, 50, 51, 52, 53, 54). Breaker fruit

were defined as those showing the first signs of ripening-associated colour change

from green to orange. Non-ripe mutants were taken at day 49 as post-anthesis
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Name Category Description

AC++ wild type (WT) Alisa Craig variety

NOR monogenic mutant as WT except for non-ripening locus

RIN monogenic mutant ripening inhibited mutant

CNR monogenic mutant colourless non-ripe mutant

Mixed n/a pooled AC++, NOR, RIN, CNR, TomQC sample

TomQC n/a standard in-house tomato aliquots

Blank n/a blank sample with solvent

Table 3.2: Overview of sample types used in the study of different tomato cultivars. The
study design included four tomato cultivars: AC++, NOR, RIN, and CNR, interspersed
with pooled samples, quality control aliquots from an in-house standard tomato, and
blanks consisting of solvent only.

equivalents to breaker WT fruits. All plant samples were taken at the same time

each day, frozen in liquid nitrogen, and stored at −70 ◦C until required.

3.3.2 Sample preparation

Stock standard solutions were prepared for the analytical reference standards at

a concentration of 1000 µg/mL in 20/80 HPLC analytical grade Ethanol/Water

and then diluted 10x for injection.

Tomato samples were subjected to an untargeted metabolite analysis by LC-

MS/MS of polar extracts. Approximately 30 mg of dried tomato tissue was

extracted with HPLC analytical grade Ethanol/Water 20:80. The polar extracts

were diluted 10:1 with water and injected underivatised. Samples were acquired

in three batches on 17, 20, and 21 September 2010 in positive ion mode and on

23, 24, and 27 September 2010 in negative ion mode.

3.3.3 Chromatography

All 219 samples were run on a Waters AcquityTM UPLC system (Waters Cor-

poration, USA), HSS T3 150 x 2 mm, 1.7 µm particles, UPLC column at 30 ◦C
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oven temperature. Each batch consisted of 73 samples with multiple quality

control samples. The solvents used for the assay consisted of 0.2% Formic Acid

(Solvent A) and 98/2/0.2 Acetonitrile/Water/Formic Acid (Solvent B). Gradi-

ent [time (min) / %B] starting at flow rate 0.25 mL/min: 2.5/0, 7.5/10 (flow

rate to 0.4 mL/min), 10.0/100, 12.0/100, 18.0/0, 25.0/0. Aliquots of 2 µL were

injected.

3.3.4 Mass Spectrometry

The compounds were detected using a Thermo LTQ Velos Orbitrap mass spec-

trometer operating in positive and negative Electrospray ionization (ESI) mode

at a resolution of 30,000 with a scan range from 85-900 m/z and 95-900 m/z

respectively. MS/MS spectra were obtained in a data dependent manner through

higher-energy collisional dissociation (HCD, normalized collision energy: 50.0) at

a resolution of 7,500: The two most intense mass spectral peaks detected in each

scan were fragmented to give MS2 spectra (100-900 m/z ). Full scan data was

acquired in FT (accurate mass) mode, MS/MS spectra were acquired in centroid

mode. The LTQ Velos Orbitrap used the Xcalibur control software version 2.1.0

for data acquisition. Reference standards were acquired using the same protocol

and experimental setting.

3.3.5 Reference Standards

Reference standards were commercially purchased from Fluka Analytical, Sigma-

Aldrich, and C/D/N Isotopes or prepared in-house. Pooled in-house standard

tomato reference was prepared from the shop bought Angelle variety: mashed up

in bulk and aliquoted out following the protocol outlined above.

3.3.6 Data Deposition

All samples used in this study have been submitted to MetaboLights at the Eu-

ropean Bioinformatics Institute (EMBL-EBI). Each MetaboLights entry contains
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protocols about sample collection, extraction, chromatography, mass spectrome-

try, metabolite identification, and data transformation. The study was metadata

tagged using the Investigation/Study/Assay (ISA) suite [272] in Isatab format a

tab-separated text files for experimental information. In addition, metabolites

identified and/or annotated were stored as mzTab [273] compatible tab separated

file provided as MetaboLights’s IsaCreator plug-in extension.

Data Record: Tomato Study Samples

MetaboLights’s accession MTBLS36 contains the study samples: 442 LC-MS2 files

(.mzML, 64-bit) acquired in continuous mode: 219 in positive and 223 in nega-

tive ion mode. Consistent file names are composed of <acquisitionDate> <run-

Id> <sample> <sampleTime>.

Data Record: Reference Standards

MetaboLights’s accession MTBLS38 contains the reference standards: 71 LC-MS2

files (.mzML, 64-bit) acquired in continuous mode: 43 in positive and 28 in neg-

ative ion mode. Chemical names are used as file names and linked to the ChEBI

database [274].

3.4 Data Processing and Transformation

Processing of raw data was identical for both data sets up to cross-sample fea-

ture alignment. Non-targeted LC-MS datafiles were converted to mzML format

using the program ProteoWizard [230]. Vendor-based peak picking was enabled for

MS1. The resulting mzML files were processed with MassCascade in KNIME (see

Figure 3.2 for an overview of the core workflow).

The data were time and m/z filtered before noise was reduced and features ex-

tracted with 10 ppm mass accuracy. A Durbin-Watson filter was applied with

a lenient threshold of DW = 2.8. Random signals are estimated to be around
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Figure 3.3: Annotated correlation heatmap of tomato study features. Pearson correla-
tion is indicated from red to green, [−1, 1]. Rows and columns are clustered (re-sorted).
They are not ordered by their respective m/z values. Annotated features such as at
[M+H]+ = 325.113 (row highlighted in blue) show strong positive correlation with
their putatively related features. Connections are indicated with vertical blue lines.
The main feature in question elutes around 90 seconds and matches multiple sugars in
web-based m/z queries, in accordance with the loss-of-Hexose and loss-of-Hexose-plus-
water adduct annotations.

DW = 2. The smoothed (Savitzky-Golay, third order polynomial) features were

deconvoluted using a modified Biemann algorithm with a signal to noise ratio

of one. Common ion traces from contaminants were removed before the features

were aligned cross-sample using Obiwarp. Compound spectra were compiled from

the aligned features using a cosine correlation matrix with a correlation threshold

of ρ = 0.98. Master fragmentation spectra were compiled with a minimum signal

occurrence of two for each parent peak. Isotope and adduct annotations were

added for positive ion mode with 10 ppm mass accuracy tolerance. Figure 3.3

shows a snapshot of cross-aligned features after annotation and demonstrates the

necessity for isotope and adduct annotations to subsequently de-replicate fea-

tures, e.g. for statistical analysis [275].
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The resulting features were written out in a feature matrix after gap filling had

been applied. Unresolvable gaps were assigned a default intensity of 10,000 units.

Missingness for the matrix compilation was set to 10%. Two different sample by

feature matrices were compiled: one taking all samples and quality controls into

account (QC-Matrix), and a second matrix with samples only, i.e. NOR, RIN,

AC++, and CNR (Sample-Matrix).

Statistical analysis was carried out in the statistical programming environment

R. Pareto scaling and total signal intensity normalization were found to be op-

timal after several data pre-treatment methods were tested, preserving the data

structure while increasing the effect of small intensity features:

x̃ij =
xij − xj√

sj
(3.4)

Here, x denotes the feature intensity in the sample by feature (i by j) matrix and

s represents the standard deviation. Missing values that could not be back-filled,

i.e. values with default intensity 10,000, were imputed using a 10-component

PCA model (NIPALS) before PCA was used to inspect the data and discover

trends. Observing the effect on quality control samples, total signal intensity

normalization was applied to remove batch variation and uni- and multivariate

outliers were removed. An orthogonal partial least squares (OPLS) model with

three orthogonal components was built to inspect the ripening trajectories of the

tomato cultivars – characterised by their features (X data table) – over time (Y

data table). The resulting model was subsequently used to identify features for

identification and biological interpretation.

The selected features were run against a total of four different libraries: Syn-

genta’s in-house library, KEGG, ChEBI, and PubChem Compound. These li-

braries were used in three different scenarios in order to evaluate the scoring

framework. All scenarios ran fully automated within the workflow environment.

In each scenario, annotations retrieved from the individual reference libraries

for all previously selected features were ranked to indicate the confidence in the

retrieved annotations.

Each of the three scenarios employs a different set of filters: in the first scenario
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no filter was applied. In the second scenario an isotope filter was added. In

the third scenario a fragment filter was added. Features were queried sample

by sample against the individual reference libraries before a ranked consensus

list was built from all samples (excluding control samples) with a m/z tolerance

of 10 ppm, retention time tolerance of 5 seconds, and allowed missingness of

20%. Missingness is listed as a separate filter in Table 3.1 and was applied to all

scenarios when the ranked consensus list was build.

The consensus list contained the identified metabolites ranked by an averaged

score based on the applied filters for isotope patterns, fragmentation (MS2), and

adduct information that were first applied to each sample individually. The

samples were first annotated and ranked individually to place higher emphasis

on individual samples: external effects such as noise or batch effects could distort

alignments and reduce final scores if all samples would be aligned first to generate

a feature matrix. The features in the identity table are condensed to single entries

per feature m/z value with averaged scores.

3.4.1 Known Identification

A reference library was compiled from the KEGG pathway database and com-

bined with an experimentally measured in-house library, which included retention

times of the measured standards. The KEGG library, version 57, was downloaded

in SDFile format. Disconnected structures were reduced to their largest fragment

and charged species were removed before major monoisotopic masses were calcu-

lated for query library generation. Duplicate molecule records or stereoisomers

of the same compound were removed via SMILES line notation comparison, re-

sulting in a reference library of 12,022 entries. Canonical SMILES for compari-

son were computed through the ChemAxon Marvin Extensions KNIME Feature,

2.6.3.v0135. The m/z search tolerance was set to 10 ppm. The in-house refer-

ence library contained 839 entries. The in-house library was originally measured

for metabolites relevant to plant metabolomics. The KEGG pathway database

covers core metabolic pathways.
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3.4.2 Known Unknown Identification

The PubChem database was used as reference library and queried for the target

m/z values. The PubChem database contains a range of diverse chemical com-

pounds that are mostly irrelevant for the task of metabolite identification. To

avoid the retrieval of exotic molecular structures that contain elements uncommon

in metabolites, the molecular formulas calculated for the last scenario were used

as filter for retrieved hits via PubChem’s web service. A total of 46,604 unique,

uncharged, and connected compounds were retrieved this way and compiled as

reference library.

3.4.3 Unknown Identification

Molecular formulas were generated for each feature that served as input for an

in silico structure generator (see appendix for a complete list). The molecular

formulas were generated for the selected charge-corrected feature masses with a

tolerance of 0.05 amu and checked for validity with the following rules:

• elements carbon, nitrogen, oxygen, and hydrogen only,

• element frequencies must not exceed 39 (C), 72 (H), 20 (N), and 20 (O) [240],

• compliance to the nitrogen rule [276],

• Ring Double Bond Equivalents (RDBE) values within [−0.5, 30] [248].

Sum formulas violating one or more of the rules were removed. The structure

generator Molgen [277] was run against the list of deduced sum formulas with a 30

min timeout per sum formula. To reduce computational complexity, the number

of cycles was constrained to 0-2, ring-size was limited to 0-10 atoms, and the

maximum number of structures was set to 50. Default values were used for all

other parameters. A total of 11,159 structures were generated and compiled as

reference library.
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3.5 Results

Data processing resulted in two matrices of size 219 by 211 (QC-Matrix) and 156

by 189 (Sample-Matrix). The matrices contained 292 (0.64%) and 23 (0.07%)

missing values that could not be back-filled using raw data. They were imputed

through a PCA model approach.

3.5.1 Analysis of the Quality Controls

Initial PCA on the Pareto scaled matrix shows clear batch variation in princi-

pal component 1 and 3 between samples acquired on 17.09 and 20/21.09 (Fig-

ure 3.4a). Total signal intensity normalization reduces observed batch variation

but can not eliminate it completely (Figure 3.4b). The 73 affected samples ac-

quired on 17.09 are dropped before further analysis, removing instrument induced

structure. In the PCA on the trimmed data set Tomato QC samples, blanks, and

pooled samples are each grouped together (Figure 3.4c). The biological sam-

ples are distributed along the third principal component. Expected clustering of

Tomato QC samples, blanks, and pooled samples indicate absence of additional

biological uninduced variation in the data set. Principal components 1 and 3 are

chosen because they illustrate the batch effect most dramatically. Please note,

that the homoscedasticity criteria was explored using 10 pooled samples. Slight

heteroscedasticity is notable but could not be completely removed using power

or log transformations.

3.5.2 Analysis of the Tomato Samples

Following results from the QC-Matrix, samples from 17.09 are dropped from the

Sample-Matrix, which contains the aligned features from the tomato samples.

The matrix is total signal normalized and Pareto scaled before normality of vari-

ables is explored using a skewness measure and a visual representation in the

form of quantile-quantile plots (Q-Q plots), resulting in the removal of 20 vari-

ables after inspection of the corresponding extracted mass chromatograms. Po-
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Figure 3.4: Overview of the tomato cultivars data set based on the QC-Matrix: All sam-
ples plus blanks, Tomato QC, and pooled samples. All PCAs show the first and third
principal components to illustrate batch effects. The gray circle indicates Hotelling’s T2

statistic for a 95% confidence region. (a) PCA of the Pareto scaled raw data coloured
by acquisition date. Blank injections, quality controls, and samples cluster but are
smeared across the third component, exhibiting a batch effect. (b) As (a) with the
data points normalized by total signal intensity. (c) As (b) minus samples acquired on
17 September with samples coloured by group.
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tential multivariate outliers are found using a PCA-based method by Filzmoser

et al. [278]. After visual inspection of the chromatographic traces, all objects are

kept. The resulting 10 component PCA model explains 50% variance (R2) in the

first two principal components with a goodness of prediction of 37% (Q2), Fig-

ure 3.5. The coefficient of determination R2 is the total ratio of variance that is

being explained by the model. The goodness of prediction Q2 results from inter-

nal seven-fold cross-validation. The applied ‘krzanowski’ type cross-validation [279]

sequentially leaves out rows (features) and columns (samples) of the input matrix

to build fold models that give loadings and scores respectively. Combinations of

these loadings and scores are then used to estimate completely left out values

(for cross-validation). The Q2 can be understood as the ratio of variance that

can be predicted independently by the model. Samples from genotypes AC++

and CNR are dominating the PCA plot. Wild type AC++ samples are spread

about the quadrants I, II, and III quadrant, whereas mutant CNR samples are

most notably in quadrants I, III, and IV. NOR and RIN samples occupy similar

space in the plot. The plot suggests that groups AC and CNR develop through

separate ways. Potential outliers indicated by the Distance to Model (DModX)

plot are kept because they do not exceed the critical threshold of twice the critical

DModX value. Because the DModX values follow a F-distribution, the critical

DModX value can derived for a significance value of 0.05 from a F-distribution

with j = 104 and i = 169 degrees of freedom.

To further investigate the data set and establish a valid model for feature selection

and metabolite identification, an orthogonal partial least squares (OPLS) model

is built (Figure 3.6). Using leave-one-out cross validation, a 1+3 model was

found to be best with a bias-corrected RMSEP of 1.95. Given the nature of

OPLS, the explained covariance between X (the Sample Matrix) and Y (sample

day) is maximized for component 1. The three dimensional OPLS plot shows the

ripening trajectories of all four genotypes. The trajectories of mutants NOR and

RIN follow a similar path. AC++ and CNR trajectories are offset and diverge

after day 30 and occupy different regions along the second and third component

respectively post-anthesis.
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Figure 3.5: Final PCA model for the tomato cultivars data set. (a) PCA of the nor-
malized and Pareto scaled Sample-Matrix: Genotype samples only. The samples are
coloured by genotype. The gray circle indicates Hotelling’s T2 statistic for a 95% con-
fidence region. Wild type AC++ samples are spread about the quadrants I, II, and III
quadrant, whereas mutant CNR samples are most notably in quadrants I, III, and IV.
NOR and RIN samples occupy similar space in the plot. (b) Cumulative plot for the
goodness of fit (R2) and prediction (Q2). (c) Distance to Model plot with a critical
value threshold for potential outliers of 1.29866 (green line) and twice the critical value
threshold for definitive outliers (red line).
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(a) OPLS: Genotype time trends (comp 1,2)

(b) OPLS: Genotype time trends (comp 1,3)

Figure 3.6: OPLS model for the tomato cultivars data set. Score plots for the first
vs. second (a) and first vs. third (b) component are shown with a trendline approxi-
mated via LOESS. The samples are coloured by genotype and labelled by sample date.
Covariance is maximized between the Sample-Matrix and the sample day in the first
component. The trajectories of mutants NOR and RIN follow a similar path. AC++

and CNR trajectories are offset and diverge after day 30 and occupy different regions
along the second and third component respectively after flowering at day 47.

107



3. KNOWLEDGE-BASED COMPOUND IDENTIFICATION

Observations of mutant CNR spread significantly more than observations of wild

type AC++. Subsequently separate OPLS models are built vs. time for each

genotype to identify biologically relevant targets for metabolite identification.

OPLS is chosen over OPLS-DA (discriminant analysis) because of familiarity

with OPLS and its availability in the R environment. OPLS-DA is an extension

of the OPLS technique that takes class information into account. In general, it

is more suitable for discrimination modelling. Loadings of the first component

of each AC++ - mutant pair are plotted to single out up- and down- regulated

metabolites as identified by the models. The first component encrypts Y – the

sample time – and is thus most revealing for metabolites that change over time

(Figure 3.7). Metabolites below the first quartile of the distribution of AC++ and

above the third quartile of the distribution of a mutant (or vice versa) are chosen

for identification because they exhibit maximum change over time in multivariate

space. That is, metabolites occupying the extreme ends of the wild type and

mutant distributions are chosen so that they have high loading values in one

genotype and low loading values in the other. This procedure results in 13, 2,

and 2 singled out features for AC++ - CNR, AC++ - NOR and AC++ - RIN

models.

3.5.3 Identification

A total of 13 unique features were singled out using the OPLS loadings plot

approach. Missingness and element filters were included by default every time.

They defined the baseline score of 160 for a missingness of 20%.

Known Identification

A total of 18 hits, i.e. distinct molecules, were returned. Grouped by feature, only

six features had metabolite annotations. For those 18 hits, four had retention time

information from the in-house library: valine, betaine, pidolic acid, and citrulline.

With the exception of betaine, retention times matched within four seconds. Lists

of annotations of individual features are shown in the representative Tables 3.3,

108



3. KNOWLEDGE-BASED COMPOUND IDENTIFICATION

(a) Loadings comp. 1: AC++ vs CNR

(b) Loadings comp. 1: AC++ vs NOR (c) Loadings comp. 1: AC++ vs RIN

Figure 3.7: The pairwise loadings of the first component of the individual genotype
OPLS models is shown for (a) AC++ vs CNR, (b) AC++ vs NOR, and (c) AC++

vs RIN. Metabolites that do not change over time center around (0,0). The dashed
blue line indicates the diagonal along which metabolite intensities increase or decrease
together. Metabolites below the first quartile of the distribution of AC++ and above the
third quartile of the distribution of a mutant (or vice versa) are chosen for identification
and are highlighted in red. That is, metabolites occupying the extreme ends of the wild
type and mutant distributions are chosen so that they have high loading values in one
genotype and low loading values in the other.
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Name Depiction Score

Frag. Isotope None

pidolic acid†* 554 455 160

1-pyrroline-
3-hydroxy-5-
carboxylate

554 455 160

4-oxoproline 552 455 160

MS2 spectrum

Table 3.3: Metabolite annotations for m/z 130.05 with cumulative scores for no, isotope,
and fragment filtering. Missingness and element filters were always included. The
calculated score ranks 4-oxoproline lower. All structures are highly similar. †The
extracted MS2 spectrum shown is dominated by a peak at 84.044 (putative structure
shown). *Matching retention time in the in-house library at 275 seconds.

3.4, and 3.5. The remaining three tables are in the appendix. The tables list the

scores for the three additive filters. Where present, an extracted MS2 spectrum

is shown with its dominant peak annotated with a putative fragment.

The scoring framework adds discriminatory power to the ranking of metabolite

annotations. The missingness and element filter set a start score of 160; the

score increases if a suitable isotopic envelope is present. It increases further in

the presence of MS2 spectra if fragmentation signals match. The discriminatory

power lies solely within the fragmentation filter. All compounds are very similar

to each other. Their theoretical isotopic abundances fit the measured isotope

signals and their fragmentation spectra are dominated by few signals those m/z
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values match multiple charged fragmented substructures of each of the putative

compounds. Retention time from the in-house library is the only factor that can

potentially differentiate identically ranked compounds. However, only four hits

from the KEGG database also had associated retention times in the in-house

library. For increased confidence, all annotations would need associated retention

times to enable comparisons. Betaine (Table 3.5) is the only example of a lower-

ranked compound with a differing retention time.

Name Depiction Score

Frag. Isotope None

asparagine† 351 209 160

3-ureido-
propionate

350 209 160

glycylglycine 350 209 160

N-carbamoyl-
sarcosine

325 209 160

MS2 spectrum

Table 3.4: Metabolite annotations for m/z 133.061 with cumulative scores for no,
isotope, and fragment filtering. Missingness and element filters were always included.
The calculated score singles out asparagine. All structures are highly similar. †The
extracted MS2 spectrum shown at the bottom of the table is dominated by a peak at
87.055 (putative structure shown).
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Name Depiction Score

Frag. Isotope None

valine†* 559 359 160

D-norvaline 559 359 160

2-amino-2-
methylbutanoate

559 359 160

4-methyl-
aminobutyrate

559 359 160

amyl nitrite 559 359 160

5-amino-
pentanoate

557 359 160

betaine 557 359 160

MS2 spectrum

Table 3.5: Metabolite annotations for m/z 118.086 with cumulative scores for no,
isotope, and fragment filtering. Missingness and element filters were always included.
The calculated score does not allow for selective ranking among the five best structures.
With exception of the charged compound betaine, all structures are highly similar. †The
extracted MS2 spectrum shown at the bottom of the table is dominated by its parent
peak (putative structure shown). *Matching retention time information in the in-house
library at 154 seconds.

112



3. KNOWLEDGE-BASED COMPOUND IDENTIFICATION

Known Unknown Identification

A total of 261 molecular formulas were generated. Feature 327.117 was elimi-

nated from this scenario at the beginning because the putatively correct molec-

ular formula C14H18N2O7 was missed by the formula generator. Other formulas

calculated for the same feature were removed by the isotope filter because they

did not match the measured isotope pattern.

For known unknowns, i.e. hits from a generic compound database like PubChem

Compound, the framework helps to narrow down the annotation space from sev-

eral to a few hundred annotations but is unable to single out one compound

(Table 3.6). The table lists the rank of the selected metabolite annotations from

the ‘Known Identification’ scenario within the retrieved compound lists. The

compound lists were grouped by score. The fraction of hits with identical scores

to all hits is also listed, i.e. the number of matching references up to the group

that contains the annotation divided by all matching references. For example,

feature 118.086 is thought to represent valine based on the ‘Known Identifica-

tion’ scenario (Table 3.5). Valine is in the highest ranked group of PubChem

Compound retrievals (Rank 1 ), which includes 45% of all matching retrievals

from PubChem Compound for that particular feature. The scoring framework

eliminates 55% of matching compounds.

The scores are identical for all filters if the best scores from the PubChem Com-

pound retrievals are compared to the scores from the previous scenario. Up to the

isotope filter, this is to be expected because the missingness value and molecular-

formula based theoretical isotopic abundances are identical. The highest ranked

compounds have identical molecular formulas.

The only discriminating factor remaining is the fragmentation score. The score

is also identical for all cases except for feature 197.096, which was ranked fourth:

the best fragmentation score is larger by one unit. Given the information from the

data, PubChem does not offer better matching compounds but a list of equally

well matching compounds.
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m/z Rank Fraction Score (PubChem/KEGG)

Frag. Isotope None

118.086 1 45% 559/559 359/359 160/160

130.05 1 68% 554/554 455/455 160/160

133.061 1 81% 350/350 209/209 160/160

176.103 1 100% n/a 260/260 160/160

197.096 4 72% 370/369 251/251 160/160

327.117 n/a n/a n/a n/a 160/160

Table 3.6: For the selected features (m/z ), the rank of the group that contains the
feature’s annotation is shown and the fraction of the number of all molecules within
or up to that group in relation to all retrieved hits for that feature. The top-listed
annotations from the ‘Known Identification’ scenario were used for ranking. The score
compares the best score of all retrieved annotations for a feature to the ‘Known Identifi-
cation’ scenario. They are identical with exception of feature 197.0.96. Feature 327.117
did not yield the required molecular formula during the automated process.

Unknown Unknown Identification

The calculated average score of matching annotations is expected to be worse for

the Molgen library, i.e. lower, than the average score from the ‘Known Identifi-

cation’ scenario because chemical space is traversed at random.

Table 3.7 compares the best hits retrieved from the Molgen library versus previ-

ously retrieved best hits. With exception of feature 197.096, the fragmentation

scores from the Molgen library are worse for all features where fragmentation

spectra exist.

Feature 197.096 matches carbon-rich structures with few hetereoatoms that give

similar fragments if fragmented deterministically. The isotope score contributions

are identical for both scenarios because identical molecular formulas resulted in

the best overall score.
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Mol. Formula m/z Depiction Score (Molgen/KEGG)

Frag. Isotope None

C5H11NO2 118.086 557/559 359/359 160/160

C5H7NO3 130.05 553/554 455/455 160/160

C4H8N2O3 133.061 343/351 209/209 160/160

C6H13N3O3 176.103 n/a 260/260 160/160

C14H12O 197.096 369/369 251/251 160/160

Table 3.7: Scored metabolite annotations for the best hits in the Molgen library versus
the best hits in the KEGG library for five selected ion traces. Cumulative scores for
no, isotope, and fragment filtering are shown with Molgen/KEGG scores. Missingness
and element filters give a base score of 160. With the exception of feature 197.096,
fragmentation scores from the ‘Known Identification’ scenario are greater than scores
from the Molgen library.

Feature Analysis

Putative feature identifications were further investigated through biological in-

terpretation based on univariate statistics. Feature abundances across samples,

their distributions, and receiver-operator characteristic (ROC) curves were com-

piled for every genotype.

The feature abundances shown in the scatterplots are sorted by genotype and har-

vest date in ascending order. The trend for the features’ abundances is indicated

through locally weighted scatterplot smoothing. Boxplots show the median (mid-

dle line) and lower (25%) and upper (75%) percentiles of the abundances.
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The ROC curves describe the power of the respective features for binary classifi-

cation of either of the three mutant genotypes (RIN, NOR, CNR) versus the wild

type AC++. This statistic supplements the boxplots, indicating how characteris-

tic the total change of a feature is for a genotype compared to AC++.

A complete list of univariate feature statistics for all 13 unique features extracted

from the OPLS loading plots can be found in the appendix, including Pearson’s

correlation matrices for each genotype. Here, the six features that have annota-

tions are discussed because of biological interpretability.

Figure 3.8a summarizes feature 118.086. The relative abundances decline dur-

ing the ripening period in all genotypes. The distributions are similar and the

feature does not appear to have discriminatory power in univariate space. The

importance assigned by the OPLS loadings plot between AC++ and CNR is not

reflected.

Feature 130.05 shows a distinct difference between the AC++/CNR and NOR/RIN

genotypes (Figure 3.8b). The feature abundances are not decreasing over time to

the extend of the wild type and colorless non-ripe feature abundances as indicated

by the trend lines.

In Figure 3.9a, AC++’s level of feature 133.061 rises quicker over time than for the

other genotypes. The overall difference is minor and does not impact significantly

on the ROC curve. The differing behaviour is captured in the OPLS loading plots:

in all three comparisons, the loadings do not indicate correlation.

Feature 176.103 (Figure 3.9b) dramatically drops in abundance for CNR, dis-

tinguishing CNR from the wild type. In Figure 3.10a and 3.10b, the levels of

features 197.096 and 327.118 are spiking compared to the other genotypes.
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(a) Univariate statistics for feature 118.086
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(b) Univariate statistics for feature 130.05

Figure 3.8: Univariate statistics for features 118.086 (a) and 130.05 (b). The scatterplot
shows feature abundances grouped by genotype and sorted by harvest date in ascend-
ing order with applied locally weighted smoothing. The boxplots display the median
(middle line) and lower (25%) and upper (75%) percentiles of the abundances. The
ROC curves indicate the binary classification power of the mutant genotypes versus
the wild type AC++.
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(a) Univariate statistics for feature 133.061
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(b) Univariate statistics for feature 176.103

Figure 3.9: Univariate statistics for features 133.061 (a) and 176.103 (b). The scat-
terplot shows feature abundances grouped by genotype and sorted by harvest date in
ascending order with applied locally weighted smoothing. The boxplots display the
median (middle line) and lower (25%) and upper (75%) percentiles of the abundances.
The ROC curves indicate the binary classification power of the mutant genotypes versus
the wild type AC++.
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(a) Univariate statistics for feature 197.096
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(b) Univariate statistics for feature 327.118

Figure 3.10: Univariate statistics for features 197.096 (a) and 327.118 (b). The scat-
terplot shows feature abundances grouped by genotype and sorted by harvest date in
ascending order with applied locally weighted smoothing. The boxplots display the
median (middle line) and lower (25%) and upper (75%) percentiles of the abundances.
The ROC curves indicate the binary classification power of the mutant genotypes versus
the wild type AC++.
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3.6 Discussion

Thirteen features were selected for identification that were believed to be con-

tributing to differences in ripening between the investigated genotypes. Three

scenarios were applied to test the scoring framework. Score contributions from

the missingness, adduct, and isotope filters added little discriminatory power

to the ranking. These filters primarily ensured that highly unlikely compound

annotations were removed from the beginning.

The remaining list of similar compounds, i.e. identical molecular formulas and

presence/absence of cycles, still comprised hundreds of entries for the ‘Known

Unknown’ scenario (using the PubChem Compound database) that could not

be trimmed down further using fragmentation information. This can partially

be explained by poor fragmentation behaviour of the measured ions, e.g. due to

insufficient fragmentation optimization in the instrument, and deficiencies that

result from a deterministic structure fragmentation approach that traverses all

possible fragments without physical constraints to rank and discard unlikely frag-

ments.

For the smaller, biologically relevant database used in the ‘Known Identification’

scenario, the score contribution from the fragmentation filter allowed the discrim-

ination of similar retrieved hits highlighting a single or a few compounds. The

score differences are small but reflect the absence of explainable fragmentation

signals that are important for identification. Currently, the structure fragmenta-

tion tool, which is used in the fragmentation filter, does not predict abundances

of fragments. It only generates fragments and abundances are set to one. Because

the fragmentation filter calculates a score based on the match of the predicted

to the measured fragmentation spectrum that takes abundances into account, a

more elaborate fragmentation tool that also predicts abundances is likely to in-

crease the scoring differences seen. This is exemplified in the ‘Unknown Unknown

Identification’ scenario. If chemical compounds for annotations were computed

randomly, the scores of the best matching annotations were smaller than for the

relevant annotations from the ‘Known Identification’ scenario.

120



3. KNOWLEDGE-BASED COMPOUND IDENTIFICATION

To consolidate the ranked feature annotations and demonstrate correct data pro-

cessing and identification by MassCascade, univariate analysis was carried out.

The features were initially selected based on a multivariate OPLS approach. Be-

cause univariate statistics do not capture co-linearity between variables, not all

features appear to be of importance in their univariate evaluation. The wild

type AC++ and the mutant genotypes CNR, NOR, and RIN have been shown to

share the same compounds but that their concentrations vary during ripening,

resulting in the different trajectories captured in Figure 3.6 [280]. RIN and NOR

mutants never achieve a ripe stage, i.e. their ripening stops before maturity. This

behaviour is also captured in their metabolic profile as can be seen by the OPLS

plot and in the abundances of feature 130.05 (Figure 3.8b), where pidolic acid has

been reported to be closely correlated to ripening [281]. Asparagine concentrations,

feature 133.061 (Figure 3.9a), have been reported to increase during ripening [280]

(major N form in plants), whereas valine concentrations, feature 118.086 (Fig-

ure 3.8a), have been reported to decrease during ripening [282,283]. Citrulline is

closely linked to its precursor arginine, which is regarded as plant growth regulator

in the greater network of polyamine-mediated effects [284], potentially explaining

its complete defect in the CNR genotype. The discussed features identifications

and extracted abundances appear to be reasonable within the outlined biological

context.

3.7 Conclusion

Knowledge-based compound identification can help to reduce the size of lists

of putative metabolite annotations in metabolomics studies. The implemented

approach of information aggregation followed by scoring and ranking based on

adduct, isotope, and fragmentation data helps to discard biologically irrelevant

structures as can be seen in the example scenarios. Annotations could be removed

after initial m/z -based assignment.

Similar structures retrieved from compound databases are more difficult to dif-

ferentiate based on mass spectrometry data alone as demonstrated in the next
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section – unless multiple MSn are recorded, a currently infeasible approach for

untargeted studies. As the ‘Known Identification’ scenario indicates, poor frag-

mentation behaviour – due to low ionisation efficiency – and low m/z values

render discrimination, e.g. between valine/norvaline or pidolic acid/1-pyrroline-

3-hydroxy-5-carboxylate impossible. Confidence in metabolite rankings can be

increased by addition of retention time (or retention index) information. How-

ever, this approach is limited by the poor ratio of the maximum feasible size of

any measured in-house library versus the tangible metabolite space. In general,

the addition of orthogonal sources of information increases the ability to rank

putative metabolite annotations.

The study design, data, and processing/analysis processes are captured using

open tools to achieve maximum transparency and reproducibility in line with cur-

rent community-wide efforts in metabolomics. To that end, the complete study

including the in-house library has been deposited in the MetaboLights database

and a Scientific Data article was submitted to the Nature publishing group. The

strength of MassCascade, introduced in chapter 2.1, has been demonstrated by

using it for data processing and analysis including metabolite annotation and

ranking. The created workflow that was used throughout the analysis process is

available online, can easily be shared, and includes all set parameters. Its inte-

gration into the workflow environment KNIME enabled additional functionality,

such as the dereplication of features or the required data transformation for the

compilation of reference libraries. Open data or the formation of a ‘Datument’

has been thoroughly achieved.

Outstanding problems involve the generation of rational fragmentation spectra in

silico that also give predicted signal abundances. This will significantly increase

the power of the scoring framework for annotations from highly similar molecular

species.
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3.8 Technical Validation

The identification framework implemented in MassCascade – previously applied

to the analysis of the tomato samples – is validated against a publicly avail-

able benchmark data set to further consolidate the methodology. The C ritical

Assessment of Small M olecule I dentification (CASMI) is an inaugural open con-

test based on a common open dataset to evaluate identification methods for LC-

or GC-MS data. CASMI was founded by Emma L. Schymanski and Steffen Neu-

mann in 2012 and is at the time of writing in its third round (2014) [285].

Test data has been taken from the CASMI contest in 2013 for which the challenge

data and the solutions are available online (http://www.casmi-contest.org/

2013/). For a comprehensive description of the data format, ranking procedures,

and structure of the contest, please see the article by Schymanski et al. [286].

A total of 11 out of 16 challenges are selected from category 2 (best structure

identification). The missing five challenges are centred around data acquired in

negative ion mode, currently not fully supported by the identification framework

in automated mode. ‘Automatic method’ is a boolean flag in the CASMI contest

indicating whether the metabolite identification process has run without man-

ual intervention, the scenario chosen for this technical validation. Category 1

(best molecular formula) has been skipped because it is an inherent part of cat-

egory 2. Following CASMI reporting standards, details per challenge are listed

in Table 3.8. For details on the individual rankings, please see Schymanski et

al. [286].

3.8.1 Methods

Test data is provided as peak lists in flat files. Each challenge contains one peak

list for MS and a separate peak list for MS/MS. No raw data or chromatographic

profiles are provided. The accompanying meta files contain the instrumental

parameters plus a brief description of the challenge including tips such as ‘contains

aromatic structures’ or ‘contains amide bonds’.
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For each challenge, both MS and MS/MS peak lists are converted to MassCas-

cade Features and aggregated in a Feature Set. Fragmentation spectra are linked

to their parent peaks either through information provided in the respective meta

files or through manual evaluation of the MS and MS/MS spectra. The gener-

ated Feature Sets serve as starting point for the annotation and identification

process.

Adduct and isotope annotations are calculated using a 10 ppm m/z tolerance

window before the PubChem Compound database is queried through the Chem-

Spider web service for putative structures for the parent peak in MS1. Simulta-

neously, the MS and MS/MS spectra are queried against MassBank with default

parameters. Mass accuracies were adjusted between 3 and 10 ppm guided by the

challenge meta files. Retrieved metabolite annotations are submitted to brute-

force feature fragmentation and MS/MS assignment before candidate ranking is

carried out using all score filters (default parameters).

MassBank spectra deposited by ’CASMI2013 organizers’ are ignored in this exer-

cise. Otherwise, in the case of matching MassBank MS/MS spectra, the fragmen-

tation filter’s score is replaced by half of the score of MassBank’s query score for

the fragmentation spectrum, ensuring that both scores are comparable. Ranked

candidates are further filtered using a SMARTS substructure search based on the

challenge tips that describe structural properties of the correct solution.

3.8.2 Results & Discussion

Parsing and formatting the plain data files were the most time-consuming steps.

The annotation and identification workflow ran fully automated after initial set-

up and deduction of the SMARTS query strings for each challenge. The Chem-

Spider and MassBank web services were reliable but slow in execution. Preference

was given to queries against MassBank over Pubchem Compound because Mass-

Bank is an experimental mass spectral database and thus able to provide better

confidence in putative metabolite annotations.

A total of one MS spectrum with a single associated MS/MS spectrum was gen-
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# rank tc bc wc ec rrp p wbc wwc wec wrrp

1 7 2954 0 2947 7 1.00 0.00 0.00 0.99 0.01 0.99

2 1 1278 0 1277 1 1.00 0.00 0.00 1.00 0.00 1.00

4 226 323 0 90 226 0.65 0.00 0.00 0.08 0.92 0.08

5 1 237 0 236 1 1.00 0.00 0.00 1.00 0.00 1.00

7 22 44 0 22 22 0.76 0.04 0.00 0.26 0.86 0.14

8 3 17 0 14 3 0.94 0.14 0.00 0.58 0.42 0.58

9 1 63 0 62 1 1.00 0.02 0.00 0.98 0.02 0.98

10 6 18 1 12 5 0.82 0.12 0.12 0.31 0.58 0.31

13 366 384 0 18 366 0.52 0.00 0.00 0.01 0.99 0.01

14 997 3457 0 2460 997 0.86 0.00 0.00 0.36 0.49 0.51

16 – 1879 – – – – – – – – –

Table 3.8: Results of the technical validation using the CASMI data set of 2013. Results
are reported following the CASMI reporting standards: #, challenge; rank, absolute
rank of correct solution; tc, total number of candidates; bc, number of candidates with
a score better than correct solution; wc, number of candidates with a score worse than
correct solution; ec, number of candidates with same score as the correct solution; rrp,
relative ranking position (1.0 is good, 0.0 is not); p, score of correct solution; wbc, sum
of scores better than correct solution; wwc, sum of scores worse than correct solution;
wec, sum of scores equal to correct solution; wrrp, RRP weighted by the scores (1 is
good).

erated for each challenge. The result of the analyses is summarised in Table 3.8.

Note that challenges 3, 6, 11, 12, and 15 are missing because of issues around the

negative ion mode as explained in the preceding section. Because the filters it-

eratively remove irrelevant candidates, e.g. disconnected structures or structures

that do not match measured isotopic envelopes, and do not report complete lists

of all candidates, removed candidate entries were given a base score of 200 in

order to calculate the normalised scores (p, wbc, wwc, wec, and wrrp) through

the total sum of scores as described by Schymanski et al. [286]. The base score

reflects the score that any candidate would be given by default if it passed the

missingness filter. This can be assumed in this exercise because the data reflects

extracted features of interest.

Similar to other contestants of the CASMI challenge, we used MassBank and Pub-
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Chem Compound as query databases to retrieve collections of metabolite struc-

tures as starting point. The results table shows that the identification framework

was able to extract the correct structures from larger sets (up to 3, 500) and rank

them within the top 10 candidate structures in 6 out of 11 cases. The correct

candidate structure was ranked lower in challenges #7 (rank 22), #4 (rank 226),

#13 (rank 366), and #14 (rank 997). The correct solution was not found at all

in challenge #16.

The solution to challenge #7 is a pentameric proanthocyanidin (Cinnamtannin

A3). Similar structures such as other flavanol-based compounds could not be

differentiated from the correct solution due to the repetitive nature of polymeric

compounds, resulting in 22 equal ranked candidates. In challenges #4, #13 and

#14, the high rank also results from limitations of the framework to differentiate

very similar molecular structures, resulting in 226, 366 and 997 equal ranked

candidates. In challenge #16 the correct structure was removed by the isotope

filter: the measured isotopic peak ([M + 1]+) did not fit the value calculated by

the program.

Overall, an evaluation of the absence of better candidates in all but one challenge

combined with the large numbers of equal ranked candidate structures, indicates

the difficulty in metabolite identification using mass spectrometry data alone.

Whereas – with regard to the CASMI contest – the framework’s performance

resides between the (semi-)automated methods of the contestants ES and FA (re-

sults of the contest are available on the official website), the framework performed

poorly compared to the contestants who used more manual methods of investi-

gation and took additional information into account such as species, retention

times, and classifications such as ’natural product’.
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CHAPTER 4

Computational Workflows for

Cheminformatics

4.1 Introduction

The routine work of a cheminformatician involves the processing of collections

of small molecules. Standardising molecules, e.g. adding hydrogens or removing

unconnected structures, calculation of molecular descriptors, and visualisation of

chemical structures in two- or three-dimensional space are just a few examples of

recurring tasks that are carried out upstream of cheminformatic pipelines. Several

free and open source cheminformatics libraries and tools have been developed to

deal with these tasks, such as the CDK [287], RDKit [191], and OpenBabel [193].

Building a comprehensive pipeline for handling small molecules requires a basic

understanding of a scripting language to concatenate input and output from

different tools or call functions from a cheminformatics library. For experimental

scientists, usage of APIs (application programming interfaces) or programming

languages can add a constraint to more in-depth analysis. Standalone tools suffer

from limited scope, i.e. they mostly do one thing only. Even simple tasks like the

visual characterisation of a chemical library [288] require importing and exporting
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of data in various formats using different tools. This poses challenges related to

the maintainability and modularity of custom pipelines that are created for these

tasks.

Workflow environments circumvent the above mentioned challenges to various

degrees by providing a common platform for different tools and have become

popular with the science community [289]. A cheminformatics plug-in, KNIME-

CDK, has been developed based on the Chemistry Development Kit (CDK),

an open-source cheminformatics library. It wraps elements of the library’s core

functionality and exposes it to the user. In contrast to other cheminformatics

plug-ins available in KNIME, the project and its core library are fully open and

community-driven.

KNIME-CDK is part of KNIME’s community contributions and adheres to their

software versioning system. Separate versions exist for the major KNIME re-

leases, 2.7, 2.8, and 2.9, and for the nightly version for active development.

KNIME-CDK is an official ‘Trusted Community Contributions’ since version

2.9.

4.2 KNIME-CDK’s Implementation

KNIME-CDK has been developed in Java R© 1.6 for the KNIME legacy version

2.6 and Java R© 1.7 for all KNIME versions greater than 2.6. Following KNIME’s

data model, individual CDK molecule representations are stored in their own

data cell type, the atomic unit for tabular data transfer from one node to an-

other. Community cheminformatics plug-ins come with their own cell types that

uniquely capture the underlying library’s molecule representations. To make data

cell types of other cheminformatics plug-ins accessible without explicit conversion

on the code level, generic KNIME chemistry types are used as buffer in between

cheminformatics plug-ins. Thus, KNIME-CDK depends on the generic KNIME

chemistry types that serve as a wrapper for common chemistry file formats (see

section 1.2.2).
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(a) Plug-in architecture (b) KNIME-CDK node model

Figure 4.1: Overview of the KNIME-CDK architecture and node model. (a) The plug-
in forms part of the KNIME Desktop and serves as an interface between the CDK
core library for data processing, JChemPaint for chemical drawing, and Jmol for 3D
visualisation. (b) The node model enables molecular compounds from any generic
chemistry format to be processed within the KNIME-CDK environment. A compound
from the RDKit cheminformatics package is processed in CDK (logP calculation) before
it is further used for a web query that does not form part of the CDK plug-in.

4.2.1 Structure

The KNIME-CDK plug-in follows the classical KNIME node architecture as de-

scribed in section 1.2.4. Nodes run within Java’s R© concurrency framework [229]

with threading enabled for fast execution. KNIME-CDK uses CDK for data pro-

cessing and visualisation, JChemPaint [290] for chemical drawing, and Jmol [291]

for visualisation in 3D space (Figure 4.1a). No direct file input or output nodes

exist. Instead, KNIME tables become usable within the KNIME-CDK environ-

ment after chemistry cell type conversion from a generic format to the internal

KNIME-CDK representation (Figure 4.1b).

4.2.2 Persistence

Data persistence is guaranteed via the Chemical Markup Language (CML) [207]

serializing the molecule when necessary. The underlying CDK molecules are han-

dled and stored within data cells in standardized form, i.e. with implicit hydrogen

atoms added, atom types perceived, and aromaticity detected. This guarantees
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consistency across all nodes and simplifies usability of the plug-in by automating

technical details from the user, hence allowing the scientist to focus on the task

at hand.

The nightly build features persistence via the line notation SMILES based on

a recent release of CDK version 1.5.4. In contrast to CML, SMILES – as line

notation system – does not allow for additional information to be stored directly.

Consequently, atom types and aromaticity are perceived every time a molecule

is requested for processing, i.e. at every node. This overhead is balanced out

by advantages of the SMILES system: information density and applicability

within the workflow environment. Two- and three-dimensional coordinates as

well as additional information about substructure highlights (see section 4.3.3)

are stored in vectorised form with the SMILES notations. It should be noted that

a non-canonical version of SMILES is used to increase execution speed: isomeric

SMILES. However, conversion rounds of SMILES to native CDK representation

to SMILES always result in the same SMILES and native CDK representation

because the atom order is preserved in a separate auxiliary array. The array

maps the order of the atoms in the CDK representation to the order in which

the SMILES string is parsed. SMILES and auxiliary information are serialized

to disk in a byte stream.

4.3 KNIME-CDK’s Functionality

The plug-in includes methods for the generation of two- and three-dimensional

coordinates, atom signatures, common fingerprints, e.g. MACCS and Pubchem

Compound, two- and three-dimensional molecular descriptor values including

XLogP, Lipinski’s Rule of Five, offers chemical name to structure conversion

via the webservice OPSIN [196] and SMARTS or substructure search abilities.

The substructure search features exact stereo and charge matching unique to

the KNIME-CDK implementation. In Figure 4.2 a chemical library is filtered

for molecules containing a phenol group before successive hydrogen acceptor and

donor count while being used for MACCS fingerprint and atom signature gene-
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ration. The out-port view, i.e. the resulting data table, is shown for the Atom

Signatures node.

Figure 4.2: Screenshot of a KNIME-CDK workflow. a) View of the node repository
showing all available nodes. b) Example workflow for descriptor calculation. The
molecule library is read in and filtered for structures containing phenol groups before
counting the number of hydrogen donors and acceptors (lower path). Simultaneously,
MACCS fingerprints and atom signatures are calculated for the atom-filtered molecules
(upper path). c) Example row from the out-port view of the Atom Signatures node
showing the CDK molecule followed by the ChEBI identifier, name, MACCS fingerprint,
atom identifier and corresponding HOSE code.

A part of AMBIT’s [292] functionality – a software for cheminformatic data man-

agement based on CDK – has additionally been added to KNIME-CDK to further

extend its uses. AMBIT’s tautomer generator enumerates tautomeric constitu-

tions in a rule-based fashion [293] and has also been made available as node in

the plug-in: either all viable tautomers or the single best tautomer (measured

in electron volt indicating the energy score) can be generated. This node helps

significantly with molecule library standardization and demonstrates the use of

workflow environments where multiple tools can be pooled together.

4.3.1 Input/Output

The plug-in accepts molecules in CML, SDFile, MDL Mol, InChI, and SMILES

formats [200] via the Molecule to CDK node or directly without explicit conversion.
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The plug-in cell type’s back-end supports adapter values. These adapter values

ensure automatic chemistry cell type conversion between formats. Vice versa,

CDK cell types can be written out using the same mechanisms. From KNIME

version 2.9, the original CDKCell has been replaced with CDKCell2 in the nightly

build and cell creators and converters have been updated accordingly. The origi-

nal data cell implementation is based on a BlobDataCell for large binary objects,

significantly slowing down execution because of disk I/O overhead: blob data cells

are registered and buffered separately within the KNIME framework. The newer

CDKCell2 implementation extends a regular DataCell instead, avoiding unneces-

sary separate cell handling for small objects like SMILES strings.

Alternative ways of molecule input include the structure editor JChemPaint

(Structure Sketcher) and implemented web services that return molecular com-

pounds. The JChemPaint project is not actively maintained at the moment but

the project has been updated to the CDK version used in KNIME-CDK. It is

now maintained alongside the plug-in.

On data input, molecular compounds are standardised. This includes, unless

already present, generation of two dimensional coordinates, perception of atom

types, addition of implicit hydrogens, and detection of aromaticity. This ensures

consistency within the CDK environment independent of the processing functions

applied on a compound. For example, not every node requires aromaticity to be

perceived, opening up the possibility to perceive aromaticity on demand only.

This introduces the possibility of subtle errors that outweigh any gain from omit-

ting resource-consuming steps at chemistry cell type conversion. Additionally,

a two-tier hash code is used for fast molecule comparisons. Given the overhead

of hash code generation, a simple hash code based on just the molecular graph

skeleton of depth eight and assigned charges is generated on read-in for initial

comparison. If two hash codes match in a molecule comparison, a more detailed

’comprehensive’ hash code is calculated for in-depth comparison based addition-

ally on stereo-, isotope-, and radical-information.

CDK cells can be copied as cleaned CML. CDK-specific CML elements from

the internal representation are removed, resulting in XML compliant to CML

specifications. For the nightly build, copy actions result in SMILES copies.
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4.3.2 Processing

Compounds can either be used for property calculations, which are appended

to the cell row, or manipulated directly. If a compound is manipulated, e.g. by

stripping salts, the original compound representation is replaced. For combination

with adapter values for automatic chemistry cell type conversion, if nodes from

different packages are used in direct succession, the following points need to be

noted:

• The original chemistry type does not change unless the chemical compound

changes.

• Property calculations are always based on the chemistry type of the plug-in

which function is applied. This can go unnoticed on the node I/O level.

• If the chemical compound changes, the chemistry type of the current pack-

age is used in the output.

4.3.3 Visualisation

KNIME-CDK adds the CDK renderer to the set of KNIME chemistry render-

ers. The default renderer for chemical compounds in node tables can be cho-

sen in the general preferences. The renderer has been adapted from the basic

CDK renderer to display annotations including radicals, isotope numbers, and

atom identifiers (Figure 4.3). The implemented KNIME-CDK renderer features

improved hydrogen layouts and smoother molecule depictions, i.e. rectangular

bounding boxes have been replaced by oval bounding boxes, removing ragged cor-

ners and displaced bonds. CDK atom colors have been replaced by the popular

Rasmol/Chime CPK color scheme (Corey, Pauling, and later Koltun). Differing

from CPK colors, carbons and hydrogens are colored black and white because of

the default background color used in the KNIME desktop application. The colors

are defined as light grey in the CPK color code.

Substructures can be highlighted using a KNIME-CDK specific approach that

assigns a pre-defined colour directly on to an atom and bond. This information
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(a) KNIME-CDK preferences (b) KNIME-CDK visualisation

Figure 4.3: Overview and demonstration of KNIME-CDK visualisation preferences.
(a) Screenshot of KNIME-CDK’s properties tab. Structures can be drawn in either
aromatic or Kekule form with optional atom numbers on all atoms, or carbon/hydrogen
atoms only. (b) Example visualisation of Gallocatechin (CHEBI:68330). The benzyl
rings are highlighted from an example substructure search using benzole.

is preserved through cycles of disk input and output. It is then globally picked

up by the rendering engine on demand.

The KNIME preference page contains a CDK tab to set global visualisation pref-

erences. Given two- or three-dimensional coordinates, compounds are drawn in

two-dimensional space with optional atom numbers and in either aromatic or

Kekule presentation. Atom numbers can be shown either for all atoms or for

Carbon atoms only. Depending on usage, sequential or canonical numbering can

be selected. E.g. for HOSE code associations, canonical numbering would be pre-

ferred to match atoms to their respective HOSE codes. For visualisation in three

dimensions, a separate 3D Viewer is availabe based on Jmol.

4.4 Evaluation

The KNIME-CDK plug-in was tested using the structurally diverse ChEBI library

with a total of 23,240 manually curated structures [294]. For testing purposes,

the library was used in SDfile format, release 98, because this could arguably
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be considered the most common use case. For comparison, the well-established

RDKit plug-in was used. Using the ChEBI SDfile, consistent input-serialization-

output was tested using round tripping. This test ensures that no information is

lost or altered.

From the 23,240 structures, 22,225 structures (95.6%) could successfully be read

in, marginally less than with the RDKit plug-in (22,482 structures, 96.7%). Not

all molecules could be converted into the CDK representation because some

classes are not supported throughout the node’s read process.

Currently the following groups lack support (examples in brackets, depictions

are listed in the appendix section 5): Coordination entities (CHEBI:16304), ex-

otic atoms (CHEBI:27698), complexed porphyrins (CHEBI:27888), some radical

species (CHEBI:33101, CHEBI:33105), and repeated structures (CHEBI:65304).

The structures were read in 43.0±4.5 seconds compared to 12.0±0.7 seconds (RD-

Kit). Even though the KNIME-CDK plug-in is not as fast as RDKit, which uses

a native C++ implementation, its functionality should be seen as complementary

to other plug-ins available and its speed is still adequate.

The ChemAxon Marvin Extensions Feature, 2.6.3.v0135, was used to create

canonical SMILES from the structures that were loaded with KNIME-CDK and

RDKit. For 2794 (12.6%) structures different SMILES were produced, due to

the fact that different internal representations and the nature of the problem,

inescapably produces variation. This highlights one of the benefits of employing

more than one library for processing and analysis tasks. In addition, KNIME-

CDK offers some unique functionality including various molecular descriptors,

fingerprints, and equivalent class calculation.

For the nightly build of KNIME-CDK, the performance test outlined above was

re-run to demonstrate improvements: The ChEBI library SDfile dump, release

112, was used. From the 27780 structures, KNIME-CDK read 27751, 99.9%,

successfully (RDKit: 26961, 97.1%). The 29 unsupported structures contain

coordination entities (CHEBI:16304), complexed porphyrins (CHEBI:27888), and

structures with variable attachment points (CHEBI:51671). The structures were

read in 6.1 ± 0.9 seconds (CDK) compared to 17.4 ± 0.2 seconds (RDKit). The
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nightly build has improved seven-fold to the current standard release. It supports

a wider range of chemical classes.

QSPR descriptors are essential for any cheminformatics toolkit. Central descrip-

tors such as the calculated partition coefficient (xlogP [295]) and Lipinki’s Rule of

Five [296] descriptor have been validated against a set of ∼1, 500 measured octanol

water partition coefficients (logP) obtained from the TOXNET database [297] and

a subset of ∼ 120, 000 molecules from the ZINC database [298], set ‘Clean Drug-

Like’ (id:13 p0.0), respectively.

The pairwise comparison of the measured and calculated partition coefficients

shows high agreement between the toolkits (Figure 4.4a). For CDK, with sample

size n = 1589, the root-mean-square deviation yields:

RMSD =

√∑n
i=1 (logP − xlogP )2

n
≈ 1.21 (4.1)

The comparison with RDKit’s RMSD of 1.22 shows a minor but insignificant

deviation from CDK’s deviation in calculated partition coefficients. The RMSD

represents the standard deviation and summarises the differences between the

measured and predicted logP values. It is a good statistic to indicate the overall

performance of CDK’s xlogP , which works well in KNIME-CDK when compared

to RDKit’s reference and the measured logP values. A RMSD of 1.21 is good for

on demand calculated logP values but it is large when compared to approaches

that use experimental information [299].

The Lipinki’s Rule of Five comparison shows few rule violations to the reference

set (Table 4.1). A total of 4974 rule violations were detected. 24 violations result

from molecules where the rotatable bond count exceeds seven. This was caused by

amide groups being incorrectly included in the count. The high rotational barrier

of amide C-N bonds disqualify these [300]. The descriptor was modified to explic-

itly ignore amide bonds, resulting in zero rule violations. The remaining 4950

rule violations are caused by ’incorrectly’ calculated logP values (Figure 4.4b).

Most of the violating values are close to the defined boundary value: logP ≤ 5.

The number and magnitude of logP violations can not solely be explained by
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Figure 4.4: Comparison of measured and calculated partition coefficients (logP). (a)
Pairwise comparison of partition coefficients calculated by CDK and RDKit to exper-
imentally measured values (R2

CDK = 0.99, R2
RDKit = 0.99). The 1589 experimental

values were obtained from TOXNET. CDK and RDKit give highly similar distribu-
tions and deviations (RMSD 1.21 and 1.22). The dashed blue line represents perfect
agreement. (b) Boxplots of valid (logP ≤ 5) and invalid (logP > 5) descriptor values.
As expected, the median of the invalid population (n = 4950) is close to the bound-
ary value. Incorrect logP values are believed to result from inherent limitations of the
algorithm.
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Rule Violations

logP ≤ 5 4950

rotatable bonds ≤ 7 0 (24)

H−bond donors ≤ 5 0

H−bond acceptors ≤ 10 0

150 ≤ molecular weight ≤ 500 0

Table 4.1: Table of Lipinki’s Rule of Five violations for the ZINC dataset id:13 p0.0
(134,322 structures) as calculated by KNIME-CDK. The 24 violations of the rotatable
bonds rule result from the inclusion of amide bonds as rotatable bonds. This inclusion
is not desirable due to the prohibitively high rotational energy barrier of amide C-N
bonds.

an approximate RMSD of 1.2, i.e. deviation by 1.2. The few large outliers –

beyond deviation – are believed to result from inherent limits of the algorithm.

Inspection of those outliers and cross-comparison with RDKit’s logP supports this

assumption: both toolkits estimate incorrect values for different subsets. Only

785 molecules have incorrect logP values in CDK and RDKit.

4.4.1 Round Tripping

Round tripping is a technique to evaluate information loss. In cheminformatics,

subtle differences in molecules such as inverted stereochemistry or addition/loss

of hydrogen, can significantly change molecular properties. Correct conversion of

one chemistry format into another is of paramount importance.

KNIME-CDK was tested using the same ChEBI set from the first round of eval-

uation (section 4.4). The SDfile was converted to CDK’s molecule representation

and then to CML. The CML was back-converted to CDK’s representation and fi-

nally to a SDfile. To accommodate for issues during SDfile generation, the SDfile

was read in again and converted to CML through CDK’s representation. The re-

sulting chemical representations were then compared to the original SDfile. This

process helped to find and eliminate format conversion errors.
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4.4.2 Test Workflows

KNIME-CDK uses workflow tests within the KNIME testing framework for qual-

ity assurance. More than a dozen workflows have been created to ensure correct

node behaviour in a variety of contexts, including different input formats, KNIME

table structures, and execution patterns or structures.

The tests reside on the KNIME testing server and are executed nightly. Different

test suits exist following the versioning system outlined in section 4.1. The con-

tinuous integration software Jenkins is used as integration tool checking builds

and test workflows.

4.4.3 Performance and Scalability

The plug-in performs well for tens of thousands of molecules. Whereas most

use-cases involve less than millions of molecules, KNIME-CDK has been tested

with up to 2,709,359 molecules taken from PubChem. Available memory and

the assigned number of threads are the two key limiting factors with regard to

execution speed.

An additional comparison with RDKit and Indigo [301] shows that the plug-in’s

bottleneck is molecule conversion (Figure 4.5a). Calculation or query performance

on converted molecules are comparable to RDKit and Indigo. Conversion to CML

combined with atom typing and aromaticity perception are the primary causes

for slow molecule conversion. Other toolkits use the one-line SMILES notation

that has high information density. However, SMILES notation does not allow

additional molecule information to be stored, a crucial drawback for CDK that

relies on atom types and perceived aromaticity. An additional speed penalty

comes from the used compression method to reduce disk requirements. Using

ChEBI, a seven fold reduction in CML file size is achieved on average during

serialization (14 kB to 2 kB) at the cost of seven seconds.

The bottleneck described above has been overcome in the nightly version of the

plug-in, which explores the advantages of SMILES: current evidence suggests that
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SMILES outperforms CML on the basis of speed and resource requirements. How-

ever, continuous re-perception of aromaticity and atom types – the advantages

of CML – increases the execution time. Increased in-memory execution time ap-

pears preferably over disk IO operations for IO-bound frameworks such as KNIME

(Figure 4.5b). Improvements in the CDK library in combination with improved

KNIME-CDK routines invert the picture seen in the comparison with the stable

builds. The nightly build outperforms RDKit and Indigo integrations.

4.5 Conclusion

KNIME-CDK is a community-driven plug-in with an active user base. The plug-

in is downloaded up to 600 times per month – download statistics are available

from the KNIME website, December 2013. It is actively maintained with efforts

focussing on extending the implemented functionality and improving overall us-

ability by automating standardization tasks. Over the last couple of years, the

underlying methods have been improved dramatically making the plug-in robust

and reliable. Together with improvements in the CDK library, a SMILES-backed

representation of molecular compounds appears to be the future. Molecule nor-

malization, e.g. tautomer selection and pKa calculations, remain dominant chal-

lenges to be addressed by the plug-in and the field of cheminformatics. To this

end, the tautomer generator will be extended and a set of nodes for normalization

will be introduced in the future.

4.6 Software Availability

KNIME-CDK and its JChemPaint, AMBIT, and Jmol dependencies have been

released under the GNU Lesser General Public License version 3. It depends on

the KNIME chemistry types, which are automatically added on installation.
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(b) KNIME execution time comparison: nightly build

Figure 4.5: Comparison of average execution times per molecule by cheminformatics
plug-in. The total time measured equals the sum of the molecule conversion and phenyl
substructure search. (a) CDK version 1.4.4, Indigo version 1.1.13, and RDKit version
2.2.0 were used for the comparison. KNIME-CDK is five fold slower than the other
plug-ins during conversion and as fast as the other plug-ins during substructure search.
Molecule conversion is the bottleneck of KNIME-CDK. (b) Comparison of nightly builds
(CDK version 1.5.1, Indigo version 1.1.13, and RDKit version 2.4.0): KNIME-CDK is
on average four and a half fold faster than the other plug-ins.
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4.6.1 Update Site

The project is part of KNIME’s Community Contributions and hosted on their

servers. It can be installed via the official Community Contributions update sites.

The entry pages are listed below:

• KNIME-CDK: https://bitbucket.org/sbeisken/cdkknime

• KNIME-CDK Support: http://tech.knime.org/community/cdk

• KNIME Update Site:

http://tech.knime.org/update/community-contributions/<version>

4.6.2 Extensions

KNIME-CDK is a community-driven project that develops by improvements on

its core library CDK and feature requests in the KNIME-CDK forum. Node devel-

opment follows the KNIME node development guidelines. Contributions should

be directed to the central KNIME-CDK subversion repository on the KNIME

servers.

• KNIME-CDK Forum: http://tech.knime.org/forum/cdk

4.6.3 Example Workflows

Example workflows illustrating the basics of KNIME-CDK and more advanced

applications, such as R integration and data mining, have been deposited on

MyExperiment [221] under the keyword ‘KNIME-CDK’.

Use cases of workflows using KNIME-CDK include the management and analysis

of chemical libraries through molecular descriptors, conformer analysis via RMSD,

and NMR spectra prediction.

The work has been published in BMC Bioinformatics: Beisken et al.: KNIME-

CDK: Workflow-driven Cheminformatics. BMC Bioinformatics 2013, 14:257.

doi:10.1186/1471-2105-14-257
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CHAPTER 5

Summary and Discussion

Metabolomics is based on analytical technologies that capture data about low

molecular weight compounds. Information contained in the data can be distilled

through careful data processing and analysis. The high chemical diversity, concen-

tration differences, and dynamics of the metabolome complicate this task.

Detailed electronic logbooks have become fashionable in experimental laborato-

ries. The need to additionally capture the complete digital analysis process as well

is becoming a dominant theme in metabolomics. Transparency and reproducibil-

ity are key elements to guarantee scalable research within the science community.

The ability to share and reuse not only data but also workflows or pipelines is

important. Open, ‘copyleft’, licenses form the foundation for data exchange and

boundary-free informatics in metabolomics.

Tandem mass spectrometry systems coupled to liquid chromatography (LC-MSn)

capture detailed metabolomics snapshots of biological samples under controlled

conditions. The resulting data sets are convoluted, noisy, and their fine struc-

ture is dependent on a plethora of parameters and external factors. Full control

over the applied data processing steps is required. Modularity, i.e. the effective

addition or removal of individual functions, extendibility, and visual feedback

are desirable criteria for any processing tool applied to the task of LC-MSn data

exploration and analysis.
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5. SUMMARY AND DISCUSSION

Informatics for LC-MSn Analysis: We created MassCascade, a framework to

rapidly analyse and visualise LC-MSn data. The framework covers all processing

steps from data input to the final generation of the feature matrix. It features

a plug-in for the popular workflow platform KNIME, which integrates comple-

mentary statistical, bio- and cheminformatics functionality that can be used in

combination with MassCascade-KNIME. The plug-in offers a structured approach

to data processing in metabolomics that is accessible to bioinformaticians and ex-

perimental scientists alike.

Developed in collaboration with the Syngenta AG, MassCascade does not aim

to reproduce existing processing tools for LC-MSn data but offers a different

approach following the paradigm of visual programming. Its focus on feature fil-

tering with multiple ways to remove irrelevant features and its rapid applicability

to repetitive processing steps, make it useful for calibration exercises or spectral

fingerprinting.

Knowledge-based Compound Identification: We added an identification and scor-

ing framework to MassCascade that also integrates seamlessly into the workflow

plug-in. The framework enables the generation of reference or spectra libraries

for multiple MS level from reference data. It automatically scores and ranks re-

trieved feature annotations from these reference libraries based on information

aggregated during processing, e.g. from isotopic envelopes and from the putative

structures themselves. The ranked lists of annotations for every feature of interest

simplify metabolite identification.

The metabolites extracted from the study on metabolite ripening demonstrates

the use of the methodology and highlights the importance of fragment infor-

mation. The combination of uni- and multivariate statistics with the ability to

rapidly change back to the processing side and fine-tune the workflow using purely

open tools, guarantees flexibility and transparency that dramatically facilitates

data sharing, e.g. study deposition in the MetaboLights repository or submission

of a Nature Scientific Data manuscript.
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5. SUMMARY AND DISCUSSION

Workflows for Cheminformatics: LC-MSn post-processing relies on cheminfor-

matics for the convenience of handling and visualizing putative metabolites. From

the input of small molecule collections, e.g. from plain files, to the selection of

molecule subsets based on molecular properties or the generation of molecular

formulas from exact molecular masses, cheminformatics has many applications

in the context of metabolomics mass spectrometry. We contributed a cheminfor-

matics plug-in based on the Chemistry Development Kit (CDK) to the workflow

platform that also hosts MassCascade to provide such functionality and facilitate

metabolite identification efforts.

The use cases of the user base exceed far beyond applications in LC-MSn. The

tool is primarily used as solid cheminformatics toolkit. With a broad user base, it

is primarily community driven. Together with our tools and other external plug-

ins, it forms a powerful, consolidated set for applications in the life sciences.

Future work involves fine-tuning and further validation of the implemented meth-

ods. Differences in resolution of mass spectrometers is only one factor that can

have a dramatic impact on data analysis. To provide starting points for data anal-

ysis for different instruments, we aim to establish workflows for these instruments

that may serve as templates.

To improve the metabolite identification pipeline, we will adopt methods to gen-

erate fragmentation spectra (in silico) that also give predicted signal abundances.

As discussed, this is most likely to increase the power of the scoring framework

for annotations from highly similar molecular species.

The KNIME-CDK plug-in evolves continuously together with the CDK core li-

brary. To increase its use, molecule normalisation has been singled out as primary

area for future work. A collection of nodes will be implemented to simplify the

management of sets of molecules.

The high throughput and multivariate data generating nature of metabolomics

experiments requires substantial informatics. It the responsibility of the informat-

ics toolkits to simplify data analysis as far as possible while recording everything

within the processing pipeline. The tools developed and tested here have been

designed to follow these principles. Whereas spectral fingerprinting of biological
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5. SUMMARY AND DISCUSSION

samples is challenging, the major bottleneck in metabolomics is metabolite identi-

fication. The aggregation and rationalisation of information from mass spectrom-

etry experiments in a structured manner enables the generation of ranked lists of

identifications that also reflect confidence. Identifications with certainty are rare

however and require additional evidence only attainable through laboratory work.

Tools that facilitate the complete process and show the complexity of processing

and ambiguity in identification are small steps in the right direction.

Metabolomics is at a junction. While experimental systems are improving, re-

producible metabolite identification is still challenging in metabolomics studies.

This is particularly true for unknown metabolites that have not been recorded

in previous studies. Whereas some instrumental systems can confidently detect

many small molecules from the core metabolism, going beyond that into truly

untargeted metabolomics will depend on the existence of high quality, large-scale

reference databases and informed information aggregation.
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Univariate Statistics for Feature Analysis

The following figures describe the 13 unique features investigated in chapter 3.5.

Univariate statistics for the seven features not discussed in chapter 3.5.3 are shown

after. Pairwise Person’s correlation matrices were built for each genotype with

asymptotic p-values encoded in a three star asterisk representation.
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Figure 1: Univariate statistics for feature 343.296. The scatterplot shows feature abun-
dances grouped by genotype and sorted by harvest date in ascending order with applied
locally weighted smoothing. The boxplots display the median (middle line) and lower
(25%) and upper (75%) percentiles of the abundances. The ROC curves indicate the
binary classification power of the mutant genotypes versus the wild type AC++.
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(a) Univariate statistics for feature 140.006
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(b) Univariate statistics for feature 211.169

Figure 2: Univariate statistics for features 140.006 (a) and 211.169 (b). The scatterplot
shows feature abundances grouped by genotype and sorted by harvest date in ascend-
ing order with applied locally weighted smoothing. The boxplots display the median
(middle line) and lower (25%) and upper (75%) percentiles of the abundances. The
ROC curves indicate the binary classification power of the mutant genotypes versus
the wild type AC++.
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(a) Univariate statistics for feature 232.114
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(b) Univariate statistics for feature 299.183

Figure 3: Univariate statistics for features 232.114 (a) and 299.183 (b). The scatterplot
shows feature abundances grouped by genotype and sorted by harvest date in ascend-
ing order with applied locally weighted smoothing. The boxplots display the median
(middle line) and lower (25%) and upper (75%) percentiles of the abundances. The
ROC curves indicate the binary classification power of the mutant genotypes versus
the wild type AC++.

149



Appendix

−3.00

−1.75

−0.50

0.75

2.00

3.25

4.50

5.75

7.00

0 15 30 45 60 75 90 105
Sample Number

R
el

at
iv

e 
A

bu
nd

an
ce

m/z: 330.009 AC++ CNR NOR RIN

−3.00

−1.75

−0.50

0.75

2.00

3.25

4.50

5.75

7.00

AC++ CNR NOR RIN
Genotype

R
el

at
iv

e 
A

bu
nd

an
ce

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e
(a) Univariate statistics for feature 330.009
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(b) Univariate statistics for feature 125.112

Figure 4: Univariate statistics for features 330.009 (a) and 125.112 (b). The scatterplot
shows feature abundances grouped by genotype and sorted by harvest date in ascend-
ing order with applied locally weighted smoothing. The boxplots display the median
(middle line) and lower (25%) and upper (75%) percentiles of the abundances. The
ROC curves indicate the binary classification power of the mutant genotypes versus
the wild type AC++.
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Figure 5: Pearson’s pairwise correlation matrix for wild type AC++ (a) and mutant
CNR (b). The asymptotic p-values are encoded using asterisks: p ≤ 0.01 = ∗ ∗ ∗,
0.01 < p ≤ 0.05 = ∗. The correlation coefficient ranges from low, R2 ≤ −0.5 (dark
blue), to high, R2 ≥ 0.5 (bright red).
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(a) Pearson’s pairwise correlation matrix for mutant NOR
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Figure 6: Pearson’s pairwise correlation matrix for mutants NOR (a) and RIN (b). The
asymptotic p-values are encoded using asterisks: p ≤ 0.01 = ∗ ∗ ∗, 0.01 < p ≤ 0.05 = ∗.
The correlation coefficient ranges from low, R2 ≤ −0.5 (dark blue), to high, R2 ≥ 0.5
(bright red).
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Identification

Rankings

Name Depiction Score

Frag. Isotope None

L-citrulline* n/a 260 160

Table 1: Metabolite annotation for m/z 176.103 with cumulative scores for no, isotope,
and fragment filtering. Missingness and element filters were always included. The
calculated score does not allow for selective ranking. All structures are highly similar.
*Matching retention time information in the in-house library at 95 seconds.

Name Depiction Score

Frag. Isotope None

trans-4-
hydroxystilbene†

369 251 160

cis-stilbene oxide 369 251 160

MS2 spectrum

Table 2: Metabolite annotations for m/z 197.096 with cumulative scores for no, isotope,
and fragment filtering. Missingness and element filters were always included. The
calculated score does not allow for selective ranking. All structures are highly similar.
†The extracted MS2 spectrum shown at the bottom of the table is dominated by a peak
at 105.033 (putative structure shown).
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Name Depiction Score

Frag. Isotope None

humilixanthin n/a 410 160

Table 3: Metabolite annotations for m/z 327.117 with cumulative scores for no, isotope,
and fragment filtering. Missingness and element filters were included by default.

Molecular Formula Generation

Table 4 lists the 13 features that were singled out for identification. Molecular

formulas were calculated for the charge corrected features within a 0.05 amu mass

tolerance (Table 5). Structures were generated via Molgen using the command

below. The ‘badlist’ is contained in the program and contains forbidden structures

to be discarded when encountered during the deterministic structure generation

process.

mgen.exe <file_in> -cycles 0-2 -ringsize 0-10

-o <file_out> -stop 50 -badlist badlist.sdf

Feature m/z Feature m/z

118.086 197.096

125.112 211.169

130.050 232.114

133.061 299.183

140.011 327.118

176.103 330.009

343.296

Table 4: Extracted features for identification.

Molecular Weight Molecular Formula Molecular Weight Molecular Formula

117.029 CH3N5O2 210.141 CH14N12O

117.033 C6H3N3 210.153 H14N14

117.04 H3N7O 231.056 CH9N7O7

117.043 C4H7NO3 231.058 C2H5N11O3
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Molecular Weight Molecular Formula Molecular Weight Molecular Formula

117.054 C3H7N3O2 231.059 C5H13NO9

117.058 C8H7N 231.06 C6H9N5O5

117.065 C2H7N5O 231.062 C7H5N9O

117.076 CH7N7 231.064 C11H9N3O3

117.079 C5H11NO2 231.068 H9N9O6

117.09 C4H11N3O 231.069 CH5N13O2

117.101 C3H11N5 231.07 C4H13N3O8

117.115 C6H15NO 231.072 C5H9N7O4

117.127 C5H15N3 231.073 C6H5N11

124.06 CH8N4O3 231.074 C9H13NO6

124.064 C6H8N2O 231.076 C10H9N5O2

124.071 H8N6O2 231.08 C15H9N3

124.075 C5H8N4 231.08 H5N15O

124.089 C8H12O 231.081 C3H13N5O7

124.1 C7H12N2 231.083 C4H9N9O3

129.006 C4H3NO4 231.086 C8H13N3O5

129.017 C3H3N3O3 231.087 C9H9N7O

129.021 C8H3NO 231.09 C13H13NO3

129.029 C2H3N5O2 231.093 C2H13N7O6

129.033 C7H3N3 231.094 C3H9N11O2

129.04 CH3N7O 231.097 C7H13N5O4

129.043 C5H7NO3 231.098 C8H9N9

129.051 H3N9 231.101 C12H13N3O2

129.054 C4H7N3O2 231.104 CH13N9O5

129.058 C9H7N 231.105 C2H9N13O

129.065 C3H7N5O 231.108 C6H13N7O3

129.076 C2H7N7 231.112 C11H13N5O

129.079 C6H11NO2 231.115 H13N11O4

129.09 C5H11N3O 231.117 CH9N15

132.003 N6O3 231.119 C5H13N9O2

132.006 C4H4O5 231.123 C10H13N7

132.007 C5N4O 231.13 C4H13N11O

132.017 C3H4N2O4 231.142 C3H13N13

132.018 C4N6 298.129 C13H14N8O

132.021 C8H4O2 298.132 C2H14N14O4

132.028 C2H4N4O3 298.136 C7H14N12O2

132.032 C7H4N2O 298.14 C12H14N10

132.04 CH4N6O2 298.148 C6H14N14O

132.042 C5H8O4 326.061 C10H10N6O7

132.044 C6H4N4 326.062 C11H6N10O3
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Molecular Weight Molecular Formula Molecular Weight Molecular Formula

132.051 H4N8O 326.064 C14H14O9

132.053 C4H8N2O3 326.065 C15H10N4O5

132.058 C9H8O 326.067 C3H14N6O12

132.065 C3H8N4O2 326.068 C4H10N10O8

132.069 C8H8N2 326.07 C5H6N14O4

132.076 C2H8N6O 326.071 C8H14N4O10

132.079 C6H12O3 326.072 C9H10N8O6

132.087 CH8N8 326.074 C10H6N12O2

132.09 C5H12N2O2 326.075 C13H14N2O8

132.094 C10H12 326.076 C14H10N6O4

132.101 C4H12N4O 326.078 C15H6N10

138.975 CHNO7 326.078 C2H14N8O11

138.987 HN3O6 326.08 C3H10N12O7

138.991 C5HNO4 326.082 C7H14N6O9

139.002 C4HN3O3 326.084 C8H10N10O5

139.006 C9HNO 326.085 C9H6N14O

139.012 C2H5NO6 326.086 C12H14N4O7

139.013 C3HN5O2 326.088 C13H10N8O3

139.017 C8HN3 326.089 CH14N10O10

139.023 CH5N3O5 326.091 C2H10N14O6

139.024 C2HN7O 326.093 C6H14N8O8

139.027 C6H5NO3 326.095 C7H10N12O4

139.034 H5N5O4 326.097 C11H14N6O6

139.035 CHN9 326.099 C12H10N10O2

139.038 C5H5N3O2 326.101 H14N12O9

139.042 C10H5N 326.105 C5H14N10O7

139.048 C3H9NO5 326.106 C6H10N14O3

139.049 C4H5N5O 326.109 C10H14N8O5

175.045 C2H5N7O3 326.11 C11H10N12O

175.048 C6H9NO5 326.113 C15H14N6O3

175.049 C7H5N5O 326.116 C4H14N12O6

175.057 CH5N9O2 326.12 C9H14N10O4

175.059 C5H9N3O4 326.121 C10H10N14

175.061 C6H5N7 326.124 C14H14N8O2

175.063 C10H9NO2 326.127 C3H14N14O5

175.068 H5N11O 326.131 C8H14N12O3

175.071 C4H9N5O3 326.135 C13H14N10O

175.075 C9H9N3O 326.142 C7H14N14O2

175.082 C3H9N7O2 326.146 C12H14N12

175.084 C7H13NO4 328.962 C5H3N3O14
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175.086 C8H9N5 328.966 C10H3NO12

175.093 C2H9N9O 328.973 C4H3N5O13

175.096 C6H13N3O3 328.977 C9H3N3O11

175.1 C11H13NO 328.981 C14H3NO9

175.104 CH9N11 328.984 C3H3N7O12

175.107 C5H13N5O2 328.987 C7H7NO14

175.111 C10H13N3 328.988 C8H3N5O10

175.118 C4H13N7O 328.992 C13H3N3O8

175.129 C3H13N9 328.994 CH7N5O15

196.039 C10H4N4O 328.995 C2H3N9O11

196.043 N14 328.998 C6H7N3O13

196.044 C3H8N4O6 328.999 C7H3N7O9

196.046 C4H4N8O2 329.002 C11H7NO11

196.048 C8H8N2O4 329.003 C12H3N5O7

196.05 C9H4N6 329.005 H7N7O14

196.052 C13H8O2 329.006 CH3N11O10

196.056 C2H8N6O5 329.009 C5H7N5O12

196.057 C3H4N10O 329.01 C6H3N9O8

196.058 C6H12O7 329.013 C10H7N3O10

196.06 C7H8N4O3 329.014 C11H3N7O6

196.064 C12H8N2O 329.017 C15H7NO8

196.067 CH8N8O4 329.018 H3N13O9

196.068 C2H4N12 329.019 C3H11N3O15

196.07 C5H12N2O6 329.02 C4H7N7O11

196.071 C6H8N6O2 329.022 C5H3N11O7

196.074 C10H12O4 329.023 C8H11NO13

196.075 C11H8N4 329.024 C9H7N5O9

196.078 H8N10O3 329.026 C10H3N9O5

196.081 C4H12N4O5 329.028 C14H7N3O7

196.082 C5H8N8O 329.03 C15H3N7O3

196.085 C9H12N2O3 329.03 C2H11N5O14

196.089 C14H12O 329.032 C3H7N9O10

196.092 C3H12N6O4 329.033 C4H3N13O6

196.093 C4H8N10 329.034 C7H11N3O12

196.096 C8H12N4O2 329.036 C8H7N7O8

196.1 C13H12N2 329.037 C9H3N11O4

196.103 C2H12N8O3 329.038 C12H11NO10

196.107 C7H12N6O 329.04 C13H7N5O6

196.114 CH12N10O2 329.041 C14H3N9O2

196.118 C6H12N8 329.041 CH11N7O13
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196.126 H12N12O 329.043 C2H7N11O9

210.112 C9H14N4O2 329.044 C3H3N15O5

210.116 C14H14N2 329.046 C6H11N5O11

210.119 C3H14N8O3 329.047 C7H7N9O7

210.123 C8H14N6O 329.048 C8H3N13O3

210.13 C2H14N10O2 329.05 C11H11N3O9

210.134 C7H14N8

Table 5: Molecular formulas calculated from the extracted features within a 0.05 amu
mass window. Incorrect formulas were filtered out using the seven golden rules de-
scribed by Kind et al. [240].
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Unsupported Structures in KNIME-CDK

(a) Cob(II)alamin (CHEBI:16304) (b) Nitrogen dioxide (CHEBI:33101)

(c) Chlorophyll b (CHEBI:2788) (d) Arsanyl (CHEBI:33105)

(e) 14-C-Glycylpeptide (CHEBI:65304) (f) Vanadium (CHEBI:27698)

Figure 7: Examples of chemical classes that lack support in KNIME-CDK. (a)
Coordination entities (CHEBI:16304), (b, d) some radical species (CHEBI:33101,
CHEBI:33105), (c) complexed porphyrins (CHEBI:27888), (e) repeated structures
(CHEBI:65304), and (f) exotic atoms (CHEBI:27698).
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LC-MS Interferents

List of potential interference ions in positive ion mode LC-ESI-MS up to 1000

Da. The list was adapted from Keller et al. [110]. The ion mass, ion type, formula,

and chemical species is provided.

Ion Mass Ion Type Formula or Subunit Species

33.03349 [M+H]+ CH3OH Methanol

42.03383 [M+H]+ CH3CN ACN

59.06037 [M+NH4]+ CH3CN ACN

63.04406 [A1B+H]+ [C2H4O]nH2O PEG

64.01577 [M+Na]+ CH3CN ACN

65.05971 [M2+H]+ CH3OH Methanol

74.06004 [M+H]+ C3H7NO Dimethyl formamide

74.06004 [A1B1+H]+ (CH3CN)n(CH3OH)m Acetonitrile/Methanol

77.05971 [A1B+H]+ [C3H6O]nH2O PPG

79.02121 [M+H]+ C2H6OS DMSO

83.06037 [M2+H]+ CH3CN Acetonitrile

85.02600 [A1B+Na]+ [C2H4O]nH2O PEG

85.05887 [M+H]+ C2D6OS d6-DMSO

88.03931 [A1B1+H]+ (CH3CN)n(HCOOH)m Acetonitrile/Formic Acid

96.04198 [A1B1+Na]+ (CH3CN)n(CH3OH)m Acetonitrile/Methanol

99.04165 [A1B+Na]+ [C3H6O]nH2O PPG

100.07569 [M+H]+ C5H10NO NMP

100.99994 [A1B+K]+ [C2H4O]nH2O PEG

101.00316 [M+Na]+ C2H6OS DMSO

101.08084 [A2B2+H]+ [MeOH]n[H2O]m Methanol/Water

102.05496 [A1B1+H]+ (CH3CN)n(CH3COOH)m Acetonitrile/Acetic Acid

102.12773 [M+H]+ C6H15N TEA

103.95560 [M+H]+ C2H3N ACN

104.99229 [M+Na]+ C2H3O2Na Sodium acetate

105.04232 [M2+Na]+ C2H3N ACN

105.95379 [M+65Cu]+ C2H3N ACN

107.07027 [A2B+H]+ [C2H4O]nH2O PEG

115.01559 [A1B+K]+ [C3H6O]nH2O PPG

115.08659 [A1B1+H]+ (CH3CN)n(C3H7NO)m Acetonitrile/Dimethylformamide

120.04776 [M+CH3CN+H]+ C2H6OS DMSO

122.08117 [M+H]+ C4H11NO3 TRIS

123.06278 [A2B2+Na]+ [MeOH]n[H2O]m Methanol/Water

123.09167 [M+H]+ C7H10N2 DMAP

124.03690 [A1B1+Na]+ (CH3CN)n(CH3COOH)m Acetonitrile/Acetic Acid

129.05222 [A2B+Na]+ [C2H4O]nH2O PEG

130.15903 [M+H]+ C8H19N DIPEA
132.90490 M+ Cs Cs-133

133.10705 [A3B2+H]+ [MeOH]n[H2O]m Methanol/Water

135.10157 [A2B+H]+ [C3H6O]nH2O PPG

137.07431 [M+CH3CN+NH4]+ C2H6OS DMSO

142.02971 [M+CH3CN+Na]+ C2H6OS DMSO

144.17468 [M+H]+ C9H21N TPA

144.98215 [M2+63Cu]+ CH3CN ACN

145.02615 [A2B+K]+ [C2H4O]nH2O PEG

146.06887 [M3+Na]+ CH3CN ACN

146.98034 [M2+65Cu]+ CH3CN ACN
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147.11280 [A2B2+H]+ (CH3CN)n(CH3OH)m Acetonitrile/Methanol

149.02332 [f+H]+ C8H4O3 Pthalic Anhydride

150.12773 [M+H]+ C10H15N Phenyldiethylamine

151.09649 [A3B+H]+ [C2H4O]nH2O PEG

153.13862 [M+H]+ C9H16N2 DBU

155.08900 [A3B2+Na]+ [MeOH]n[H2O]m Methanol/Water

157.03515 [M2+H]+ C2H6OS DMSO

157.08352 [A2B+Na]+ [C3H6O]nH2O PPG

158.96403 [M+Na]+ C2F3O2Na NaTFA

163.03897 [M− CH3OH+H]+ C10H10O4 Dimethyl phthalate

163.13287 [M+H]+ C8H18O3 DGBE

169.09475 [A2B2+Na]+ (CH3CN)n(CH3OH)m Acetonitrile/Methanol

169.11046 [M2+H]+ C2D6OS d6-DMSO

171.00527 [f+Na]+ C8H4O3 Phthalic anhydride

172.03931 [M−H2O+H]+ C10H7NO3 4-HCCA

173.05745 [A2B+K]+ [C3H6O]nH2O PPG

173.07843 [A3B+Na]+ [C2H4O]nH2O PEG

179.01709 [M2+Na]+ C2H6OS DMSO

181.12231 [M+H]+ C11H16O2 BHA

183.08044 [M+H]+ C13H10O DPK

183.14383 [A4B3+H]+ [MeOH]n[H2O]m Methanol/Water

185.11482 [M+Na]+ C8H18O3 GE

186.22163 [M+H]+ C12H27N TBA

189.05237 [A3B+K]+ [C2H4O]nH2O PEG

190.04987 [M+H]+ C10H7NO3 4-HCCA

193.14344 [A3B+H]+ [C3H6O]nH2O PPG

195.06519 [M+H]+ C10H10O4 Dimethyl phthalate

195.12270 [A4B+H]+ [C2H4O]nH2O PEG

203.10425 [M+Na]+ C11H16O2 BHA

205.12578 [A4B3+Na]+ [MeOH]n[H2O]m Methanol/Water

212.03181 [M+Na]+ C10H7NO3 4-HCCA

214.08963 [M+H]+ C10H15NO2S n-BBS

215.12538 [A3B+Na]+ [C3H6O]nH2O PPG

217.10465 [A4B+Na]+ [C2H4O]nH2O PEG

221.18999 [M+H]+ C15H24O BTH

225.19614 [M+H]+ C13H24N2O DCU

228.00575 [M+K]+ C10H7NO3 4-HCCA

231.09932 [A3B+K]+ [C3H6O]nH2O PPG

231.11618 [M+NH4]+ C10H15NO2S n-BBS

233.07858 [A4B+K]+ [C2H4O]nH2O PEG

236.07157 [M+Na]+ C10H15NO2S n-BBS

239.14892 [A5B+H]+ [C2H4O]nH2O PEG

239.22485 [(M.H35Cl)2 − Cl]+ C6H15N TEA.HCl

241.22190 [(M.H37Cl)2 − Cl]+ C6H15N TEA.HCl
242.28423 M+ C16H36N TBA
243.11683 M+ C19H15 Trityl cation

243.17194 [M+Na]+ C15H24O BTH

251.18530 [A4B+H]+ [C3H6O]nH2O PPG

251.20056 [AB1+H]+ [C14H22O][C2H4O]n Triton

257.03103 [M3+Na]+ C2H6OS DMSO

261.13086 [A5B+Na]+ [C2H4O]nH2O PEG

265.21621 [AB1+H]+ [C15H24O][C2H4O]n Triton

267.17197 [M+H]+ C12H27O4P TBP
273.12739 M+ C20H17O MMT

273.16725 [A4B+Na]+ [C3H6O]nH2O PPG

273.18250 [AB1+Na]+ [C14H22O][C2H4O]n Triton
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277.10480 [A5B+K]+ [C2H4O]nH2O PEG

279.09333 [M+H]+ C18H15OP TPO

279.15909 [M+H]+ C16H22O4 Dibutylphthalate

279.22945 [AB1+Na]+ [C14H28O][C2H4O]n Triton, reduced

282.27914 [M+H]+ C18H35NO Oleamide

283.17513 [A6B+H]+ [C2H4O]nH2O PEG

284.29479 [M+H]+ C18H37NO Stearamide

287.19815 [AB1+Na]+ [C15H24O][C2H4O]n Triton

288.25332 [M+H]+ C16H33NO3 n,n-DDA

289.14118 [A4B+K]+ [C3H6O]nH2O PPG

293.24510 [AB1+Na]+ [C15H30O][C2H4O]n Triton, reduced

295.22677 [AB2+H]+ [C14H22O][C2H4O]n Triton

301.14103 [M+Na]+ C16H22O4 Dibutylphthalate

304.26108 [M+Na]+ C18H35NO Oleamide

305.15708 [A6B+Na]+ [C2H4O]nH2O PEG

306.27673 [M+Na]+ C18H37NO Stearamide

309.22717 [A5B+H]+ [C3H6O]nH2O PPG

309.24242 [AB2+H]+ [C15H24O][C2H4O]n Triton

315.25299 [M+H]+ C18H34O4 DBS

317.11497 [M+K]+ C16H22O4 Dibutylphthalate

317.20872 [AB2+Na]+ [C14H22O][C2H4O]n Triton

321.13101 [A6B+K]+ [C2H4O]nH2O PEG

323.25567 [AB2+Na]+ [C14H28O][C2H4O]n Triton, reduced

325.25847 [M2+H]+ C8H18O3 DGBE

327.07807 [M+H]+ C18H15O4P TPP

327.20135 [A7B+H]+ [C2H4O]nH2O PEG

331.20911 [A5B+Na]+ [C3H6O]nH2O PPG

331.22437 [AB2+Na]+ [C15H24O][C2H4O]n Triton
337.11841 [M+H]+; (120Sn+ C13H28O2Sn Tributyl tin formate

337.27132 [AB2+Na]+ [C15H30O][C2H4O]n Triton, reduced

338.34174 [M+H]+ C22H43NO Erucamide

339.25299 [AB3+H]+ [C14H22O][C2H4O]n Triton

347.18305 [A5B+K]+ [C3H6O]nH2O PPG

349.18329 [A7B+Na]+ [C2H4O]nH2O PEG

353.26864 [AB3+H]+ [C15H24O][C2H4O]n Triton

355.06994 [M+H− CH4]+ [C2H6SiO]5 Polysiloxane

355.36829 [M− Cl]+ C22H47N2OCl

360.32368 [M+Na]+ C22H43NO Erucamide

361.23493 [AB3+Na]+ [C14H22O][C2H4O]n Triton

365.15723 [A7B+K]+ [C2H4O]nH2O PEG

367.26903 [A6B+H]+ [C3H6O]nH2O PPG

367.28188 [AB3+Na]+ [C14H28O][C2H4O]n Triton, reduced

368.42508 [M− Cl]+ C25H54NCl BTAC-228

371.10124 [M+H]+ [C2H6SiO]5 Polysiloxane

371.22756 [A8B+H]+ [C2H4O]nH2O PEG

371.31559 [M+H]+ C22H42O4 DEHA

371.31559 [M+H]+ C22H42O4 DOA

375.25058 [AB3+Na]+ [C15H24O][C2H4O]n Triton

379.09246 [M2+H]+ C10H7NO3 4-HCCA

381.29753 [AB3+Na]+ [C15H30O][C2H4O]n Triton, reduced

383.27920 [AB4+H]+ [C14H22O][C2H4O]n Triton

388.12779 [M+NH4]+ [C2H6SiO]5 Polysiloxane

389.25098 [A6B+Na]+ [C3H6O]nH2O PPG

391.28429 [M+H]+ C24H38O4 Diisooctyl phthalate

393.20951 [A8B+Na]+ [C2H4O]nH2O PEG

397.29485 [AB4+H]+ [C15H24O][C2H4O]n Triton
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405.22491 [A6B+K]+ [C3H6O]nH2O PPG

405.26115 [AB4+Na]+ [C14H22O][C2H4O]n Triton

409.18344 [A8B+K]+ [C2H4O]nH2O PEG

411.30810 [AB4+Na]+ [C14H28O][C2H4O]n Triton, reduced

413.26623 [M+Na]+ C24H38O4 Diisooctyl phthalate

415.25378 [A9B+H]+ [C2H4O]nH2O PEG

419.27680 [AB4+Na]+ [C15H24O][C2H4O]n Triton

425.31090 [A7B+H]+ [C3H6O]nH2O PPG

425.32375 [AB4+Na]+ [C15H30O][C2H4O]n Triton, reduced

427.30542 [AB5+H]+ [C14H22O][C2H4O]n Triton

429.08873 [M+H− CH4]+ [C2H6SiO]6 Polysiloxane

429.24017 [M+K]+ C24H38O4 Diisooctyl phthalate

437.23572 [A9B+Na]+ [C2H4O]nH2O PEG

441.01479 [M3+63Cu(I)]+ C10H7NO3 4-HCCA

441.32107 [AB5+H]+ [C15H24O][C2H4O]n Triton

443.01298 [M3+65Cu(I)]+ C10H7NO3 4-HCCA

445.12003 [M+H]+ [C2H6SiO]6 Polysiloxane

447.29284 [M+H]+ [C3H6O]nH2O PPG

449.28736 [AB5+Na]+ [C14H22O][C2H4O]n Triton

449.38500 [M2+H]+ C13H24N2O DCU

453.20966 [A9B+K]+ [C2H4O]nH2O PEG

453.34353 [M+H]+ C24H44N4O4 nylon

454.29278 [M+CH3CN+Na]+ C24H38O4 Diisooctyl phthalate

455.33431 [AB5+Na]+ [C14H28O][C2H4O]n Triton, reduced

459.27999 [A10B+H]+ [C2H4O]nH2O PEG

462.14658 [M+NH4]+ [C2H6SiO]6 Polysiloxane

463.26678 [A7B+K]+ [C3H6O]nH2O PPG

463.30301 [AB5+Na]+ [C15H24O][C2H4O]n Triton

469.34996 [AB5+Na]+ [C15H30O][C2H4O]n Triton, reduced

471.33163 [AB6+H]+ [C14H22O][C2H4O]n Triton

472.28781 [M+H]+ SLPR Peptide

481.26194 [A10B+Na]+ [C2H4O]nH2O PEG

483.35276 [A8B+H]+ [C3H6O]nH2O PPG

485.34728 [AB6+H]+ [C15H24O][C2H4O]n Triton

493.31358 [AB6+Na]+ [C14H22O][C2H4O]n Triton

494.56593 [M− Cl]+ C34H72NCl DPDMA

497.23587 [A10B+K]+ [C2H4O]nH2O PEG

499.36053 [AB6+Na]+ [C14H28O][C2H4O]n Triton, reduced

503.10752 [M+H− CH4]+ [C2H6SiO]7 Polysiloxane

503.30621 [A11B+H]+ [C2H4O]nH2O PEG

505.33471 [A8B+Na]+ [C3H6O]nH2O PPG

507.32923 [AB6+Na]+ [C15H24O][C2H4O]n Triton

513.37618 [AB6+Na]+ [C15H30O][C2H4O]n Triton, reduced

515.33001 [M+H]+ IQVR Peptide

515.35785 [AB7+H]+ [C14H22O][C2H4O]n Triton

515.41286 [M+H]+ C30H58O4S DDTDP

519.13882 [M+H]+ [C2H6SiO]7 Polysiloxane

521.30864 [A8B+K]+ [C3H6O]nH2O PPG

522.59723 [M− Cl]+ C36H76NCl SPDMA

525.28815 [A11B+Na]+ [C2H4O]nH2O PEG

529.37350 [AB7+H]+ [C15H24O][C2H4O]n Triton

531.40777 [M+H]+ C30H58O5S DDTDP

531.47717 [M+H]+ C35H62O3 Irganox

536.16537 [M+NH4]+ [C2H6SiO]7 Polysiloxane

537.33979 [AB7+Na]+ [C14H22O][C2H4O]n Triton

537.87901 [M6 −6 H+3Fe+O]+ C2H4O2 Acetic acid-Fe-O- complex
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541.26209 [A11B+K]+ [C2H4O]nH2O PEG

541.39463 [A9B+H]+ [C3H6O]nH2O PPG

543.38674 [AB7+Na]+ [C14H28O][C2H4O]n Triton, reduced

547.33242 [A12B+H]+ [C2H4O]nH2O PEG

547.40269 [M+H]+ C30H58O6S DDTDP

550.62853 [M− Cl]+ C38H80NCl DSDMA

551.35544 [AB7+Na]+ [C15H24O][C2H4O]n Triton

553.38972 [M+Na]+ C30H58O5S DDTDP

553.45912 [M+Na]+ C35H62O3 Irganox

557.40239 [AB7+Na]+ [C15H30O][C2H4O]n Triton, reduced

559.38406 [AB8+H]+ [C14H22O][C2H4O]n Triton

563.37657 [A9B+Na]+ [C3H6O]nH2O PPG

568.13506 [M3+H]+ C10H7NO3 4-HCCA

569.31437 [A12B+Na]+ [C2H4O]nH2O PEG

571.35622 [M+H]+ VSLPR Peptide

573.39971 [AB8+H]+ [C15H24O][C2H4O]n Triton

577.12631 [M+H− CH4]+ [C2H6SiO]8 Polysiloxane

579.35051 [A9B+K]+ [C3H6O]nH2O PPG

581.36601 [AB8+Na]+ [C14H22O][C2H4O]n Triton

585.28830 [A12B+K]+ [C2H4O]nH2O PEG

587.41296 [AB8+Na]+ [C14H28O][C2H4O]n Triton, reduced

591.35864 [A13B+H]+ [C2H4O]nH2O PEG

593.15761 [M+H]+ [C2H6SiO]8 Polysiloxane

595.38166 [AB8+Na]+ [C15H24O][C2H4O]n Triton

599.43649 [A10B+H]+ [C3H6O]nH2O PPG

601.42861 [AB8+Na]+ [C15H30O][C2H4O]n Triton, reduced

603.41028 [AB9+H]+ [C14H22O][C2H4O]n Triton

606.09149 [M3+K]+ C10H7NO3 4-HCCA

610.18416 [M+NH4]+ [C2H6SiO]8 Polysiloxane

613.34058 [A13B+Na]+ [C2H4O]nH2O PEG

615.40375 [M+H]+ C32H58N2O7S CHAPS

617.42593 [AB9+H]+ [C15H24O][C2H4O]n Triton

621.41844 [A10B+Na]+ [C3H6O]nH2O PPG

621.97291 [M6 −6 H+3Fe+O]+ C3H6O2 Propionic acid Fe-O complex

625.39222 [AB9+Na]+ [C14H22O][C2H4O]n Triton

629.31452 [A13B+K]+ [C2H4O]nH2O PEG

631.43917 [AB9+Na]+ [C14H28O][C2H4O]n Triton, reduced

633.32023 [M+H]+ QTIASN Peptide

635.38485 [A14B+H]+ [C2H4O]nH2O PEG

637.39237 [A10B+K]+ [C3H6O]nH2O PPG

639.40787 [AB9+Na]+ [C15H24O][C2H4O]n Triton

645.45482 [AB9+Na]+ [C15H30O][C2H4O]n Triton, reduced

647.43649 [AB10+H]+ [C14H22O][C2H4O]n Triton

651.14510 [M+H− CH4]+ [C2H6SiO]9 Polysiloxane

657.36680 [A14B+Na]+ [C2H4O]nH2O PEG

657.47836 [A11B+H]+ [C3H6O]nH2O PPG

659.38350 [M+H]+ SGIQVR Peptide

661.45214 [AB10+H]+ [C15H24O][C2H4O]n Triton

667.17640 [M+H]+ [C2H6SiO]9 Polysiloxane

669.41844 [AB10+Na]+ [C14H22O][C2H4O]n Triton

672.40390 [M+H]+ TVSLPR Peptide

672.40390 [M+H]+ TVSLPR Peptide

673.34073 [A14B+K]+ [C2H4O]nH2O PEG

675.46539 [AB10+Na]+ [C14H28O][C2H4O]n Triton, reduced

679.41107 [A15B+H]+ [C2H4O]nH2O PEG

679.46030 [A11B+Na]+ [C3H6O]nH2O PPG
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679.51166 [M+H]+ C36H66N6O6 nylon

683.43409 [AB10+Na]+ [C15H24O][C2H4O]n Triton

684.20295 [M+NH4]+ [C2H6SiO]9 Polysiloxane

689.48104 [AB10+Na]+ [C15H30O][C2H4O]n Triton, reduced

691.46271 [AB11+H]+ [C14H22O][C2H4O]n Triton

695.43424 [A11B+K]+ [C3H6O]nH2O PPG

701.39301 [A15B+Na]+ [C2H4O]nH2O PEG

704.38250 [M+H]+ LDSELK Peptide

705.47836 [AB11+H]+ [C15H24O][C2H4O]n Triton

713.44465 [AB11+Na]+ [C14H22O][C2H4O]n Triton

715.52022 [A12B+H]+ [C3H6O]nH2O PPG

717.36695 [A15B+K]+ [C2H4O]nH2O PEG

719.49160 [AB11+Na]+ [C14H28O][C2H4O]n Triton, reduced

723.43728 [A16B+H]+ [C2H4O]nH2O PEG

725.16390 [M+H− CH4]+ [C2H6SiO]10 Polysiloxane

727.46030 [AB11+Na]+ [C15H24O][C2H4O]n Triton

732.46544 [M+H]+ GLVLIAF Peptide

733.50725 [AB11+Na]+ [C15H30O][C2H4O]n Triton, reduced

735.48892 [AB12+H]+ [C14H22O][C2H4O]n Triton

737.50217 [A12B+Na]+ [C3H6O]nH2O PPG

741.19520 [M+H]+ [C2H6SiO]10 Polysiloxane

742.44979 [M+H]+ GPFPILV Peptide

743.44101 [M+H]+ ATVSLPR Peptide

745.41923 [A16B+Na]+ [C2H4O]nH2O PEG

749.50457 [AB12+H]+ [C15H24O][C2H4O]n Triton

753.47610 [A12B+K]+ [C3H6O]nH2O PPG

757.47087 [AB12+Na]+ [C14H22O][C2H4O]n Triton

758.22175 [M+NH4]+ [C2H6SiO]10 Polysiloxane

758.41553 [M+H]+ PATLNSR Peptide

761.39316 [A16B+K]+ [C2H4O]nH2O PEG

763.51782 [AB12+Na]+ [C14H28O][C2H4O]n Triton, reduced

767.46350 [A17B+H]+ [C2H4O]nH2O PEG

771.48652 [AB12+Na]+ [C15H24O][C2H4O]n Triton

773.56209 [A13B+H]+ [C3H6O]nH2O PPG

777.53347 [AB12+Na]+ [C15H30O][C2H4O]n Triton, reduced

779.51514 [AB13+H]+ [C14H22O][C2H4O]n Triton

789.44544 [A17B+Na]+ [C2H4O]nH2O PEG

793.53079 [AB13+H]+ [C15H24O][C2H4O]n Triton

795.54403 [A13B+Na]+ [C3H6O]nH2O PPG

798.58785 [M2+NH4]+ C24H38O4 Diisooctyl phthalate

801.49708 [AB13+Na]+ [C14H22O][C2H4O]n Triton

802.43051 [M+H]+ LSSPATLN Peptide

803.54324 [M2+Na]+ C24H38O4 Diisooctyl phthalate

804.40978 [M+H]+ SEIDNVK Peptide

805.41626 [M+H]+ SAASLNSR Peptide

805.41938 [A17B+K]+ [C2H4O]nH2O PEG

807.39954 [M+H]+ LAADDFR Peptide

807.54403 [AB13+Na]+ [C14H28O][C2H4O]n Triton, reduced

809.44035 [M+H]+ LASYLDK Peptide

809.48691 [AB10+Na]+ [C18H34O6][C2H4O]n Tween

811.48971 [A18B+H]+ [C2H4O]nH2O PEG

811.51797 [A13B+K]+ [C3H6O]nH2O PPG

815.51273 [AB13+Na]+ [C15H24O][C2H4O]n Triton

819.51718 [M2+K]+ C24H38O4 Diisooctyl phthalate

821.55968 [AB13+Na]+ [C15H30O][C2H4O]n Triton, reduced

823.54135 [AB14+H]+ [C14H22O][C2H4O]n Triton
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824.49887 [M+H]+ PGVVSLPR Peptide

827.42978 [M+H]+ FASFIDK Peptide

827.46214 [M+H]+ PEIQNVK Peptide

831.60395 [A14B+H]+ [C3H6O]nH2O PPG

832.48870 [M+H]+ SISISVAR Peptide

833.47166 [A18B+Na]+ [C2H4O]nH2O PEG

837.55700 [AB14+H]+ [C15H24O][C2H4O]n Triton

839.09742 [M4 −2 H+K+2Na]+ C10H7NO3 4-HCCA

842.50943 [M+H]+ VATVSLPR Peptide

845.10543 [M4 −3 H+4Na]+ C10H7NO3 4-HCCA

845.52330 [AB14+Na]+ [C14H22O][C2H4O]n Triton

848.49886 [M+H]+ AFIDKVR Peptide

849.44559 [A18B+K]+ [C2H4O]nH2O PEG

851.57025 [AB14+Na]+ [C14H28O][C2H4O]n Triton, reduced

853.51313 [AB11+Na]+ [C18H34O6][C2H4O]n Tween

853.58590 [A14B+Na]+ [C3H6O]nH2O PPG

855.07136 [M4 −2 H+Na+2K]+ C10H7NO3 4-HCCA

855.51593 [A19B+H]+ [C2H4O]nH2O PEG

859.53895 [AB14+Na]+ [C15H24O][C2H4O]n Triton

861.07937 [M4 −3 H+3Na+K]+ C10H7NO3 4-HCCA

865.54951 [AB10+Na]+ [C22H42O6][C2H4O]n Tween

865.58590 [AB14+Na]+ [C15H30O][C2H4O]n Triton, reduced

867.08737 [M4 −4 H+5Na]+ C10H7NO3 4-HCCA

867.56757 [AB15+H]+ [C14H22O][C2H4O]n Triton

869.55983 [A14B+K]+ [C3H6O]nH2O PPG

870.54073 [M+H]+ VATVSLPRN−term·methylated Peptide

871.04530 [M4 −2 H+3K]+ C10H7NO3 4-HCCA

871.49959 [M+H]+ QATVSLPR Peptide

874.49926 [M+H]+ SLVNLGGSK Peptide

877.49787 [A19B+Na]+ [C2H4O]nH2O PEG

881.47271 [M+H]+ SLYGLGGSK Peptide

881.58322 [AB15+H]+ [C15H24O][C2H4O]n Triton

883.51485 [M+H]+ RVYVHPI Peptide

889.54951 [AB15+Na]+ [C14H22O][C2H4O]n Triton

889.64582 [A15B+H]+ [C3H6O]nH2O PPG

891.56516 [AB10+Na]+ [C24H44O6][C2H4O]n Tween

893.47181 [A19B+K]+ [C2H4O]nH2O PEG

893.58081 [AB10+Na]+ [C24H46O6][C2H4O]n Tween

895.59646 [AB15+Na]+ [C14H28O][C2H4O]n Triton, reduced

897.53934 [AB12+Na]+ [C18H34O6][C2H4O]n Tween

899.53089 [M+H]+ VQTVSLPR Peptide

899.54214 [A20B+H]+ [C2H4O]nH2O PEG

903.56516 [AB15+Na]+ [C15H24O][C2H4O]n Triton

905.67979 [M+H]+ C48H88N8O8 nylon

906.50434 [M+H]+ NKPGVYTK Peptide

906.50434 [M+H]+ NKPGVYTK Peptide

909.57573 [AB11+Na]+ [C22H42O6][C2H4O]n Tween

909.61211 [AB15+Na]+ [C15H30O][C2H4O]n Triton, reduced

911.59378 [AB16+H]+ [C14H22O][C2H4O]n Triton

911.62776 [A15B+Na]+ [C3H6O]nH2O PPG

917.49920 [M+H]+ RVYVHPF Peptide

921.52409 [A20B+Na]+ [C2H4O]nH2O PEG

925.60943 [AB16+H]+ [C15H24O][C2H4O]n Triton

927.60170 [A15B+K]+ [C3H6O]nH2O PPG

931.51485 [M+H]+ RVYIHPF Peptide

933.57573 [AB16+Na]+ [C14H22O][C2H4O]n Triton
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935.59138 [AB11+Na]+ [C24H44O6][C2H4O]n Tween

937.49802 [A20B+K]+ [C2H4O]nH2O PEG

937.60703 [AB11+Na]+ [C24H46O6][C2H4O]n Tween

939.62268 [AB16+Na]+ [C14H28O][C2H4O]n Triton, reduced

941.56556 [AB13+Na]+ [C18H34O6][C2H4O]n Tween

947.59138 [AB16+Na]+ [C15H24O][C2H4O]n Triton

947.68768 [A16B+H]+ [C3H6O]nH2O PPG

950.47305 [M+H]+ YVNWIQQ Peptide

953.60194 [AB12+Na]+ [C22H42O6][C2H4O]n Tween

953.63833 [AB16+Na]+ [C15H30O][C2H4O]n Triton, reduced

955.62000 [AB17+H]+ [C14H22O][C2H4O]n Triton

969.63565 [AB17+H]+ [C15H24O][C2H4O]n Triton

969.66963 [A16B+Na]+ [C3H6O]nH2O PPG

973.53129 [M+H]+ IEISELNR Peptide

977.60194 [AB17+Na]+ [C14H22O][C2H4O]n Triton

979.50949 [M+H]+ GTSYPDVLK Peptide

979.61759 [AB12+Na]+ [C24H44O6][C2H4O]n Tween

981.63324 [AB12+Na]+ [C24H46O6][C2H4O]n Tween

983.64889 [AB17+Na]+ [C14H28O][C2H4O]n Triton, reduced

985.59177 [AB14+Na]+ [C18H34O6][C2H4O]n Tween

985.64356 [A16B+K]+ [C3H6O]nH2O PPG

991.61759 [AB17+Na]+ [C15H24O][C2H4O]n Triton

994.15551 [M5 −H2O−2 H+3Na]+ C10H7NO3 4-HCCA

995.51966 [M+H]+ IKEWYEK Peptide

997.62816 [AB13+Na]+ [C22H42O6][C2H4O]n Tween

997.66454 [AB17+Na]+ [C15H30O][C2H4O]n Triton, reduced

999.64621 [AB18+H]+ [C14H22O][C2H4O]n Triton
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LC-MS Adducts, Losses, and Replacements

List of potential gains, losses, and replacements in positive ion mode LC-ESI-MS.

The list is adapted from Keller et al. [110]. The exact mass difference, ion type,

reaction, and potential origin of the compound is provided.

Mass Difference Ion type Reaction Origin

14.01565 [A: [C3H6ON]↔ [C2H4ON]]+ C3H6ON −−⇀↽−− C2H4ON acrylamide/iodoacetamide

43.94948442
[
A:79Br↔Cl

]+ 79Br −−⇀↽−− Cl halogen exchange

52.9152631
[
A:79Br↔CN

]+ 79Br −−⇀↽−− CN halogen exchange

77.9105121
[
A:79Br↔H

]+ 79Br −−⇀↽−− H halogen exchange

61.9155971
[
A:79Br↔OH

]+ 79Br −−⇀↽−− OH halogen exchange

45.94743792
[
A:81Br↔Cl

]+ 81Br −−⇀↽−− Cl halogen exchange

54.9132166
[
A:81Br↔CN

]+ 81Br −−⇀↽−− CN halogen exchange

79.9084656
[
A:81Br↔H

]+ 81Br −−⇀↽−− H halogen exchange

63.9135506
[
A:81Br↔OH

]+ 81Br −−⇀↽−− OH halogen exchange

37.989162 [A:2CN↔2COOH]+ 2 CN −−⇀↽−− 2 COOH nitrile compounds

8.96577868 [A:Cl↔CN]+ Cl −−⇀↽−− CN halogen exchange

33.96102768 [A:Cl↔H]+ Cl −−⇀↽−− H halogen exchange

17.96611268 [A:Cl↔OH]+ Cl −−⇀↽−− OH halogen exchange

18.994581 [A:CN↔COO]+ CN −−⇀↽−− COO nitrile compounds

24.995249 [A:CN↔H]+ CN −−⇀↽−− H nitrile compounds

7.00467078 [A:F↔CN]+ F −−⇀↽−− CN halogen exchange

17.99057822 [A:F↔H]+ F −−⇀↽−− H halogen exchange

1.99566322 [A:F↔OH]+ F −−⇀↽−− OH halogen exchange

91.93562072 [A:I↔Cl]+ I −−⇀↽−− Cl halogen exchange

100.9013994 [A:I↔CN]+ I −−⇀↽−− CN halogen exchange

125.8966484 [A:I↔H]+ I −−⇀↽−− H halogen exchange

109.9017334 [A:I↔OH]+ I −−⇀↽−− OH halogen exchange

37.955881
[
A:K+↔H+

]+
K+ −−⇀↽−− H+ salt adduct

20.929332
[
A:K+↔NH+

4

]+
K+ −−⇀↽−− NH4

+ salt adduct

21.981944
[
A:Na+↔H+

]+
Na+ −−⇀↽−− H+ salt adduct

15.973937
[
A:Na+↔K+

]+
Na+ −−⇀↽−− K+ salt adduct

4.955395
[
A:Na+↔NH+

4

]+
Na+ −−⇀↽−− NH4

+ salt adduct

17.026549
[
A:NH+

4 ↔H+
]+

NH4
+ −−⇀↽−− H+ salt adduct

29.97418 [A:NO2↔NH2]+ NO2
−−⇀↽−− NH2 nitro compounds

13.979265 [A:O↔2H]+ O −−⇀↽−− 2 H Oxidation

0.984016 [A:OH↔NH2]+ OH −−⇀↽−− NH2 de-amidation

15.977156 [A:S↔O]+ S −−⇀↽−− O sulfur compounds

28.006148 [A−2N]+ nitrogen loss

63.998286 [A−CH3SOH]+ oxidized methionines

33.021464 [A−NH2OH]+ hydroxamic acids

29.997989 [A−NO]+ nitroso compounds

2.01565 [A±2H]+ double bond formation

31.98983 [A±2O]+ oxygen loss

305.068158 [A±C10O6N3SH15]
+ glutathione+o-water

307.083808 [A±C10O6N3SH17]+ glutathione

289.073243 [A±C10O5N3SH15]
+ glutathione-water

291.095419 [A±C11O8NH17]+ sialic acid

309.105984 [A±C11O9NH19]+ sialic acid
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324.10565 [A±C12O10H20]
+ sucrose-water

342.116215 [A±C12O11H22]
+ sucrose

28.0313 [A±C2H4]+ natural alkane chains

42.04695 [A±C3H6]+ propylation

56.0626 [A±C4H8]+ butylation

146.05791 [A±C6O4H10]+ deoxy-hexose-water

162.052825 [A±C6O5H10]+ hexose-water

164.068475 [A±C6O5H12]+ deoxy-hexose-water

180.06339 [A±C6O6H12]+ hexose

176.03209 [A±C6O6H8]
+ glucuronic acid

194.042655 [A±C6O7H10]+ glucuronic acid

203.079374 [A±C8O5NH13]+ n-acetylhexoseamine

221.089939 [A±C8O6NH15]+ n-acetylhexoseamine

14.01565 [A±CH2]+ methylation

27.994915 [A±CO]+ carbon monoxide

58.00548 [A±CO2CH2]+ ester

43.98983 [A±CO2]+ decarboxylation

42.010565 [A±COCH2]+ acetyl loss/gain

43.005814 [A±CONH]+ acyl amide loss/gain

33.987721 [A±H2S]+ sulfur compounds

97.976897 [A±H3PO4]+ phosphorous compounds

18.010565 [A±H2O]+ water addition/loss

97.967381 [A±H2SO4]+ sulfur compounds

27.010899 [A±HCN]+ nitrile compounds

17.026549 [A±NH3]+ ammonium adduct

15.994915 [A±O]+ oxidation/reduction

31.972071 [A±S]+ sulfur compounds

47.966986 [A±SO]+ sulfur compounds

63.961901 [A±SO2]+ sulfur compounds

79.956816 [A±SO3]+ sulfur compounds

40.0313 [A+(C3H6O−H2O)]+ acetone condensation

58.041865 [A+C3H6O]+ acetone condensation
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Nora C Toussaint, Andreas Moll, Daniel Stöckel, Stefan Nickels, Sabine C Mueller, Hans-Peter Lenhof, and
Oliver Kohlbacher. BALL–biochemical algorithms library 1.3. BMC bioinformatics, 11(1):531, January
2010.

[221] Carole a Goble, Jiten Bhagat, Sergejs Aleksejevs, Don Cruickshank, Danius Michaelides, David Newman,
Mark Borkum, Sean Bechhofer, Marco Roos, Peter Li, and David De Roure. myExperiment: a repository
and social network for the sharing of bioinformatics workflows. Nucleic acids research, 38(Web Server
issue):W677–82, July 2010.

[222] Bernd Jagla, Bernd Wiswedel, and Jean-Yves Coppée. Extending KNIME for next-generation sequencing
data analysis. Bioinformatics (Oxford, England), 27(20):2907–9, October 2011.

[223] Pierre Lindenbaum, Solena Le Scouarnec, Vincent Portero, and Richard Redon. Knime4Bio: a set of
custom nodes for the interpretation of next-generation sequencing data with KNIME. Bioinformatics
(Oxford, England), 27(22):3200–1, November 2011.

182



REFERENCES

[224] Hendrik Strobelt, Enrico Bertini, Joachim Braun, Oliver Deussen, Ulrich Groth, Thomas U Mayer, and
Dorit Merhof. HiTSEE KNIME: a visualization tool for hit selection and analysis in high-throughput
screening experiments for the KNIME platform. BMC bioinformatics, 13 Suppl 8(Suppl 8):S4, January
2012.

[225] KNIME. Konstanz Information Miner - Professional Open-Source Software.

[226] Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind Hovig. Ten Simple Rules for Repro-
ducible Computational Research. PLoS Computational Biology, 9(10):e1003285, October 2013.

[227] Mingshe Zhu, Haiying Zhang, and W Griffith Humphreys. Drug metabolite profiling and identification
by high-resolution mass spectrometry. The Journal of biological chemistry, 286(29):25419–25, July 2011.

[228] Arno Knorr, Aurelien Monge, Markus Stueber, André Stratmann, Daniel Arndt, Elyette Martin, and Pavel
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