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Abstract

The observation of significant cellular heterogeneity between tumours of the same type has
inspired efforts to identify gene expression based signatures representative of this variation.
Large sample size expression datasets have been used to describe discrete clusters of tumour
samples that are intended to represent functionally and clinically divergent tumour subtypes.
While many of these studies have identified reproducible subtypes, the definition of clear
expression-based subtypes in glioma have been particularly elusive. Relating these tumour
subtypes to expression signatures and phenotypes in cancer stem cells has also been difficult.

Set out within this thesis I apply a novel coexpression analysis method to identify inde-
pendent subtypes within independent coexpression modules. These modules relate to intu-
itive biological features enabling module specific variation to be identified independently of
a transcriptome wide subtype. This methodology is used to evaluate established subtypes in
breast ductal carcinoma and glioma. In breast carcinoma the basal, luminal, Her2-enriched
and claudin-low cancer subtypes are replicated revealing functional expression differences
that define each type. In glioma, dominant expression variation presents a grade associated
axis of proneural to mesenchymal expression. This axis is also present within individual
tumours suggesting classification of individual tumours as discrete subtypes should not be
assumed. Analysis of glioma derived stem cell lines similarly reveals distinct proneural and
mesenchymal clusters in both gene expression and chromatin accessibility. These signatures
also unify phenotypes described in previous glioma stem cell analysis. Proneural signature
genes suggest these lines are similar to normal glial progenitor cells while mesenchymal
expression largely relates inflammatory and immune responses.

Differential chromatin accessibility of signatures genes enables the analysis of epige-
netic control of subtype signature transcriptional networks. Complementing subtype anal-
ysis I also compare between glioma derived stem cells and neural stem cells to identify
glioma specific features. Novel methods for ATAC-seq analysis are also described for the
examination of chromatin accessibility. These findings will further assist the translation
of tumour subtypes to the clinic alongside deeper characterisation glioma’s persistent and
heterogeneous cancer stem cell population.
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Chapter 1

Introduction

1.1 Characterising glioma: tumours and stem cells

Central nervous system residing glioma tumours are named after their apparent similarity to
the brain’s normal glial cells. Gliomas are responsible for over 80% of malignant tumours
and 55% of which are classed as the highest grade (glioma grade IV, glioblastoma multi-
forme) [80]. Low grade gliomas have a 5-year survival rate of approximately 59% [238]
while patient survival to 5-years for high grade glioblastoma is a very poor 5% [190]. De-
spite the low overall occurrence of glioma, the impact of diagnosis is devastating for patients
as glioma remains essentially incurable. The infiltrative nature of glioma cells and malig-
nant progression of low grade tumours to high grade tumours causes significant damage in
the brain leading to horrific cognitive deficits. Progress in understanding cancer develop-
ment and progression has led to significant improvements in patient survival time over the
last few decades as knowledge of cancer specific mechanisms and weaknesses are further
exploited to target the disease. The application of genomics approaches to tumour charac-
terisation have supplemented the traditional tumour histological grade as valuable clinical
information. One example of this, brought with ubiquitous DNA sequencing, is a cata-
log of genomic aberrations that are thought to drive neoplastic cell proliferation that have
been thoroughly investigated by projects like the cancer genome atlas (TCGA) [170] and
the COSMIC database [63]. While these genome focused efforts made great strides in de-
scribing candidate transformative mutations, they did little to explain the phenotypic and
histological differences between and within tumour types. In parallel, methods for profiling
gene expression have revealed the transcriptomic diversity found in tumour samples. In an
attempt to reduce the complexity of within tumour type gene expression variation, it was
proposed that individual tumours could be classified into discrete subtypes. It’s hoped that
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these subtypes could be accurately related back to other features like tumour grade, differ-
entiated cell type, survival and response to therapy. While some of these cancer subtype
studies have been a distinct success, a lack of consensus in other cancer types, including
glioma, has become apparent. Resolution of transcriptional diversity and the status of can-
cer subtypes would further assist in the search for neoplastic related mechanisms, treatments
and prognostic information in both glioma and other cancer types.

Glioma stem cells

A subset of cells from glioma tumours capable of expanding in culture and recapitulating the
tumours in vivo have been described as glioma stem cells for their similarity to other normal
stem cell populations sharing multipotent differentiation potential and expression of stem
cell markers like SOX2 and NES. These glioma stem cells do however harbour extensive ge-
netic abnormalities and are able to recapitulate tumours in vivo. In order to prevent tumour
recurrence, suppression of this cellular population is key, initiating a great deal of effort to
characterise the functional properties of these cells, like response to therapeutics and tu-
mourigenic capacity etc. Attempts to translate tumour derived subtype signatures to glioma
stem cell expression data have been hindered by the many differences in cellular content,
microenvironment and degree of differentiation between in vitro culture and tumour tissue.
Although the status of glioma subtypes themselves lack consensus, some studies have iden-
tified subtype-like expression in glioma stem cell cultures, however the relationship between
tumour and cell line signatures is not clear. Resolution of glioma subtype-like expression
may assist in the characterisation of glioma stem cell lines and enable self-renewing explant
cultures to represent the diversity of neoplastic cells found in glioma tumours. Exploitation
of these well characterised glioma stem cell cultures may help screen for drugs that target
particular phenotypes or identify the critical and potential therapeutically targetable features
found in all glioma cells.

Glioma epigenetics

While expression studies provide profiles that present a somewhat representative silhou-
ette of their phenotype, they do not comprehensively explain how gene expression itself is
controlled. Many factors that may modulate transcription such as DNA methylation, his-
tone modification and chromatin structure are united under the term epigenetics. The field
of epigenetics is growing fast with many novel methods in development to study different
aspects of transcriptional control. An important epigenetic mechanism is to regulate the
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physical accessibility of the coding DNA sequence either blocking transcription through
nucleosome dense heterochromatin or through enabling access to gene promotors and other
regulatory features at open euchromatin. A number of methods have been described that
exploit high throughput sequencing to identify regions of open chromatin including DNase-
seq and MNase-seq. A recently described method called ATAC-seq (Assay for transposase-
accessible chromatin using sequencing) has become a popular alternative to many long-
standing methods, however many of the methods and unique biases that are associated with
this new method have not been thoroughly explored. Application of ATAC-seq to charac-
terise glioma stem cells, coupled with gene expression analysis, may also further the clinical
and research potential of these lines.

1.2 An overview glioma cellular diversity

One of the defining characteristics of glioma tumours is the diversity of cell types that com-
pose them. Glioma cells can present the morphology of normal glial cells with oligoden-
drogliomas presenting oligodendrocyte like morphology and astrocytomas presenting astro-
cyte like morphology. Tumours presenting both oligodendrocyte and astrocyte like cells as
well as a significant population of anaplastic cells are known as oligoastrocytomas reflecting
their mixed lineage potential. Astrocytomas are characterised by cells with morphological
similarities to astrocytes and the trauma responsive reactive astrocyte phenotype. Histo-
logical markers for astrocytomas and astrocytes alike include GFAP, YKL-40 (CHI3L1)
and ApoE [223]. Oligodendrogliomas present markers for oligodendrocyte precursor cells
but not mature oligodendrocytes including Olig2, Ng2 (CSPG4), and PDGFRα [221, 236].
Brain tumours are also classified by grade with more aggressive forms of glioma being
assigned a higher grade. The highest grade of glioma, glioblastoma multiforme grade IV
(GBM) presents cells with an immature glial morphology and mostly astrocytic differentia-
tion [158]. In concert with traditional classification processes, other methods of examining
the diversity found in these tumours have exploited molecular biology techniques to iden-
tify key features that differentiate some tumours from others. Genomic aberrations like
1p/19q deletions and loss of function IDH1/2 mutations have played a significant role in
delineating tumours into different groups [53, 217]. Similarly gene expression and epige-
netic data has been exploited to further classify and characterise this intratumoural variation
[30, 198, 270].

The origins of this cellular heterogeneity are the focus of a great amount of research
questioning whether this diversity reflects the cells in which the originating oncogenic trans-
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formations occurred or if the tumour was initiated in a more stem like progenitor cell that
is biased towards differentiation into one lineage in subsequent divisions. The lineage po-
tential of glioma cells mirrors the glial potential of the brain’s resident stem cells with var-
ious glial progenitors possessing variable linage potential including some glial progenitor
cells that are capable of bipotent differentiation into both astrocytes and oligodendrocytes
[210, 214] as well as more restricted progenitors like oligodendrocyte progenitor cells [182].
These progenitor cells persist throughout adulthood along with neural stem cells (NS) im-
plicating them as potential cells of glioma origin [31, 227]. Some glial progenitor cells are
able to differentiate into alternative lineages if induced suggesting significant plasticity in
fate [31, 125]. While glioma cells may capable of differentiating into a diverse range of cell
types, infiltration of glioma cells throughout the central nervous system intermixes cancer
cells with non-neoplastic cells like neurons, microglia and tissues like vasculature adding to
the complexity of cell content found between tumours. Non-neoplastic glia can be recruited
to the tumour and induced to proliferate in a paracrine stimulated manner [4] and lineage
tracing experiments suggest that recruited non-neoplastic cells can gather mutations and be
transformed into another aberrant constituent of the tumour [61].

The location at which the initial neoplastic transformation of a cell occurs is difficult
to define due to the infiltrative nature of these cells. Gliomas typically occur in the cere-
bral hemispheres and many of these proximal to the subventricular zone which is host to a
resident population of adult NS cells [14]. Other central nervous system tumours are also
regionally enriched potentially based on variation in progenitor population or microenviron-
mental signalling [76, 114]. The morphology of tumours arising in different brain regions
suggest that tumours either respond to environmental queues to define their lineage specifi-
cation or these cells adopt the potential lineage of the resident stem cell population before
transformation.

Insights into the initiation of glioma can be found by examining the incidence of glioma
in different age groups. The majority of gliomas occur in adults with the relative risk in-
creasing with age. tumours that arise in younger patients are usually of low grade and
have features that distinguish them from tumours that tend to occur in older patients. Sec-
ondary GBMs that progress from a low to high grade tumour are also more likely to occur in
younger patients. One of the most predictive prognostic features is age of diagnosis, which
may suggest that tumours that emerge early in life are distinct [138]. One explanation for
this is that the functional potential of progenitor cells changes with age. Aged neural pro-
genitor cells were less likely to enter mitosis than their young equivalents but those that did
would divide more often [248]. Another study found that neural progenitors tended towards
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astroglial differentiation compared to neural and oligodendrocyte lineages with increased
age [84]. Other factors like growth factor responsiveness [56] and tumour suppressor ex-
pression [176] suggest the process of ageing has a unique role in the ontogenesis of glioma.

1.2.1 Cancer stem cells

When studying cancer the most notable cells in the tumour microenvironment are those that
are capable of sustaining and recapitulating the tumour. Tissues are formed by a defined
cellular hierarchy with multipotent stem cells giving rise to transient progenitor cells and
eventually terminally differentiated cells. This theoretical framework of a cellular hierarchy
can be transposed from normal neural development with a neural stem (NS) cell at its root,
to a model of tumour development with a oncogenically transformed stem cell at its source
and differentiated cancer cell progeny defining the tumour type (e.g. astrocytoma). The
cells at the root of the tumour hierarchy are often described as cancer stem cells in reference
to normal stem cell populations. The term ’cancer stem cell’ has been used to associate
these cells with various functional properties and origins. Concepts that are related and
often conflated with cancer stem cells include the concept of a cancer initiating cell and the
cancer propagating cell.

The concept of the cancer initiating cell describes the cell in which the initial neoplastic
transformation takes place, for example a NS or glial progenitor cell is a good candidate for
this in glioma. The distinction between cancer stem and cancer propagating cell is that a
cancer stem cell must be able to propagate tumours with differentiated progeny representa-
tive of the parental tumour [136]. It is not fully understood whether glioma cells differentiate
via intermediate progenitor states or directly from a more deeply rooted NS like cell but it
is likely that the relative proportions of cells in different states of differentiation compose a
significant proportion of the intertumoural heterogeneity observed in glioma. A fundamen-
tal property of the cancer stem cell is the ability to self-renew and prevent its own terminal
differentiation. The ability of some glioma cells to dedifferentiate back into a cancer stem
like cell suggests that glioma cells may have greater plasticity than their normal neural
counterparts [65]. This ability to self-renew has enabled the in vitro culture of glioma stem
cells using techniques developed for neural stem cells making them a valuable platform for
exploring glioma biology [5, 42, 85]. Cells capable of forming neurospheres or adherent
growth are also able to recapitulate tumours in vivo [106, 203, 205].

Great efforts have been expended to characterise markers that identify glioma stem cells
(GSC) in attempts to isolate and quantify this subpopulation. Ideally GSC markers target
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stem cell exclusive features like self renewal to ensure the specificity of the marker. Many
of the GSC markers in use were originally identified as markers of NS cells like SOX2,
NANOG, OLIG2, MYC and NES [9, 96, 122, 150, 266]. Further to these transcriptional reg-
ulators, a number of cell surface markers, amenable to cell sorting methods were identified
as GSC markers including CD133, CD44 and L1CAM [6, 96, 155]. The most commonly
used cell surface marker for GSCs is CD133 however variation in presentation of CD133
between different GSC like populations and expression differences suggest it may not be an
ideal GSC marker [7, 157]. Functional variation in GSC biology suggests that there may not
be an ideal marker to identify all GSCs and instead subtypes of GSCs may be better identi-
fied by a panel of markers derived from in vitro cultured cells. As with many stem cell like
populations, the regulation of GCSs is enacted through multiple intrinsic factors including
genetic, epigenetic and metabolic control as well as extrinsic factors like microenvironmen-
tal factors, cell signalling and the immune component.

Through analysis of the common mutations that define the glioma cell we can infer
causative mutational events and peek at the emergent aberrant cellular state. A compre-
hensive survey of these mutations by the cancer genome atlas revealed that deregulation
of the RB, p53, RTK/RAS/PI3K pathways are critical components of the glioma genome
[170]. Further to this 40% of GBMs were found to have mutations in chromatin modify-
ing genes [19]. Some other recurrent mutations in glioma include the receptors EGFR and
PDGFRA alongside IDH1, HDM2, PIK3CA and the established tumour suppressors PTEN,
TP53, CDKN2A, NF1 and RB1 [19, 170]. Some mutations are associated with a particu-
lar tumour expression subtype with NF1 mutations being associated with the mesenchymal
subtype [270] and IDH1 mutations linked to a proneural G-CIMP hypermethylation sub-
type (Glioma-CpG island methylator phenotype) [185]. Gliomas have also been shown to
develop structural rearrangements through chromothripsis and chromoplexy mechanisms
that form neochromosome-like amplifications at enriched genomic breakpoints commonly
amplifying CDK4 and MDM2 [293]. The genetic composition within each tumour may also
show significant variation. One study found that tumours can be separated into mono or
polygenomic tumours composed of cells that could be expanded in spheroid culture and re-
capitulate tumours in vivo [247]. The monogenomic tumours were considered psudodiploid
due to their approximately DNA content, whilst still harbouring landmark GBM mutations.
The polygenomic tumours contained multiple highly aneuploid tumour clones and produced
more aggressive xenotransplanted tumours.

The GSC state is maintained through epigenetic mechanisms via transcriptional regu-
lation and chromatin organisation. Transcription factors that play key roles in the mainte-
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nance and specification of GSCs include c-Myc [277] alongside many transcription factors
that also regulate NS cells like the markers SOX2, OLIG2 and NES [96, 150, 266]. The over-
expression of FOXG1 in GSCs compared to NS cells identified a role for this transcription
factor in glioma for this neural development associated transcription factor [55] which has
subsequently been linked to GSC tumourigenesis in functional studies [269]. Using a net-
work model and ChIP-seq analysis, roles for the neurodevelopmental transcription factors
POU3F2, SOX2, SALL2 and OLIG2 were found in GSCs [252]. Control of transcription
was demonstrated by the Polycomb complex component EZH2 which was shown to phos-
phorylate STAT3 and promote tumourigenesis [121]. Prolific growth causes regions of the
tumour to be isolated from the supply of nutrients like oxygen and glucose. Cancer cells
have been shown to tolerate and exploit their inhospitable environment through a metabolic
shift called the Warburg effect [172]. The increased production of ATP via aerobic glycoly-
sis leads to an accumulation of lactate. One of the consequences of this aberrant metabolic
state is production of reactive oxygen species which increases the risk of further mutations
[186]. Differential regulation of proliferation and migration by the pentose phosphate path-
way induced by these hypoxic conditions suggest that metabolic factors play an crucial role
in GSC regulation [120]. In glioma the role of IDH1 mutations, a key feature in classifying
gliomas [53], in metabolic homeostasis further acts to regulate epigenetics and differenti-
ation. Mutations in IDH1 typically lead to the accumulation of 2-hydroxyglutarate which
inhibits the DNA and histone demethylation activity of TET1 and TET2 [160]. Interestingly
these IDH1 mutations are uniquely found in the proneural subtype of glioma hinting at func-
tional differences between the subtypes. Comprehensive evaluation of metabolic regulation
would help inform on glioma biology but also assist improving culture methods to better
represent conditions in vitro.

Glioma stem cells present and exploit developmental programs reflecting their neural
origins controlled via signalling and gene regulatory pathways. These pathways include
regulation through Notch, BMP, NF-κB, Wnt, TGFβ and cell surface receptors like EGFR,
PDGFRα and MET. The Notch pathway promotes the maintanence of GSC growth as well
as preventing neural differentiation [73, 126]. Activation of the Notch pathway through
diverse routes as been observed in glioma including through transcription factor activity
[112], nitric oxide production and response to radiation [208]. The importance of Notch sig-
nalling in GSCs is demonstrated by reduced neurosphere growth in response to γ-secretase
inhibitors [58]. GSCs resident within the perivascular niche may exploit endothelial cell
Notch ligands to promote self renewal [296]. BMP signalling directs NS cells towards astro-
cyte differentiation [91, 246] which led to suggestions that BMP could be utilised therapeu-
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tically to force GSCs towards terminal differentiation [199]. Differentiation based therapies
my be limited by GSC mechanisms to prevent terminal differentiation like the Gremlin1
mediated inhibition of BMP signalling and p21 [285]. A few studies have described the im-
portance of the NFκB pathway in GSCs either as a response to radiation or TNFα [11, 101].
The Wnt signalling pathway also has regulatory roles in GSC development. Genomic am-
plification of PLAGL2 has the effect of Wnt mediated supression of differentiation in both
NS and GSCs [292]. The proneural transcription factor ASCL1, which is highly expressed
in glioma, was shown to regulate Wnt signalling via the downregulation of the negative Wnt
regulator DKK1 [220].

Genomic amplification of receptor tyrosine kinases EGFR, PDGFRA and MET are a
frequent event in gliomas and heterogeneity of receptor amplification has been observed
between cell populations within the same tumour [240, 254]. Amplification, overexpres-
sion or constitutive activation of these receptors has the effect of promoting proliferation of
GSCs [69, 145]. It has also been suggested that different GSC populations are dependent on
alternative receptor tyrosine kinases for proliferative signalling [69]. Cells treated with an
anti-EGFR therapy reduced their dependence on EGFR promoted proliferation to overex-
press MET leading downstream expression of stem related transcription factors POU5F1,
NANOG and KLF4 [116]. MET overexpression was also shown to promote the resistance
to radiation in GSCs [115]. TGF-β signalling was demonstrated to upregulate SOX2 via
SOX4 promoting GSC stemmness [107]. Moreover, TGF-β inhibition was revealed to se-
lectively target a CD44 high population of GSCs implying heterogeneity in GSC regulation
and populations [3]. Variation in EGFR status was shown to influence a switch between
infiltrative and angiogenic phenotypes [255]. Infiltrative cells typically showed high level
amplification of EGFR alongside higher levels of activated pEGFR. Inhibition of EGFR in
infiltrative cells reduced their ability to invade surrounding tissue and instead activate an an-
giogenic program. This switch to an angiogenic phenotype was accompanied by a selective
pressure for the EGFRvIII variant. These results demonstrate how in vivo tumour evolution
and heterogeneity can lead to phenotypic intratumoural variation.

Mechanisms by which cancer cells evade and suppress the immune mediated clearance
of aberrant cells are a critical hallmark of tumour development. The central nervous sys-
tem has unique immune surveillance mechanisms that interacts with the developing glioma
tumour to modulate disease progression [212]. GSC secreted TGF-β promotes an immuno-
suppressive environment, with macrophages induced to tumour supportive M2 type cells
[283]. Other GSC derived factors that promote M2 macrophage recruitment include pe-
riostin (POSTN) and integrins [295].
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1.2.2 Inter and intratumoural expression variation

Whilst significant attention is paid to glioma by studying GSCs both in vitro and in vivo,
comparable efforts have been made to investigate glioma through analysis of tumour sam-
ples. Traditional methods of tumour classification like tumour grade and cellular differenti-
ation have long been used to provide prognostic and therapeutic information to the clinician
and patient alike. Relatively recent developments improving the high throughput interroga-
tion of gene expression have enabled the production of large sample size tumour expression
datasets. Early studies utilising microarray based platforms have now been extended or re-
placed by RNA sequencing (RNA-seq) based projects and often with associated other data
types pliable for more integrated analysis such as miRNA expression, DNA methylation
and genomic mutation analysis. Projects like the cancer genome atlas have generated a
large amount of tumour analysis data and perhaps more importantly made this data avail-
able online for the scientific community at large [257]. These datasets are produced with
the intent to provide a survey of the variation between different tumour samples.

The variance of expression in tumour samples is often expected to identify discrete clus-
ters of highly similar tumour samples that can be distinguished from other tumour samples.
Identification of these clusters is described under the umbrella term cancer subtype anal-
ysis however, it is often seen as a generic clustering problem tractable with established
machine learning methods. As such a number of methods have been applied to the prob-
lem of identifying and validating discrete clusters of samples in tumour gene expression
data [22, 86, 93, 156, 177, 184, 224, 234, 258]. When these discrete subtypes are estab-
lished correlations with clinical aspects such as response to treatment and patient survival
are investigated with the goal of making these subtype signatures clinically relevant. Clas-
sification of samples on clinical time schedules could then be used as a prognostic tool.

This subtype methodology has been applied to a large number of different tumour types
with varying degrees of success. One of the earliest and perhaps the best example of cancer
subtypes to date is breast ductal carcinoma (BRCA) [194, 195]. These early studies estab-
lished the “intrinsic” BRCA subtypes as well as establishing that “measurements of gene
expression based on total mRNA isolated from such a complex tissue can be interpreted in
terms of the properties of specific cells (e.g., the carcinoma cells)" [194]. The dominant
nature of BRCA-subtype like expression variation emerging from a complex multicellular
background led to many other teams applying the same methodologies to other cancer types
including medulloblastoma [183], renal cell carcinoma [44], epithelial ovarian cancer [256]
and glioma [198, 270]. As the intended purpose of cancer subtypes is to identify transcrip-
tional features of the whole tumour that can be associated with clinical features these studies
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have also largely relied on the assumption that a single tumour sample can be representative
of the whole tumour. For this reason few studies have investigated the degree of expres-
sion variation to be found within individual tumours, i.e. intratumoural variation, by taking
multiple samples from the same tumour.

For glioma different studies have identified slightly different subtype definitions [104,
166]. Phillips et al. initially described three subtypes of high grade glioma termed proneu-
ral, proliferative and mesenchymal [198]. Subsequently using a larger dataset Verhaak et

al. identified four subtypes of high grade glioma, two of which were termed proneural and
mesenchymal due to their similarity to the Phillips et al. equivalent subtypes [270]. The
remaining two Verhaak et al. subtypes were named neural and classical after the functional
annotation of their signature genes.

Combining data from the TCGA’s split glioblastoma and low grade glioma projects a ro-
bust separation of glioma tumours into 3 molecular subtypes defined by consistent genomic
aberrations and epigenomic features [34, 53]. A dominant component of these subtypes
is the mutational status of the IDH1 and IDH2 genes with tumours presenting nonfunc-
tional variants of these genes typically presenting low grade features. These IDH1/2 mutant
tumours are also delineated based on a codeletion of both chromosome arms 1p and 19q
with tumours lacking this codeletion typically presenting mutation of TP53 [53]. The fi-
nal molecular subtype is composed of tumours that present wildtype IDH1/2 gene status,
of which a large proportion are classified as grade IV glioblastomas. This separation of
IDH1/2 wildtype tumours has led to further efforts to characterise the diversity within this
molecular type. Using an integrated co-clustering method, Ceccarelli et al. divided IDH1/2
wildtype tumours into classical-like, mesenchymal-like, PA-lie (Pilocytic Astrocytoma) and
LGm6-GBM types [34]. Of these the PA-like subtype presented the most significant clin-
ical differences with improved survival and lower age of onset whilst other co-clustered
subtypes present a mixture of the Verhaak et al. subtypes with a minimal enrichment of
their namesake classical and mesenchymal subtypes.

The Verhaak et al. subtypes and discrete cluster assumptions have become a promi-
nant methodology in glioblastoma since publication, however the reproducibility of these
subtypes have previously been called into question both statistically through reanalysis
[166] and through the generation of new data relating subtypes to intratumoural variation
[174, 192, 245].

Difficulties with subtype discovery methods can also be found in the classical case of
BRCA. The identification of a novel BRCA subtype, the claudin-low type, was only accom-
plished through co-clustering expression data from murine and human mammary carcinoma
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tissues, independently from the other BRCA subtypes [98]. This claudin-low subtype is
identified experimentally in a separate classification process to the intrinsic BRCA subtypes
suggesting some subtype-like features may be independent and distinct from variation rep-
resenting other subtypes. The noted variation in cellular composition of tumour samples has
influenced the study of tumour transcriptomes in different ways. tumour sample selection
for RNA profiling may consider the cellular composition and reject those that display high
levels of confounding variables like necrosis, or cellular infiltration. These efforts will how-
ever only exclude the most effected samples leaving variable residual levels of of these cells
and processes confounding downstream expression analysis. Similarly variations in other,
less prominent cell types like cancer associated fibroblasts, endothelial vascular derived
cells and non-neoplastic bystander cells will vary from sample to sample. Other factors like
rate of cell division may relate to a genuine tumour subtype but may however be expected
to vary in an intratumoural fashion and thus be confounded by sampling error.

Some informatics methods have been applied to study these potentially critical sources
of variation. Various forms of coexpression clustering has been applied to large sample size
datasets in the past [50, 54, 134, 141, 175, 181, 215, 225]. These methods are typically used
to infer larger interconnected networks consisting of thousands of genes. When applied to
cancer expression data, these coexpression methods frequently identify coexpression net-
works relating to proliferation or immune cell processes suggesting expression analysis can
identify variation in immune cell frequency and rate of cell division between tumour sam-
ples. While coexpression methods are are used during the cancer subtype discovery process,
it is typically leveraged to characterise the functional significance of the subtype clusters
rather than to help define them. Further integration of coexpression methods into the sub-
type discovery process may help deconvolute tumour expression signatures and enable the
identification of more complex independent subtypes.

1.3 Aims for this thesis

The aims of this thesis are to identify common features and sources of both transcriptomic
and epigenetic variation between gliomas, other tumour types, and glioma derived cell lines.
The common components of expression variation shared between glioma and other tumour
types will be explored in the context of cancer subtypes by a novel coexpression clustering
method applicable to a broad range of cancers and datasets. Extending the glioma tumour
analysis, subtype expression profiles in glioma derived stem cell lines (GNS lines) will
be explored and compared to other glioma stem cell datasets. I will also compare GNS
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cells to karyotypically normal NS cells further characterising the differences between the
brain’s resident stem cells and their neoplastic counterparts. Novel analysis and methods
are applied to a recently described method, ATAC-seq, for identifying accessible chromatin
may be exploited to interrogate epigenetic mechanisms relating to GNS and NS functional
variation.



Chapter 2

Methods

2.1 Coexpression methods for cancer subtype analysis

Tumour data collection and classification

Normalised TCGA RNA-seq datasets were acquired from the Broad Institutes GDAC [21].
For the glioma analysis the LGG and GBM datasets were combined using the consensus
genes and quantile normalised. BRCA samples were PAM50 classified using the “genefu”
package in R and the “pam50.robust centroids". Claudin-low samples were identified by
clustering the samples using claudin-low predictor genes [98], 1 - the Pearson’s correlation
and Ward’s linkage (Figure 7.6). Glioma samples were classified using the Verhaak GBM
subtype centroids and associated classification method [270] alongside classification into
glioma molecular subtypes using IDH1/2 gene and 19/19q codeletion status also generated
by the Broad Institute’s GDAC [21].

Correlation Marker Clustering

Correlation marker clustering was performed on the 10,000 most variable genes from each
dataset using one minus the Pearson’s correlation coefficient as the distance metric and the
centroid (UPGMC) linkage method. As the centroid linkage method can produce inver-
sions, the cluster dendrogram is cut with the added condition that all cluster heights for each
feature be below the tree cut height parameter. In this way all subsequent branch merges
during agglomerative clustering inherit the highest cluster merge distance found within the
lower branches. The tree cut parameter for module agglomeration limits used was h ≤
0.2 for all tumour analysis with the exception of the immune cell to mesenchymal signa-
ture comparison in glioma where h ≤ 0.15 was used to discriminate lower-sized and more
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highly correlated features (Table 7.5). Modules that consist of less than 3 genes were also
omitted from further investigation as potentially uninformative aggregations. Z-score values
for modules were calculated by mean centring gene expression values and dividing these by
their standard deviation. The mean z-score value across all transformed module genes was
used to represent that samples module expression value (Module z-score).

Coexpression of modules in different cancer types was determined by calculating the
mean pairwise correlation (MPC) between genes for each cancer type. Module/cancer type
pairs were considered coexpressed if the mean pairwise correlation was above 0.5 (Table
3.1).

Correlation Marker Subclustering

Clustering within coexpression modules was achieved by converting each gene within a fea-
ture into a z or standard score and subtracting the sample mean z-score across all module
genes. This matrix then represents the degree to which each gene or sample varies from the
expected expression level as predicted by the module z-score. From this matrix only genes
and samples with a variance greater than half the mean variance were carried forward to
reduce the dimensionality of the clustering operation. This reduced matrix was clustered
using the Euclidean distance metric and Ward’s linkage. Module subclusters were defined
by cutting the dendrogram at half the maximum branch height to form the dominant sub-
clusters within that module. Genes that are significantly differentially expressed for each
module subcluster are identified using the Welch Two-Sample t-test (p < 0.001) to compare
module-normalised expression between subcluster and non-subcluster samples.

Tumour microarray analysis methods

Intratumoural multi-sample data from Sottoriva et al. was retrieved from ArrayExpress (E-
MTAB-1129). Glioma microarray expression data generated by Phillips et al. [198] was
downloaded from ArrayExpress (E-GEOD-4271) and RMA normalised using the “Affy"
library in R. The data were quantile normalised and low variance probes were removed from
further investigation (Variance ≥ mean variance × 2). The minimum number of probes used
per module was 55 (glioma Interferon/within-Mesenchymal module).

Cluster stability measures

In order to test for stability in established subtype classifications the silhouette method from
the R library "cluster" and the connectivity measure from R library "clValid" was applied
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with standard parameters.

Other analysis

GO term analysis was performed using the R library “GOstats” for each coexpressed module
where all genes included in the correlation matrix were used as the gene universe. Principal
component analysis was completed using the "prcomp" function in R. Pearson’s correlation
and tests for significance of association were calculated using the “cor.test” function in R.
All analysis was performed in “R”.

2.2 Transcriptomic analysis of glioma derived neural stem
cells

RNA sample processing

RNA was extracted with the Trizol method (Invitrogen) followed by treatment with TURBO
DNase (Ambion), further phenol/chloroform extraction and ethanol precipitation. RNA
quality was assessed on the Agilent 2100 Bioanalyzer.

Gene expression profiling

Samples were processed for microarray hybridisation according to the GeneChip whole-
transcript sense target labeling assay (Affymetrix). Briefly, 2 µg of each sample was de-
pleted of ribosomal RNA (RiboMinus, Invitrogen). Double-stranded cDNA was synthesized
using random hexamers tagged with a 5′ T7 primer, and synthesis products were amplified
with T7 RNA polymerase to generate antisense cRNA. Reverse transcription was performed
on the cRNA template using SuperScript III to yield ssDNA, substituting dUTPs for dTTPs,
and cRNA was subsequently degraded via RNase H digestion. cDNA products were then
nicked with uracil DNA glycosylase (UDG) and apurinic/apyrimidinic endonuclease 1 (APE
1) at sites of first-strand dUTP incorporation, followed by biotin labeling with terminal de-
oxynucleotidyl transferase (TdT). Affymetrix Exon Array 1.0 ST arrays were hybridized
for 16 h at 45°C, washed, stained with streptavidin-phycoerythrin (SAPE) conjugate on a
FS450 automated fluidics station, and imaged on a GCS3000 7G scanner (Affymetrix). Fea-
ture extraction was performed using Command Console 3.2.3, and hybridisation quality was
assessed with Expression Console 1.1.2 (Affymetrix).
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Exon Microarray normalisation

Exon arrays were processed using v1.28 of the xps Bioconductor package. Background
correction, quantile normalisation and calculation of probeset expression values from fluo-
rescence data was performed using the Robust Multi-chip Average (RMA) method [108],
and probesets were summarised by median polish in xps. Where a gene was represented
by multiple splice variants, the transcript model having the maximal value was taken as the
dominant isoform.

Microarray and differential expression analysis

Differential analysis of gene expression between GNS versus NS and proneural versus mes-
enchymal samples was completed using the R libraries "limma" and "affy" where the eBayes
function was used for differential expression. GSC microarray expression data generated by
Günther et al [87], Bhatt et al [11] and Lee et al [143] was downloaded from ArrayEx-
press (E-GEOD-23806, E-GEOD-49161 and E-GEOD-4536) and RMA normalised using
the “Affy" library in R. In situations where multiple GSC microarray probes match to a gene
the mean of all probe values was used to represent that gene’s expression. Gene ontology
enrichment analysis was completed using the "GOstats" library in R using the combined
GNS and NS differential gene sets as the gene universe. CMC analysis of GNS data was
accomplished using the same methodology as was used for tumour data in Chapter 1 (3000
most variable genes clustered, tree cut parameter = 0.15). Calculations of z-score values
in GNS CMC modules excluded NS samples for the data mean and standard deviation cal-
culations. Principal component analysis was completed using the "prcomp" function in
R. Pearson’s correlation and tests for significance of assocciation wre calculated using the
“cor.test” function in R.

Centroid based Verhaak et al. subtype classifier

Centroid values for the subtypes defined by Verhaak et al. were matched to genes expression
values in the GNS dataset. For each sample the spearman’s correlation to each subtype
centroid set was calculated and the highest correlation was used to identify that samples’s
subtype as described by Verhaak et al. [270].

Z-score based Verhaak et al. subtype classifier

GNS expression data for Verhaak et al. [270] subtype centroid genes were extracted on a
per subtype basis. Within each subtype each gene is converted into a z-score by subtracting
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the mean expression across all samples and dividing by the standard deviation. For each
sample the average subtype marker z-score is calculated and the highest average subtype
z-score was used to identify that sample’s subtype.

Identification of GNS subtype modules

Associations between these GNS modules and glioma proneural and mesenchymal CMC
modules described in Chapter 2 were found by identifying GNS modules with intersecting
gene sets and a positive correlation to the respective glioma module (≥ 3 shared genes).

2.3 ATAC-seq analysis and its application to GNS and NS
cells

Cell culture and ATAC-seq library preparation

Cell culture and ATAC library preparation was undertaken by H. Bulstrode according to
published protocols [24]. Cells were cultured in identical culture conditions growing as ad-
herent cultures on laminin coated plates in media supplemented with EGF and FGF as has
been described in previously published work [202]. These cells were lysed and the nuclei
were pelleted then suspended in buffer and treated with the Tn5 transposase for 30 minutes.
The DNA was cleaned up using MinElute columns, followed by 12 cycles of PCR am-
plification using NEBNext High Fidelity Master Mix and custom primers with sequencing
adapter sequences as previously specified [24]. The resulting libraries were cleaned up on
MinElute columns once more. These were pooled based on quality control and quantifica-
tion data from Bioanalyser Tapestation and Qubit analysis, then sequenced on the Illumina
HiSeq 2500 (50 bases paired end) (Methods provided by H. Bulstrode).

ATAC-seq analysis

Paired end reads were trimmed for sequencing primers using the tool "Cutadapt" and aligned
to hg19 using Bowtie2 and a maximum fragment length (-X) of 3kb. Aligned reads were
filtered for duplicates and split into two 27bp intervals and adjusted 18bp into the read and
9bp beyond the read to represent the transposase binding site and 9bp replicated region us-
ing an “awk” script. Regions of the genome enriched for transposase loci were identified
using F-seq [17] using both broad and narrow parameters (Narrow: -l 600 -f 28, -t 8. Broad:
-l 2000, -f 28, -t 3.). Broad and narrow peaks were called separately in each library and



18 Methods

merged using samtools merge [146] into combined broad and combined narrow peak sets
and concatenated together into one final set of intervals. Loci that overlapped regions black-
listed for functional genomics analysis by the ENCODE consortium were removed from
further analysis [259]. Transposase binding bias nucleotide frequency was calculated by
selecting 10,000 random paired end reads from two libraries and extracting the reference
sequence +/− 60bp from ends of both paired ends. Nucleotide frequencies were calculated
and visualised using “R". Insert size distributions were extracted using "CollectInsertSize-
Metrics" from Picard tools. For the analysis of insert size bias on accessibility estimates, an
“awk" script was used to filter reads into 40-100bp or 170-230bp insert size sets, converted
to transposase binding site footprints and then used to calculate accessibility estimates per
loci. Transposase access site counts for the final peak loci were generated using bedtools ‘in-
tersect". Loci counts were normalised for GC bias using conditional quantile normalization
[94] and the CQN offsets provided to DESeq2 as the normalisation factors for differential
testing. Loci with adjusted p-values below 0.05 were called as significantly differentially
accessible. PCA plots and heatmaps were generated using CQN normalised data. Data visu-
alised as heatmaps in figures 5.6, 5.8 and 5.10 were clustered using one minus the Pearson’s
correlation coefficient as the distance metric and Ward’s linkage method. Visualisation and
clustering was performed in “R". Predicted nucleosome density was estimated by extracting
reads with insert size of between 180-247bp, 315-473bp or 558-616bp and converting them
into single, double and triple nucleosome intervals of length 150bp centred at 1/2, 1/3 and
1/4 intervals within the mapped read respectively.

Expression comparison to ATAC-seq profile

Genes differentially expressed (adjusted p value < 0.05) between for GNS/NS and proneu-
ral/mesenchymal types were examined in ATAC-seq libraries. Transcription start sites for all
transcripts associated with differential genes were extracted using the R library "biomaRt"
and extended 200bp into the gene body and 1kb upstream. ATAC-seq TBS counts indicating
accessibility were extracted and CQN normalised for all TSS loci and the most accessible
locus for each gene was used to represent the gene’s TSS. The log2 mean CQN normalised
ATAC-seq score for each condition was calculated (i.e. GNS or NS) and converted into a
ratio by dividing the difference between conditions by the overall mean of that gene over the
complete dataset. The regression F-test was used to check for the significance of association
between microarray expression and ATAC-seq accessibility estimates.
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Transcription factor motif analysis

Enrichment of transcription factor motifs in differentially accessible chromatin was accom-
plished using the MEME suite (4.10.2) tool “AME" [169] using sequences extracted from
all merged open chromatin regions as the control sequences. The motif databases used were
“HOCOMOCO version 9", “Jaspar core 2014" and “jolma2013". Motif instances in open
chromatin were found using the MEME suite tool FIMO [83]. For motif frequency counts,
motif loci were merged across strands to avoid counting symmetrical motifs twice. Number
of intersecting motifs with differential loci was calculated using bedtools “intersect". For
TFAPs, strand information was preserved however accessibility estimates were normalised
by subtracting the mean, division by the standard deviation then converted to a motif aver-
age by taking the median normalised accessibility for each bp across all libraries presented
here. TFAPs were extracted using bwtools aggregate [201].





Chapter 3

Coexpression methods for cancer
subtype analysis

3.1 Introduction: The cancer subtype problem

Considerable effort has been made to identify discrete classes or subtypes of tumour samples
based on large sample size gene expression datasets. Once clear subtypes are established,
it is hoped that these divisions relate to clinical or biological features such as cell of origin,
prognosis or the response to treatment, continuing the progress towards personalized ther-
apies. This process has been particularly successful in breast cancer where clear subtypes
with genomic copy number and tumour immunohistological correlates have been shown
to provide prognostic and therapeutic value [48, 207]. Despite these successes, consistent
and reproducible expression derived subtypes have been difficult to define for other tumour
types [104, 127, 166].

A major feature of cancer as an intrinsically complex disorder is the degree of morpho-
logical and transcriptional variation present, both between and within each tumour. Neoplas-
tic growth in the same tissue can lead to tumours resembling different cell types [253] or
presenting varying levels of differentiation. tumour samples are themselves a heterogeneous
mix of cell types including immune cell infiltrates, cancer-associated fibroblasts (CAF) and
vascular endothelial cells alongside the target neoplastic cells. Different populations of
neoplastic cells within a tumour can display distinct differences in molecular features like
genomic mutations [75, 240, 245], expression [192, 245], metastatic ability or response to
therapy [167]. In both breast invasive ductal carcinoma (BRCA) and glioblastoma (GBM),
samples have been separated into discrete subtypes based on consensus hierarchical clus-
tering of gene expression data [29, 270]. For glioma and BRCA tumours the consistent
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definition of subtypes has been problematic with variation between studies [48, 166] but
also new subtypes identified using further datasets [98, 270]. GBM was last divided into
four subtypes named proneural, neural, classical and mesenchymal [270]. Subsequent stud-
ies however suggest that the proneural and mesenchymal classes are most easily reproduced
across studies and that the mesenchymal class is only present in high grade, poor prognosis
tumours [104]. Using an integrative approach Shen et al. found three subtypes that approx-
imately match Verhaak et al.’s proneural, classical and mesenchymal types omitting any
neural-like subtype [234]. Studies using multiple samples from a single tumour [245] and
through the application of single cell transcriptomics [174, 192] have found a diversity of
subtype-like intratumoural variation. Analysis of a combined low and high grade glioma
data set reveals that glioma tumors can largely be split into IDH1/2 wildtype and IDH1/2
mutant types with a further subdivision of IDH1/2 samples into 1p/19q codeletion or those
that typically present a TP53 mutation [34, 53]. In BRCA the definitions of subtypes be-
tween studies also vary. However, a set of consensus signatures has emerged, known as
the intrinsic subtypes, consisting of luminal A/B, Her2-enriched, basal and normal-like sub-
types [242]. The basal subtype was identified with early microarray experiments and tends
to co-occur with the triple-negative receptor subtype [29]. After the initial classifications a
new subtype, Claudin-low, emerged when co-clustering human and mouse expression data
[98].

The lack of consensus between studies is a key concern for the transition of these sub-
types to the clinic. The established methods used for subtype discovery include consensus
hierarchical clustering (CHC) and non-negative matrix factorization (NMF). These meth-
ods are most commonly used to classify tumour samples into a few (≈3-7) discrete cate-
gories of tumours to avoid overfitting the data. Whole transcriptome data representing tens
of thousands of genes is commonly limited to a reduced number of highly variable genes
(≈1000-2000) therefore omitting a significant amount of potentially valuable information.
Identification of the desirable number of clusters is also a somewhat subjective process with
many differing metrics and methods for deciding on the optimum. Different studies using
these and other similar methods in GBM have failed to identify consistent classes other
than the proneural and mesenchymal-like signatures [166] and present differing opinions
on the optimum division of samples in other tumour types [183, 207]. Similarly, multiple
groups present expression-based prognostic signatures that have little overlap or are difficult
to interpret biologically [166]. In this chapter I investigate the transcriptional heterogeneity
and emergence of discrete subtypes in BRCA and glioma tumours through coexpression
analysis.
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3.2 Results

To identify robust subtypes I considered that independent biological features may identify
feature specific subtype-like clusters. As transcriptional variation derived from biologi-
cal features like cell division, niche specific differentiation or stromal cell content can be
thought of as independent features, clusters of tumour samples may present variation rep-
resentative of clinically or developmentally distinct subdivisions. Using the example of
niche specific differentiation, neoplastic growth can present variable differentiation of cells
towards a particular lineage. The level of differentiation as well as non-neoplastic lineage
cell content will vary between tumour samples. Aberrant modulation of the transcriptional
network that guides this differentiation may initiate tumour development or provide evo-
lutionary advantages to the affected cells. This aberrant modulation may take the form of
subtype specific overexpression of a lineage promoting transcription factor or altered ex-
pression of cell signalling components etc. As lineage content varies between tumours,
aberrations or subtype specific variations within the expression network must be identified
relative to the baseline of lineage-associated expression.

3.2.1 Correlation marker clustering: Coexpression analysis for the iden-
tification of independent subtypes

To identify subtype-like modulation of these independent transcriptional features, I devised
a custom coexpression analysis methodology, correlation marker clustering (CMC), to iden-
tify independent components of transcriptional variation representative of biological signa-
tures by aggregating sets of highly correlated genes. By clustering module expression val-
ues relative to the module mean, samples that display consistent variation from the module
mean can be identified as module specific subtypes. As these coexpression modules are in-
dependent from each other, clusters of samples that present module specific variation can be
identified independently in comparison to global transcriptome subtype. To describe this in
different terms, samples can then be assigned to different subtypes based on module specific
variation.

Coexpression modules can be derived using hierarchical clustering using one minus the
Pearson’s correlation as a distance metric, followed by the “cutting” of the aggregated tree
at a defined height or distance. The clustered modules can then be extracted by pruning
away small sized clusters as well as unclustered single genes. The choice of linkage cri-
teria affects the size, expansion and internal consistency of coexpression modules. Two
of the most effective linkage criteria for producing variably sized and highly correlated
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clusters are UPGMA (Unweighted pair-group method with arithmetic mean) and UPGMC
(Unweighted pair-group method centroid mean) [239]. These methods can produce similar
and highly overlapping coexpression modules when their clustering trees are cut at differ-
ent heights. For the purposes of identifying independent subtype coexpression modules,
the desirable characteristics include reliable identification of significant components of the
tumour transcriptome, the association of many genes to related clusters to facilitate mod-
ule subclustering and a reduced number of small and potentially less informative clusters.
As UPGMC linkage is non-monotonically increasing and can produce so called inversions,
where clusters may merge at lower distances than previous merge operations, I add the
additional requirement that all cluster merges for a subcluster must be below the tree cut
height. This requirement avoids the inclusion of relatively uncorrelated clusters that were
previously merged at much higher distances safeguarding the consistency of the module.
Comparing between UPGMA and UPGMC linkage I find that the centroid based UPGMC
linkage produces fewer and larger sized clusters than UPGMA for different tree cut heights
(Figure 3.1). Both linkage methods produced similar clusters after adjusting for distance
differences between methods. Regardless of linkage method choice, consistent module sub-
clusters can be identified in modules derived with both methods.

Fig. 3.1 Comparison of UPGMC (Left) and UPGMA (Right) linkage criteria in test breast
cancer RNA-seqexpression data (10,000 genes by 1026 samples, Log2 FPKM). The cen-
troid based UPGMC finds fewer and larger clusters than UPGMA. The UPGMA clustering
also finds a large number of small clusters (n ≤ 10 genes) increasing the number of clusters
that may be brought forward for intramodule clustering. The distance metric used is one
minus Pearson’s r.
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Since this methodology demands the use of a hard threshold to limit the clustering, a
range of cut off values were tested ranging from 0.1 to 0.5 and examined with a variety of
metrics (Figure 3.2). As the cut off height increases the average number of genes within
a module rises and the average correlation to the module z-score decreases. An ideal cut
off height would include enough genes within each module to enable robust within-module
clustering yet also avoid over expansion of each module to include poorly correlated genes.
An arbitrary cut off height of 0.2 was selected as balance between module size (Average
27 genes) and the mean of the minimum correlation of module genes to its parent module
(r = 0.85). Similarly where tumour subtypes are replicated using average linkage derived
modules (Figure 7.1), a cut off height of 0.45 was used to approximate the size of UPGMC
derived modules and as compromise between module size, gene to module correlation as
well as total number of modules (Figures 3.1 and 7.2).
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Fig. 3.2 Centroid linkage module metrics across a range of cut off heights. Coexpression
modules derived using the UPGMC linkage method are examined using metrics for average
and maximum number of genes per module (Top panel) as well as correlation to module
z-score summarised as the mean (Middle panel) or minimum (Bottom panel) of all module
metrics. The vertical red line indicates the chosen cut off height of 0.2 for UPGMC derived
modules which provides a compromise between module size (average 27 genes) and within
module consistency. Data and clustering were identical to that used in figure 3.1.

In order to cluster samples within modules the expression of genes were normalised as
z-scores and the sample mean z-score was subtracted from the gene z-score values. Af-
ter removing low variance genes and samples, this matrix of distances from the module
mean enables the identification of consistent subtype like variation via hierarchical cluster-
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ing using Euclidian distance and Ward’s method for the linkage. I refer to this combination
of coexpression module extraction via UPGMC linkage, tree cut height limit and module
subclustering as correlation marker clustering (CMC), after the distinct components of tran-
scriptional variation found to be representative of established biological features.

3.2.2 Correlation marker clustering analysis identifies both general
and cancer-specific features in tumour transcriptomes

Correlation marker clustering was applied to RNA-seq data generated by The Cancer Genome
Atlas [257] and preprocessed by the Broad Institute’s Genome Data Analysis Center [21].
The focus was turned initially towards breast invasive ductal carcinoma (BRCA) and glioma,
as these tumour types have been the subjects of substantial subtype analysis. A total of 1026
BRCA samples, and combined low-grade glioma and high-grade glioblastoma multiforme
data into a multi-grade glioma dataset consisting of 468 low-grade and 166 glioblastoma
samples were examined using the CMC methodology. A total of 33 expression modules in
the BRCA dataset and 44 modules in the glioma dataset were identified. To test for sim-
ilarities between the signatures derived for BRCA and glioma, I identified those modules
that showed overlap in their gene sets. Two modules in each dataset consisted of at least 25
genes and shared more than 25% of the larger module’s genes. Taking the intersecting genes
between these modules as consensus features I applied gene ontology (GO) term enrichment
analysis to identify potential functional significance. These two modules were enriched for
GO terms relating to mitosis/cellular division and immune cell function respectively (Tables
7.1 and 7.2). In agreement with this functional association this mitosis-associated feature
contains immunohistological markers of mitotic activity including MKI67 [48, 74, 207]
alongside cell cycle regulators like PLK1, FOXM1, CCNB1 and CDK1. Likewise the im-
mune function-associated module is enriched for markers of immune cells including CD4

[226], CD163 and CD68 [75, 137, 240, 245, 272] alongside complement pathway compo-
nents C1QA,B,C, chemokine receptors CCR1,2,5 and numerous major histocompatibility
complex components. Based on this functional association these modules were labeled as
the consensus mitosis and immune cell modules.

Given the general nature of the processes involved, we hypothesised that the same sig-
natures may also be present in other cancer types. Expression of genes contained in the
consensus modules was investigated in a panel of three additional tumour types including
kidney renal clear cell carcinoma (KIRC), ovarian serous cystadenocarcinoma (OV) and
lung adenocarcinoma (LUAD) retrieved from the Broad Institute’s GDAC [21]. The expres-
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sion of genes in both consensus modules is highly correlated across all examined cancer
types (Table 3.1). Moreover, for all cancer types, samples present a gradient of expression
of these signatures (Figure 3.3). Based on this analysis I propose that these modules repre-
sent biological signatures, which are independent of cancer type, and can be thought of as
transcriptional proxies for variation in proliferation and immune cell infiltration within the
tumour sample.

Next I examined the BRCA and glioma features individually to determine if their genes
are co-expressed in other tumour types (Table 3.1). A notable signature enriched across
multiple tumour types includes a module representative of the Interferon type I response
(STAT1, HERC5,6 and OAS1,2,3,L.). Other signatures were restricted to a given tumour
type, including signatures representative of established cancer subtypes. In BRCA a mod-
ule that contains numerous genes attributed to the luminal subtype [29, 167, 195] is broadly
co-expressed as a gradient of expression where in other cancer types these genes show no
consistent relationship (Figure 3.3). Also found here are a number of glioma-specific mod-
ules including neural-like, oligodendrocyte-like and the glioma proneural subtype (Figure
3.3) [198, 270]. These tumour-specific modules refer to tumour type or niche-specific co-
expression. Many of these genes or cell types have previously been associated with cancer
subtypes. Alongside the identification of broadly continuous signatures, CMC establishes
expression-based proxies for discrete signatures like the presence of Y chromosome gene
expression in male glioma samples. Cancer-specific discrete modules like expression prox-
ies for the ERBB2/Her2 amplicon in BRCA and the CDK4 amplicon in glioma are also
found using CMC (Figure 7.3).

I conclude that the transcriptome of tumour samples can be divided into independent
components through correlation marker clustering. These components can be shared across
tumour types or restricted to a single cancer type. Many modules can be interpreted as
expression-based proxies for biological signatures or processes within each sample, which
can be continuous or discrete in nature. To examine whether disentangling these signatures
can lead to a more robust understanding of expression-based cancer subtypes, I investigated
in detail how our modules relate to previously described subtypes in BRCA and glioma.

3.2.3 Breast ductal carcinoma expression modules allow precise iden-
tification of established tumour subtypes

Previous expression studies agree on the existence of the luminal and basal expression-based
signatures. Other subtypes such as claudin-low, Her2-enriched and the normal type have
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Feature Origin Module Glioma BRCA KIRC OV LUAD
Consensus Mitosis Cellular proliferation / mitosis ✓ ✓ ✓ ✓ ✓
Consensus Immune Immune cell infiltration ✓ ✓ ✓ ✓ ✓
BRCA AP-1 TF ✓ ✓ ✓ ✓ ✓
BRCA Interferon type I response ✓ ✓ ✓ ✓ ✓
BRCA BRCA Luminal feature ✗ ✓ ✗ ✗ ✗
Glioma Glioma Proneural ✓ ✗ ✗ ✗ ✗
Glioma Oligodendrocyte ✓ ✗ ✗ ✗ ✗
Glioma Neural ✓ ✗ ✗ ✗ ✗

Table 3.1 Table of modules discussed detailing if the module is coexpressed in a panel of
five different cancer types. Modules coexpressed in all RNA-seq datasets are presented
in contrast to modules enriched only in one tumour type. A module is considered to be
coexpressed if the module presents high mean pairwise correlation (MPC) (mean r ≥ 0.5).

been reported in individual studies, but have not been reproduced in others [29, 123]. Here I
examine the expression modules to see if these subtypes can be identified and characterised
in more detail. Through CMC analysis, I identified two modules that contain markers for
the established basal or luminal subtypes, including EGFR, FOXC1 and SFRP1 for basal,
and ESR1, FOXA1, GATA3, SPDEF and XBP1 for luminal. These basal and luminal signa-
tures are not present in other cancer types (Glioma, KIRC, OV and LUAD), indicating these
modules are specific to BRCA samples (Table 3.1). These genes also have established roles
in non-metaplastic basal/myoepithelial or luminal progenitor differentiation and cell fate
[10, 23, 37, 113, 168, 262, 276]. To see how the expression levels of modules are related
across tumour samples, I calculated a module score that represents the global expression
level of the module in each sample (z-score). The basal and luminal module scores reveal
two distinct clusters that replicate the distinction between basal and other luminal-like sub-
types using PAM50 classification (Figure 3.4). Curiously, the basal samples did not present
the highest levels of the basal module. In fact, these samples are better distinguished by low
expression of the luminal module rather than high basal module expression (Figure 3.4).
The Her2-enriched samples present a slightly reduced luminal signature compared to the
luminal samples. Samples presenting a claudin-low like signature on average express the
highest levels of the basal module alongside a broad range of luminal module expression.
The claudin-low samples are distinguished from the remaining types by high expression of
both the basal and an additional module composed of genes that have previously been asso-
ciated with the basal type like ZEB1 and EGFR (Figure 3.4b). Taken together these features
broadly support the separation of the luminal, basal and claudin-low subtypes but raise fur-
ther questions regarding the strict delineation, characterisation and unique transcriptional
differences between BRCA subtypes.
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Fig. 3.3 Heatmap visualising coexpression modules derived from cross-cancer, BRCA or
glioma RNA-seq tumour data presented as z-score log2 FPKM expression. The cross-cancer
consensus modules are seen to be co-expressed and present a continuous gradient of expres-
sion in Glioma, BRCA, KIRC, OV, and LUAD tumour types. The luminal feature is only
identified in the BRCA data. The neural-like, oligodendrocyte-like and neural-like features
are only identified in the glioma data. All together these results mirror table 3.1.
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3.2.4 Coexpression module subclusters define established breast can-
cer subtypes and reveal their distinctive transcriptional features

Untangling distinct components of transcriptional variation permits the identification of
clusters within modules. Since marker modules describe independent properties of tumour
samples, these clusters can be directly tied to tumour features. Technically, within-module
clusters are characterised by consistent deviation from the mean module expression (or z-
score) for a subset of samples. Modules are composed of genes highly correlated in expres-
sion, but within these genes, some show up- or downregulation with respect to the module
as a whole for subsets of samples. These sample subsets can be identified as a functionally
distinct subcluster, along with the genes that distinguish them from other subclusters. In a
sense these subclusters can be described as module dependent subtypes.

I find that subclusters within multiple modules replicate the established PAM50 basal,
Her2-enriched and claudin-low classifications of these samples (Figure 3.5, Table 3.2).
PAM50 basal classified samples are replicated by a subcluster in the basal module, Her2-
enriched as within the luminal module and claudin-low samples are replicated in subclus-
ters within an additional stromal-like module. We define these subclusters as the basal,
Her2-enriched and claudin-low subclusters respectively. Other modules are divided into
subclusters that are independent of PAM50 classification that reveal module-specific differ-
ences without significantly intersecting PAM50 classification. By comparing module gene
expression relative to the overall module expression the genes that distinguish subclusters
can be identified (module normalised expression, MNE).

Applying this methodology to the basal subcluster identifies the genes that distinguish
these samples. Specifically, the basal subcluster is most distinctly characterised by unusu-
ally high expression of FOXC1 (p = 4.54× 10−51, MNE) (Figure 3.6) [216]. It is impor-
tant to note that it is not the direct expression level of these genes that distinguishes the
basal subcluster. Indeed, the other cluster consisting of mostly luminal and Her2-Enriched
subtypes shows a full range of expression of FOXC1. However, expression of FOXC1

in these samples broadly follows the expression of the basal module, whereas the basal
subcluster presents higher levels of expression than would be expected for a gene in the
module. Similarly, the basal subcluster was found to overexpress other established basal
markers including SFRP1 (p = 1.68× 10−24, MNE), GABRP (p = 1.85× 10−41, MNE),
SOX10 (p = 1.57×10−14, MNE) and KRT6B (p = 3.24×10−18, MNE) relative to the basal
module alongside novel associations of ROPN1 (p = 3.07× 10−55, MNE), ROPN1B (p =
1.03× 10−29, MNE) and RGMA (p = 2.86× 10−35, MNE) (Figure 3.5). These findings
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re-enforce the significance of FOXC1 and SFRP1 (Figures 3.6 and 7.4) in the etiology of
basal-like breast cancer but establishes that it is not the absolute expression level of these
genes that characterises divergent cancer samples, but rather their aberrant expression rel-
ative to similar genes in a minority of samples. This comparison to the module expression
level is reflective of heterogeneous cellular content of tumour samples where canonically
non-basal samples are expected to have some basal-like cell content.

Claudin-low like samples are identified as a subcluster within a module enriched for stro-
mal associated genes including multiple collagens and matrix metalloproteinases (Stromal-
atypical subcluster). These samples express low levels of COL10A1 (p = 2.41× 10−60,
MNE), COL11A1 (p = 8.64× 10−34, MNE), MMP11 (p = 1.40× 10−74, MNE) and PPA-

PDC1A (p = 2.97× 10−31, MNE) compared to their module mean (Figure 3.7, Table 7.3).
Many of the samples classified as the Normal-type are comparatively re-classified as mem-
bers of the Stromal-atypical subcluster (24/34 samples) suggesting similarity between these
two signatures.

A subcluster within the luminal module is similar to the Her2-enriched subtype but
is instead distinguished based on the loss or retention of particular luminal transcriptional
regulators. The luminal module divides the samples into three clusters the smallest of which
largely consists of samples classified as Her-2 enriched using the PAM50 centroids (50/81,
Her2-enriched samples) [29]. We found that while 35/81 subcluster samples were labeled
as Her2 receptor positive these samples were best distinguished by retention of SPDEF

(p = 5.29× 10−28, MNE) and FOXA1 (p = 4.33× 10−33, MNE) expression (Figure 7.5)
alongside progressive loss of ESR1 expression (p = 2.50× 10−18, MNE) (Figures 3.8 and
7.5, 37/81 are also ER receptor negative). As many of these samples display broad range
of ESR1 expression it is possible that these tumours have progressed from an early luminal-
type towards a Her2-like signature.

Here I show that established BRCA subtypes can be replicated and rephrased using
CMC coexpression analysis and intra-module CMC subclustering. Module-based analy-
sis of cancer types can provide more precise distinctions between clusters of samples and
pinpoint the miss regulated genes characteristic of different types. Expression of basal-
associated genes is not confined to basal samples and coexpression of these genes can be
demonstrated in luminal samples. The basal, claudin-low and Her2-enriched-like samples
are identified as distinct from the otherwise indistinct remaining luminal-like BRCA sam-
ples by variation within independent features. The basal subtype is best characterised by low
expression of luminal genes and relatively high expression of a subset of established basal
marker genes with FOXC1 as exemplary. Her2-enriched-like samples are characterised by
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the loss of ESR1 and retention of luminal markers like FOXA1 and SPDEF. Variation in
these modules may be either inter or intratumoural in origin.
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PAM50 subtype Basal Claudin-low Her2-enriched Luminal A Luminal B
Intersection (% of subcluster) 95 99 62 65 43
Intersection (% of subtype) 90 89 91 69 55
Subcluster module Basal Stromal-like Luminal BRCA 28 Basal

Table 3.2 Table showing the intersection of CMC subclusters with established
PAM50/claudin-low classification. Both basal and claudin-low show comparable subtype
and subcluster classification (between 89% and 99%). A CMC subcluster intersects 91%
of samples classified as Her2-enriched yet Her2-enriched samples compose only 62% of
CMC subcluster samples suggesting the Her2-enriched PAM50 classification may misiden-
tify many samples. The distinction between the luminal A and B PAM50 subtypes is not
well defined by CMC subclustering with relatively poor intersected sample sets.

Fig. 3.6 Basal module versus FOXC1 expression showing basal module expression variation
in luminal samples and significantly higher than expected FOXC1 expression in the basal
samples (p = 4.54×10−51, MNE). While basal samples do express high levels of FOXC1,
these samples are better distinguished by high FOXC1 expression relative to other basal
module genes. Colours indicate PAM50/claudin-low classification. Units are log2 FPKM
for the y axis and z-score normalised log2 FPKM on the x axis.
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Fig. 3.8 Expression of FOXA1 and ESR1 distinguish Her2-enriched samples. Low expres-
sion or genomic loss of ESR1 (p = 2.50× 10−18, MNE) and retention of luminal subtype
level expression of FOXA1 (p = 4.33× 10−33, MNE) characterises the Her2-enriched sub-
type more accurately than Her2 amplification (35/81 samples Her2 receptor positive). Units
are log2 FPKM. Colours indicate PAM50 classification.

3.2.5 Glioma specific signatures identify components of intratumoural
variation including a Proneural to Mesenchymal axis

Having established that CMC module subclustering can replicate and expand upon estab-
lished BRCA subtypes I considered if these methods may help resolve the lack of subtype
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consistency in glioma [166]. Applying CMC to glioma, numerous glioma or brain specific
modules that are not reproduced in other cancer types (Figure 1) including mature neural
and oligodendrocyte like expression signatures are identified. Alongside these I find mod-
ules enriched for genes previously associated with the proneural and mesenchymal subtypes
[198, 270]. The proneural module was identified by the expression of common Proneural
marker genes including OLIG1/2, BCAN, and DLL3 (26% shared genes with Verhaak cen-
troids, Table 7.4). The mesenchymal module was likewise identified with expression of
CHI3L1/2, CD44 and CEBPB (57% shared genes with Verhaak centroids, Table 7.4).

The proneural and mesenchymal modules are anti-correlated to each other (Figure 3.9,
Pearson’s r = 0.89, p < 2.2× 10−16) as well as being highly correlated to the second prin-
cipal component of the same data (proneural to PC1 Pearson’s r = -0.98, p < 2.2× 10−16)
(Figure 3.9). The anti-correlated proneural and mesenchymal features combine to compose
a dominant axis of proneural to mesenchymal expression. Samples previously classified by
Verhaak et al. [270] as discrete subtypes are distributed along this proneural to mesenchy-
mal axis without discrete separation into distinct subtypes (Figure 3.9). In comparison to
BRCA tumours, subclusters within any of the glioma modules do not replicate any of the
four Verhaak et al. [270] subtype clusters (Table 3.3).
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Verhaak subtype Proneural Mesenchymal Classical Neural
Intersection (% of subcluster) 78 61 35 71
Intersection (% of subtype) 70 44 66 27
Subcluster module Neural-like Neural-like Glioma 14 Glioma 20

Table 3.3 Table showing the intersection of CMC subclusters with Verhaak et al. classifi-
cation. Poor intersection of subclusters with Verhaak et al. subtypes indicate a potential
instability of Verhaak et al. and CMC subtypes relative to subtype/subcluster assignments
in BRCA (Table 3.2).

In comparison to the Verhaak et al. subtypes, the intersection between CMC subclusters
and the recently described IDH/codeletion molecular subtypes [30, 34] of glioma is more
consistent (Table 3.4). Replication of the IDHwt molecular subtype is relatively strong
compared to the Verhaak et al. subtypes with 88% of subtype and subcluster samples over-
lapping. The overlap for the IDH mutant subtypes is comparatively poor to the IDHwt sub-
type however the high intersection of the subcluster in non-codeletion (96%) and subtype
intersection in the 1p/19q codeletion subtype (99%) indicates a consistent segregation of
subtypes and subclusters. This suggests further substructure within the module-normalised
data that is not captured by a single division of the module into k clusters. This may be due
to the lack of extreme subtype differences for each module subcluster in glioma. In com-
parison the BRCA basal subtype can be robustly identified due to the consistent expression
of basal-like genes as a coexpression module in all samples yet present aberrant expression
of FOXC1 within the basal subtype. Investigation of this within-module substructure, with
robust subcluster extraction to more powerfully identify subtle expression differences, may
be the focus of future work with these coexpression methods.

Comparing IDH/codeletion molecular subtypes to the Verhaak et al. classifications I find
that proneural subtypes are most frequently IDH1/2 mutants (96% of proneural samples)
where the majority of mesenchymal (73%) and classical (99%) tumours are IDH wild type
(Table 3.5). Only the classical type is highly segregated into the single IDH/codel molecular
subtype that lacks mutations in either IDH1 or IDH2. In order to test the robustness of both
subtype classifications in the TCGA RNA-seq dataset, the silhouette and connectivity tests
were applied. The silhouette test asks to what degree of confidence can we assign to the clus-
ter identity of each observation with values increasing towards 1 indicating better clustering
performance. Applying this test finds the IDH/codeletion subtypes have the highest average
silhouette width at 0.08 compared to 0.06 in the Verhaak et al. subtypes. The minimum
silhouette width for the IDH/codeletion subtypes was 0.05 for the IDH/non-codel subtype
yet in the Verhaak et al. subtypes, the Mesenchymal subtype presents a negative minimum
silhouette width. The connectivity test determines to what extent observations are placed in
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the same subtype as their nearest samples in the dataset where lower values suggest a better
partitioning. For the IDH/codeletion subtypes the connectivity test gives a value of 141.2
in comparison to 465.5 for the Verhaak et al. subtypes. Therefore overall in both tests the
IDH/codeletion subtypes presented the most robust separation compared to the Verhaak et

al. subtypes suggesting this classification is more reflective of the transcriptional diversity
found in this combined high and low-grade glioma dataset.

Molecular subtype IHDwt IDHmut non-codel IDHmut codel
Intersection (% of subcluster) 88 96 46
Intersection (% of subtype) 88 48 99
Subcluster module Glioma 32 Mesenchymal Glioma 14

Table 3.4 Table showing the intersection of CMC subclusters with IDH/codeletion molec-
ular subtypes [30, 34]. These intersections are greatly improved in comparison to Verhaak
et al. subtypes (Table 3.3) suggesting an improved consensus between IDH/codeletion
molecular subtypes and CMC analysis. Incomplete intersection of subclusters with
IDH/codeletion molecular subtypes [30, 34] may indicate inadequately subclustered struc-
ture in the CMC analysis.

IDHwt IDHmut non-codel IDHmut codel Total
Proneural 11 (3.9) 148 (51.9) 126 (44.2) 285
Mesenchymal 117 (72.7) 40 (24.8) 4 (2.5) 161
Classical 74 (98.7) 1 (1.3) 0 (0) 75
Neural 28 (28.9) 44 (45.4) 25 (25.8) 97
Total 230 233 155 618

Table 3.5 Table showing the intersection of IDH/codel molecular subtypes with the Verhaak
et al. classifications. Samples classified as the classical type are typically IDHwt tumours.
Similarly IDH1/2 mutant tumours are most commonly classified as members of the proneu-
ral subtype. Percentage of each molecular subtype per Verhaak et al. subtype shown in
brackets.

The mesenchymal module includes many genes identified in the cross-cancer consen-
sus immune and interferon response modules. Lowering the cut-off parameter for mod-
ule clustering to 0.15 from 0.2 allows for the separation of interferon, immune cell and
mesenchymal-like modules highlighting the interplay between interferon signature, immune
response and mesenchymal subtype expression (Table 7.5). Comparing these reduced mes-
enchymal and immune cell modules separates mesenchymal and classical samples with
classical samples showing a significantly reduced immune cell related expression (Figure
3.10).

This proneural to mesenchymal axis was confirmed in two independent datasets [198,
245] (Figure 3.11). Low-grade glioma samples tend to present a more proneural signature
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and the high-grade glioblastoma samples present a more mesenchymal signature with no
clear separation of the samples based on clinically defined grade (Figure 7.7). Examina-
tion of the CMC derived proneural and mesenchymal modules within an intratumourally
sampled dataset [245] allowed me to trace this relationship within individual tumours. Re-
markably we found the proneural and mesenchymal modules to vary both within and be-
tween tumours whilst mirroring the anti-correlated relationship found in the TCGA datasets
(Figure 3.11, Pearson’s r = -0.74, p-value = 1.76× 10−09). The presence of proneural to
mesenchymal variation within individual tumours and its characterisation as non-discrete
gradient across high and low grade glioma samples suggests this axis is associated with
glioma progression rather than distinct patient tumour subtypes.
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Fig. 3.10 Expression of reduced mesenchymal and immune cell modules distinguishes mes-
enchymal and classical subtype samples. Subsetting the larger mesenchymal module and
extracting submodules that represent immune cell and mesenchymal like expression (Ta-
ble 7.5) allows for the distinct separation of the Verhaak et al. classical and mesenchymal
samples from the proneural type. The neural type presents a mixed relationship between
expression of these two submodules. Units are z-score normalised log2 FPKM.
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Comparing other glioma derived modules between samples taken from the tumour mar-
gin and the main tumour bulk allows the study of these features in an intratumoural context.
Samples taken from the tumour to normal brain margin have a significantly higher expres-
sion of the proneural (p = 1.08×10−04), oligodendrocyte (p = 1.86×10−06) and neural (p
= 7.83×10−04) modules in comparison to the main tumour bulk and considerably lower ex-
pression of the mitosis (p = 4.15× 10−15) and mesenchymal associated modules (multiple
values, p ≤ 0.01, Figure 3.12). The differential expression of features between the tumour
margin and bulk supports the association of the mesenchymal and Interferon feature with
the tumour bulk alongside identifying the neural and oligodendrocyte modules as enriched
within likely post-mitotic normal brain cells on the tumour margin.
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Fig. 3.12 Expression of CMC modules between the tumour bulk and margin (Data from
Sottoriva et al. [245]). Proneural and mesenchymal modules show differential expression
between the tumour bulk and margin. Significant overexpression of the neural-like and
oligodendrocyte-like modules alongside low expression of the mitosis module may repre-
sent an enrichment of post-mitotic non-neoplastic cells along the tumour margin. Mes-
enchymal submodules are described in Table 7.5. Differential expression of module expres-
sion was tested using a Welch’s two sample T-test (p ≤ 0.05).

In summary distinct from previous studies I describe a non-discrete dominant gradi-
ent of proneural to mesenchymal expression. This gradient is present intratumourally and
is associated with a mesenchymal phenotype, immune cell infiltration and tumour grade.
In contrast to BRCA tumours the established discrete subtypes set out by Verhaak et al.

[270] were not identified as distinct subtypes in any module subclusters. The intersection of
CMC subclusters with the IDH/codeletion molecular subtypes suggests substructure within
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the module clustering may not be effectively representing the underlying subtile biological
signal in glioma.

3.3 Discussion

Here I describe independent components of transcriptional variation that represent estab-
lished tumour processes and relate to previously described cancer subtypes. Identified here,
components of the tumour transcriptome shared across multiple tumour types that are rep-
resentative markers of independent biological features, such as cell division and immune
cell infiltration, which can be expected to vary in an intratumoural fashion. While previous
studies have identified similar cross cancer type features using more broadly defined coex-
pression networks [41, 50, 179, 280] I seek here to extend this intratumoural heterogeneity
context to tumour subtypes. I recast the cancer subtype problem moving away from meth-
ods that impose reductive and assumed transcriptome-wide discrete subtypes towards the
identification of independent coexpression modules followed with intramodule clustering
to identify discrete within-module subtypes. Following this methodology I replicate and
redefine the luminal, basal, claudin-low and Her2 enriched subtypes in BRCA and set out
the novel identification of an intratumoural non-discrete proneural to mesenchymal axis in
glioma.

Establishing consensus reproducible tumour subtypes has been difficult for many tumour
types [104, 127, 166]. Established subtype methods focus on identifying the global expres-
sion differences between tumour samples and classifying them into discrete categories, re-
ducing all the apparent complexity of tumour biology into a subset of signatures where each
tumour can be classified as a single subtype. As an alternative I focus on the independent
components of transcriptional variation found in all samples and between tumour types. In
this way, signatures that are unique to a single tumour type, or samples that show a distinct
variation in a common expression signature, can be identified and reproduced independently
of a reductive global transcriptome subtype.

Here I show that coexpression analysis via CMC can replicate and improve upon tu-
mour subtypes derived with established methods, also demonstrating how clustering within
a coexpression module can reveal distinct subpopulations independently from subtype clas-
sifications using other features. In the case of BRCA, I identify modules that replicate the
division of samples into the luminal and basal discrete subtypes established by TCGA anal-
ysis [29]. Curiously the basal samples did not express the highest levels of our basal module
but instead were identified based on variation within the basal module and low luminal mod-
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ule expression. The samples that did however express the highest levels of the basal module
were identified as analogs of the claudin-low subtype. This claudin-low subtype, defined
independently by variation within the stromal-like module, shows a distinct similarity to
metaplastic breast carcinoma (MBC) [281] and could represent a transcriptional signature
of MBCs as discussed previously [206, 207]. Basal BRCA samples are identified primarily
by the unusually high expression of FOXC1 compared to other basal-like genes. Likewise
I show the Her2-enriched subtype is characterised by retention of luminal transcription fac-
tors including SPDEF [23] and FOXA1 [168, 260] and reduced ESR1 expression. This crit-
ical difference may be of significant importance to distinguishing, treating and developing
therapeutics for tumours of this type.

By contrast, in glioma, no comprehensive discrete separation of samples into the estab-
lished subtypes is found using CMC analysis and instead I find a gradient of proneural to
mesenchymal expression. This proneural to mesenchymal axis is mirrored by the enrich-
ment of the mesenchymal signature in high-grade gliomas. I show using intratumourally
sampled data that this proneural to mesenchymal variation is present within multiple tu-
mours. Based on these findings it is easy to suggest that the proneural to mesenchymal axis
represents a signature of progression that is intrinsic to glioma biology rather than a signa-
ture that can be attributed to a subset of tumours. This hypothesis is supported by the obser-
vation that the mesenchymal type tends to present a worse prognosis, which might be ex-
pected should the mesenchymal signature represent tumour progression and high grade. The
association of immune cell module as correlated to, and contained within, the mesenchy-
mal module further reinforces the mesenchymal progression hypothesis. The mesenchymal
signature has also been associated with other markers of progression like necrosis but also
within regions of the same tumour which can present different patterns of subtype signature
expression [43]. The observation that recurrent tumours tend to drift towards the mesenchy-
mal type is also of note here [198] further supporting the progression model. Similarly the
association of NF1 mutations with the mesenchymal type may suggest that this mutation is
only beneficial to cells expressing a mesenchymal progression program potentially explain-
ing why tumours induced via TP53 and NF1 deletions gave rise to proneural-like tumours
[154]. Recent work suggests that most glioma tumours may evolve from a proneural like
precursor cell with subsequent mutations in NF1 [191].

When CMC derived subtype definitions are compared to both the IDH/codeletion and
Verhaak et al. subtypes a greater overlap is detected for the IDH/codeletion subtypes. This
finding combined with improved performance in the silhouette and connectivity tests sug-
gests this established genome focused subtype definition is more reflective of the biological
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reality. The difficulty CMC analysis has with deriving robust subtypes may be reduced
through a process of testing coexpression modules at a range of cut off heights and varying
the number of within module clusters to avoid ignoring potentially important within-module
substructure. Combining these results into a psudo-bootstrapped consensus CMC subtype.
With future work on the structure of these coexpression methods it may be possible to derive
or validate established glioma subtypes.

In conclusion I propose that the discrete separation of samples into subtypes should not
be assumed without prior investigation into the nature of the tumour specific variation. The
assumption of discrete subtypes presents misrepresentative overview of glioma and poten-
tially other tumour subtypes. While some tumor types, like breast invasive ductal carcinoma,
present expression variation that readily supports their division into distinct subtypes, other
tumour types like glioma present a more convoluted route to defining discrete subtype sig-
natures. Moreover high or low expression of a coexpression module, which can dominate
a standard transcriptome-wide clustering, can give the misleading impression of a discrete
subtype, such as in the case of proneural and mesenchymal modules in glioma, which is
not matched by differential coexpression of module component genes. The definition of
independent markers of biological signatures as expression modules and the samples that
behave differently within these modules presents a battery of potential targets and mark-
ers for further investigation, whilst also providing a more intuitive intratumoural context to
tumour subtype analysis.



Chapter 4

Transcriptomic analysis of glioma
derived neural stem cells

4.1 Introduction

Cancer stem cells are a critical component of the tumour mass that are capable of repropa-
gating or recapitulating the tumour. As such, the characterisation of cancer stem cells is of
particular significance. For glioma, cancer stem cells have been derived from tumour sam-
ples and sustained in culture using a number of methods. The ability to culture cancer stem
cells provides a flexible in vitro research model platform and enables high throughput drug
discovery screens. The culture of glioma stem cells has been enabled by parallel develop-
ment of methods developed for normal neural stem cells (NS cells). Early methods for NS
cell culture established the expansion of cell clusters as neurospheres in suspension with the
growth factor EGF [219]. Later methods added FGF-2 to the media improving the isolation
of multi-lineage potential NS cells [5, 85]. Culture of NS cells in neurosphere suspension
has a number of problems including the heterogeneous phenotype of neurosphere cluster
cells and the progressive loss of self renewal and differentiation capacity [218]. As an al-
ternative to neurosphere culture the growth of NS cells adherent to laminin coated surfaces
suplemented with EGF and FGF-2 growth factors was found to enable sustained symmet-
rical self renewal without differentiation [42, 203, 251]. These adherently grown NS cells
can be established from both adult and fetal forebrain tissue and well as differentiated from
embryonic stem cells in vitro [203]. Further work went on to show that these adherent NS
cells are capable of differentiating into the three primary lineages of central nervous sys-
tem cells, showing the potential for oligodendrocyte differentiation which had previously
remained enigmatic [251].
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4.1.1 Glioma stem cell culture

The derivation of cell lines from glioma tumours has a long history similarly to NS cell cul-
ture methods. Early work established that a subset of cells from dissociated tumour biopsy
tissues were able to self renew when suspended in fetal calf serum containing media [205].
Expansion of these cells in serum contrasts with NS cells which have been shown to ir-
reversibly differentiate in serum containing media [70]. While many glioma lines tolerate
serum, the long term effects of this media are not well established and may cause these cells
to shift away from their initial cultured state. This may affect how representative the cell
line is of the glioma stem cells in vivo [263]. Improved methods for culturing NS cells,
i.e. removing serum and using EGF and FGF-2 growth factors, were subsequently applied
to glioma derived stem cells [71, 106, 143, 237]. Likewise the addition of adherent cul-
ture methods to glioma derived cells enabled similar advantages to adherent culture of NS
cells with reduced differentiation and greatly improved stability (Figure 4.1) [204]. These
adherent EGF and FGF growth factor cultured cells were described as glioma neural stem
cells (GNS) due to their distinct phenotypic similarities to normal NS cells. While GNS
cells have similarities to NS cells, GNS cells are able to recapitulate the tumour mass fol-
lowing xenotransplantation and retain the hallmark genomic aberrations. Adult NS cells
are also a strong candidate for the cell in which the initial neoplastic activation takes place,
transforming it into a GNS counterpart [151].
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With greater in vitro consistency and stability brought about by improved culture meth-
ods, efforts to characterise and exploit glioma derived cell lines expanded. tumour derived
stem cells have been shown to closely mirror the phenotype and genotype of their parental
primary tumours [143, 237]. In these studies, serum culture of these cell lines, compared
to EGF and FGF-2 growth factors, was shown to induce morphological, transcriptomic and
glial lineage differentiation alongside decreased tumourigenicity in vivo for early passages.
Curiously late passage serum cultured cells were able to form xenograft tumours at an in-
creasing rate with further passages [143].

4.1.2 The phenotypic diversity of glioma stem cells

The specific features and markers that define these glioma stem cells has been a contentious
question with multiple potential definitions of what defines this diverse population. In an
early study, CD133 was identified as a marker of stem cells derived from CNS tumours,
that can proliferate as neurospheres in growth factor media and also show differentiation
towards similar lineages as their parental tumours [237]. CD133 negative glioblastoma
cells were found to grow as adherent clumps before terminally differentiating. Expression
of CD133 is absent from a majority of normal adult neural stem-like populations but is
expressed in embryonic neural stem cells [197]. Using a limited panel of qPCR targets
diversity within glioma stem cells (GSC) indication of functional diversity was observed
[71], however it was not until transcriptome wide assay methods like microarrays became
ubiquitous that large panel studies of both tumours and tumour derived cell lines became
commonplace [8, 87, 194, 198, 204]. Examination of cells derived from both primary and
secondary glioblastomas found that no significant in vitro growth was observed for sec-
ondary glioma cells [8]. In contrast cells derived from primary glioblastomas readily prolif-
erated long term either as CD133+ neurospheres or CD133- adherent spheres (Figure 4.2).
The distinction between CD133+ neurospheres and adherent, mostly CD133- cultures was
replicated by gene expression clustering [87] revealing some similarity to the previously de-
scribed proneural and mesenchymal tumour subtypes [198]. The more proneural subtype-
like CD133+ cells comparatively over expressed neural development associated genes like
OLIG2, BCAN, DLL3 and NES. By comparison, the CD133- mesenchymal looking cells
overexpressed MET, LOX, CAV1 and a number of extra cellular matrix associated genes
[87]. These two GSC types were inferred to relate to the differences between adult and fe-
tal neural stem cells, further suggesting that these normal populations may be the different
cells of origin for different tumour types [157]. Significantly this study also showed that



4.1 Introduction 55

Fig. 4.2 CD133+ GSC neurospheres and CD133- adherent cell morphology. Morphologi-
cal differences between the CD133+ proneural-like neurospheres (Left panel) and CD133-
mesenchymal-like adherent and semi-adherent cells (Centre and right panels). [87].

adherent culture was capable of culturing and continuously expanding both GSC types with
the aforementioned lower levels of differentiation.

Differences in morphology between GSC cultured in either serum or EGF and FGF-
2 growth factors were observed previously, with an apparent preference towards adherent
growth in serum culture [143]. Cell lines initially established as neurospheres in growth
factor media switched towards an adherent fibroblast-like morphology when transferred to
serum containing media. Transferal to serum containing media induced a temporary re-
duction of proliferation followed by a return to exponential growth after approximately 24
hours. As a counter point, GSCs lines established in serum culture were unable to sub-
sequently expand in growth factor media. This shift towards CD133- mesenchymal-like
GSCs has also been shown to be induced by radiation [11, 90, 164]. Mesenchymal-like
GSCs were found to express high levels of aldehyde dehydrogenase genes and proneural-
like cells, induced by radiation, shifted towards a mesenchymal expression signature along-
side expression of the aforementioned aldehyde dehydrogenase genes [164]. Later cell lines
derived from mesenchymal subtype tumours were shown to look comparatively proneural
and only after exposure to radiation or TNF-α did these cell express a mesenchymal sig-
nature [11]. Mesenchymal-like GSCs were shown to have a poorer response to radiation
in murine xenografts compared to their proneural counterparts. The key regulators of this
mesenchymal shift were proposed to be NF-κB and TNF-α .

4.1.3 Characterisation of adherent GNS cells

Exploiting the comparative in vitro stability of adherent glioma derived cells, or glioma
neural stem cells (GNS), allowed for detailed investigation of glioma stem cell diversity
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and relative consistency in high throughput chemical screening against multiple GNS lines
[204]. Application of this high throughput methodology to a diverse panel of GNS and
NS cell lines found that GNS lines were relatively susceptible to polo-like kinase1 (PLK1)
inhibitors compared to the non-neoplastic NS cells [47].

The comparison between karyotypically normal NS and aneuploid GNS cells is an area
of substantial interest. Comparing between NS and GNS cells may help identify the tu-
mour enabling differences but also allow for the identification of GNS specific features that
may be targeted therapeutically without affecting resident adult NS cells. Using Tag-seq
data generated for four GNS and two fetal NS lines key transcriptional differences between
GNS and NS cells were identified [55]. In particular this study identified the transcriptional
regulators FOXG1 and CEBPB as highly expressed in glioma alongside downregulation of
PTEN and TUSC3 amongst others. Expansion of this GNS to NS comparison to a wider
panel could reveal further valuable differences. Likewise a larger panel of GNS lines may
help explore the huge diversity in GNS cells as may be expected of their many histologically
distinct tumour origins. The epigenetic plasticity of GNS cells was explored using induced
pluripotent stem cell (iPSC) reprogramming techniques to reset DNA methylation patterns
[249]. As GNS cells have natively high levels of SOX2 and C-MYC, transfection of an
OCT4 and KLF4 inducible vector induced a shift of transcriptional and DNA methylation
program towards an embryonic stem cell (ESC) like state. Differentiation of these ESC-like
GNS cells either towards neural or mesodermal followed by xenotransplantation were able
to form tumours, however cells directed towards the mesodermal lineage were less malig-
nant and showed a reduced infiltrative capacity than their neural counterparts. This work
demonstrates that significant changes in expression and DNA methylation acting within the
confines of an aberrant cancer genome were unable to suppress the tumour propagating
capacity of these cells.

4.1.4 Outlook

In this chapter a panel of 15 GNS lines and 4 NS lines are characterised and compared to
other GSC lines in publicly available data. Conventional centroid based subtype classifi-
cation of these lines is discussed and compared to CMC coexpression methods. The NS
to GNS cell line comparison is revisited alongside a detailed investigation of the diversity
found between GNS lines as representative of glioma subtypes.
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4.2 Results

4.2.1 Comparing GNS to NS cells reveals glioma specific expression

To extend the analysis by Engström et al [55]. we produced expression data for 4 fetal
NS lines and 15 GNS lines each with biological replicates using the Affymetrix GeneChip
human exon ST array. Differential expression analysis found 335 genes overexpressed in
GNS cells and 272 overexpressed in NS cells (Tables 7.6 and 7.7). Clustering expression
values for these genes reveals that NS cells present a generally consistent expression pattern
between different NS lines (Figure 4.3, mean pairwise correlation = 0.926). In comparison
GNS lines show a remarkable diversity in expression of these genes between lines (mean
pairwise correlation = 0.077). Restricting the data to genes that are differentially expressed
in both this exon array data and the Tag-seq data from Engström et al. finds the same
pattern of within NS line consistency and GNS diversity (Table 4.1, Figure 7.8). Analysis
of gene ontology terms enriched in differentially expressed genes finds enrichment for many
neuronal and differentiation related GO terms within NS overexpressed genes where GNS
genes show an enrichment for RNA processing and metabolism terms (Tables 7.8 and 7.9).
Examination of the genes differentially expressed between GNS and NS cells may help
contextualise the functional differences that characterise these cells.

Genes overexpressed in GNS

A total of 1191 genes were found to be over expressed in GNS cells compared to NS (Table
7.6). Here we show in GNS cells the transcription factor FOXG1 is highly over expressed
in GNS cells in agreement with previous findings [55] (adj. p = 1.72× 10−13). FOXG1

has established roles in neural development and disease including telencephalic hypopla-
sia [284], Rett syndrome [171] and maintenance of adult neurogenesis in the dentate gyrus
[261]. Knockdown of FOXG1 in primary cell lines resulted in reduced neurosphere forma-
tion and increaced survival in mouse xenografts [269]. FOXG1 was identified as a regulator
of glioma cell proliferation by binding to a FoxO-Smad complex [230] and was also found
to be overexpressed in the non-Shh/Wnt subtypes of medulloblastoma [163]. Deeper func-
tional characterisation of FOXG1 may be critical to understand the aberrant GNS transcrip-
tional network and its developmental context. Another transcription factor highly expressed
in glioma is AP-2α (TFAP2A, adj. p = 1.29×10−05). AP-2α was associated with low grade
gliomas and expression was found to be reduced with higher grade [95]. Later work found
that AP-2α attenuates expression of anti-apoptotic and pro-angiogenic genes suggesting a
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tumour suppressive role for this transcription factor [20]. More recently, hypermethylation
of the AP-2α promotor was also associated with poor survival [235]. RNF114 encodes a
RING domain E3 ubiquitin ligase that can be introduced by interferons and dsRNA [12]
(adj. p = 7.20 × 10−06). A functional role for RNF114, also known as ZNF313, was
found to be regulation of the G1-S phase transition of the cell cycle through degredation
of WAF1 and destabilisation of KIP1 and KIP2 in tumour cells [92]. There is also some ev-
idence that RNF114 can regulate the NF-κB pathway via stabilisation of the inhibitor A20
[222]. Heparan sulfates have a complex and critical role in development, homeostasis and
disease acting as signalling cofactors and growth factor sinks [124]. Heparinase (HPSE,
adj. p = 9.29× 10−05) is an endoglycosidase that cleaves heparan sulfate proteoglycans
in the remodelling and degradation of the extracellular matrix [290]. Heparinase expres-
sion has been shown to increase cell infiltration and decrease proliferation as well as pro-
mote adhesive monolayer growth compared to large cellular aggregates [289]. Similarly in
medulloblastoma cell lines HPSE expression was associated with in vivo infiltration [165].
NKX2-2 is a key transcription factor for the development of oligodendrocyte precursor cells
alongside OLIG2 [67] which are both overexpressed in GNS lines (adj. p = 2.15× 10−06

and 5.55× 10−03 respectively). High expression of NKX2-2 is also associated with oligo-
dendroglial and astrocytic tumours suggesting a key role for lineage specific transcription
factors in the development of the disease [221]. Overexpression of NKX2-2 in NS cells
was found to promote an oligodendrocyte precursor cell fate [275]. The role of NKX2-2 in
glioma is however relatively poorly understood. Another oligodendrocyte regulatory factor,
APCDD1 is identified as over expressed in GNS lines (adj. p = 8.42× 10−06). Regulation
of differentiation by APCDD1 was identified in different glial lineages with regulation via
either the canonical Wnt pathway in oligodendrocytes or the non-canonical planar cell po-
larity Wnt pathway in astrocytes [142]. LMO4 (adj. p = 2.87× 10−06) was identified as
a cofactor of Snail2 (SNAI2, adj. p = 1.04× 10−04), which is also overexpressed in GNS,
in cadherin repression and an epithelial to mesenchymal transition in both neural crest and
neuroblastoma cells [60]. Disregulation of EGF receptor pathway either by EGFR muta-
tion or over expression of TGF-α (TGFA, adj. p = 3.85× 10−06), one of EGFR’s ligands,
is a commonly found feature of glioma. Mature astrocytes exposed to TGF-α treatment
proliferate and dedifferentiate into neural stem like cells via a neural progenitor like state
[232]. The functional role of TGF-α in GNS cells is less well understood however it may
well reflect the normal neural functioning and oncogenically act to promote proliferation
and block differentiation. Mutations within the OGFR gene (adj. p = 9.17× 10−06) have
been previously described potentially modulating the replication inhibitory activity of the
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OGF/OGFr axis [130]. Activation of the receptor OGFR reduced proliferation of cultured
astrocytes in a reversible and dose-dependent manner [27]. Although there is no published
work describing the role of the OGF/OGFr axis in glioma, other cancers including pancre-
atic, breast and ovarian carcinomas have presented growth suppression on OGFr activation
leading to a number of clinical trials [51, 286, 287]. With future work the OGF/OGFr axis
may become a viable therapeutic target in glioma.

Genes overexpressed in NS

A total of 1016 genes were found to be overexpressed in NS cells relative to GNS (Table
7.6). Here the functional roles of some of these genes is discussed. Overexpressed in NS
relative to GNS are the importins RANBP17 (adj. p = 1.11×10−22), KPNA3 (IPOA4, adj.
p = 4.24× 10−05) and IPO5 (RANBP5, adj. p = 2.86× 10−06). Importins regulate the
transport of macromolecules into the nucleus, activated by the GTPase Ran [250]. Different
importins are know to transport different sets of cargo molecules, including transcription
factors, suggesting differential expression of importins may lead to differential transport
of regulatory factors to the nucleus [33]. Importins have recently been given a functional
role in mitotic interphase [62]. Further investigation of importin differential expression may
reveal critical regulatory differences between these cell types. The NS associated overex-
pression of tumour suppressor EPB41L3 (adj. p = 2.98× 10−09), a member of the protein
4.1 family, reinforces recent work describing it as prognostic biomarker in diffuse gliomas
where EPB41L3 was found to be hypermethylated in tumours [193]. Members of the pro-
tein 4.1 family are largely thought to act as adaptor proteins linking the cytoskeleton to the
plasma membrane, however this family also has roles in signal transduction interacting with
CD44, integrins and the PRMT family [278]. Protein family 4.1 members have also been
shown to promote apoptosis and reduce cell motility and proliferation illustrating its role as
a tumour suppressor. Little work has been done to describe the functional significance of
this gene family in glioma. The gene CELSR1 (adj. p = 1.91× 10−07) encodes a receptor
that has complex roles in neural planar cell polarity pathways [59]. Yet another receptor,
RGMB (adj. p = 1.32×10−07), is implicated in neural development through BMP signalling
[267].

NS overexpression, or rather GNS underexpression of several other tumour suppressor
associated genes is identified here. Among this list of tumour suppressors perhaps the best
known is RB1 (adj. p = 3.45×10−05) which has been the focus of extensive research since
first discovered [49]. Disrupted regulation of PTEN (adj. p = 7.11× 10−4) and IGF sig-
nalling via the ubiquitin ligase NEDD4 (adj. p = 2.39×10−06) has been identified in a num-
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ber of cancer types [13]. NEDD4 has also been shown to have dual oncogene/tumour sup-
pressor function via either enhancing nuclear import or cytoplasmic degradation of PTEN
[264]. Ras suppressor-1 (RSU1, adj. p = 5.46× 10−08) was initially identified as a sup-
pressor of Ras dependent oncogenesis [46] and in glioma deleterious mutation of RSU1 is
relatively common [40]. A apoptotic promoting role for RSU1 and its interaction with the
pro-survival adhesion protein PINCH-1 was also found [77]. Another established glioma tu-
mour suppressor gene found over expressed in NS cells is the protein tyrosine phosphatase
PTPRD (adj. p = 6.86×10−04) [241]. Heterozygous loss of PTPRD in human glioblastoma
was demonstrated to promote tumourigenesis via Stat3, alongside CDKN2A deletion [189].
Mutations in the heparin sulphate glycosyltransferase EXT1 (adj. p = 5.92× 10−06) are
frequent occurrences in different tumour types which may suggest tumour suppressor like
activity [26]. The transcription factor TCF7L2 (adj. p = 1.732× 10−06) is a downstream
effector of the canonical Wnt signalling pathway with critical roles in oligodendrocyte dif-
ferentiation [88]. Reduced expression of TFC7L2 in GNS cells may function to suppress
GNS cell differentiation in response to Wnt signalling. Further investigation of this gene
panel, while beyond the scope of this thesis, may identify further candidate glioma tumour
suppressors or oncogenes.

Analysis of differentially expressed genes in glioma expression data

As GNS cell lines are expanded in EGF/FGF culture conditions it is important to ensure
these cells are representative of glioma stem cells in vivo. One way of testing this is to ex-
amine genes that are differentially expressed between GNS and NS lines in tumour derived
expression data. Combining GNS and NS overexpressed genes into mean z-score values
that represent the average expression of each gene set reveals an anti-correlated expression
(Pearson’s r = -0.78, p < 2.2×10−16, Figure 4.4). This relationship is largely irrelevant of
molecular subtype with all types dispersed across the axis. Ensure the GNS and NS gene
sets are representing a real coexpressed relationship the correlation of each gene in the re-
spective set was correlated to the component module mean z-score. Both GNS and NS gene
sets were found to be more correlated to their mean z-score in comparison to random gene
sets suggesting the relationship identified in the GNS/NS dataset is at least partially repli-
cated in the glioma dataset (Figure 4.4). Restricting the GNS and NS modules to include
only genes with high expression fold change improves the performance of these gene sets
in the glioma dataset.
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Fig. 4.3 Heatmap illustrating genes differentially expressed between NS and GNS. Genes
over and underexpressed in NS cells (Tables 7.6 and 7.7) show relative consistency com-
pared to GNS lines. Colours within the heatmap are representations of row mean nor-
malised, log2 intensity units. Column colour makers represent the cell type including NS
(blue) and GNS subtypes (Discussed in Figure 4.9, red = mesenchymal, purple = proneural).
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GNS NS
Gene name Log2 fold change Adj. p-value Gene name Log2 fold change Adj. p-value
FOXG1 -2.75 1.72e-13 RANBP17 2.53 1.11e-22
NRN1 -3.90 2.59e-10 TES 3.26 2.03e-14
PCDHB9 -2.50 5.42e-08 RASGRF2 2.84 4.16e-14
TTC39C -2.04 5.97e-08 EPHA7 5.03 4.16e-14
ZFAND2A -1.22 9.27e-08 OTX2 4.20 1.01e-13
LDHA -1.90 2.98e-07 TNFRSF10D 3.09 4.84e-13
KLHL13 -1.78 5.52e-07 CDCP1 3.71 1.55e-12
FAM102A -0.87 5.93e-07 AFF2 1.70 2.92e-12
DYNLL2 -0.79 5.93e-07 SYT1 4.37 1.37e-11
MT2A -1.57 6.08e-07 ANO4 4.27 1.95e-11
TNFRSF21 -2.73 1.02e-06 AK7 1.09 5.04e-11
PMS2P3 -0.67 1.28e-06 BTBD11 3.45 1.03e-10
NUDCD3 -0.74 1.55e-06 MCHR1 2.73 2.28e-10
MTG2 -0.66 1.58e-06 CRHBP 2.26 2.47e-10
ADGRE5 -1.27 1.68e-06 GREB1L 2.70 6.73e-10
THY1 -3.37 1.79e-06 IGF2BP1 1.90 6.73e-10
CD9 -2.72 2.02e-06 NELL2 4.74 9.44e-10
NKX2-2 -2.38 2.15e-06 PBX3 2.37 9.44e-10
LMO4 -1.86 2.87e-06 NEFM 1.93 1.88e-09
MT1L -1.48 3.02e-06 EPB41L3 2.63 2.98e-09
WDR91 -0.66 3.02e-06 MGST1 3.55 3.18e-09
C12orf66 -0.80 3.02e-06 NEGR1 2.24 7.97e-09
SHOX2 -0.84 3.25e-06 LRRC7 2.44 8.47e-09
TGFA -2.66 3.85e-06 WBSCR17 3.62 9.58e-09
FAM122C -0.88 5.09e-06 GRPR 3.12 1.34e-08
ADAMTS9 -2.34 6.20e-06 RSU1 1.30 5.47e-08
RNF114 -0.96 7.20e-06 RAB11FIP1 1.18 6.16e-08
APCDD1 -2.22 8.42e-06 REC8 1.44 6.73e-08
OGFR -0.47 9.17e-06 NECAB1 2.88 1.32e-07
MR1 -1.98 1.07e-05 RGMB 1.56 1.32e-07
BCAM -0.93 1.11e-05 HS3ST3A1 1.49 1.49e-07
HSF2BP -0.66 1.13e-05 NXN 1.31 1.59e-07
TFAP2A -2.05 1.29e-05 CELSR1 1.91 1.91e-07
WBSCR22 -0.72 1.43e-05 SLC18A3 3.22 2.53e-07
CNTNAP3 -2.16 1.43e-05 OCA2 1.20 2.83e-07
GCC1 -0.69 1.56e-05 DAPK1 2.58 3.04e-07
PPM1K -1.83 1.76e-05 MYO1B 3.96 3.40e-07
QSOX2 -0.74 1.93e-05 TLE4 2.05 3.59e-07
MT1G -0.97 2.52e-05 DOCK2 1.58 3.80e-07
MT1H -1.44 2.52e-05 OXTR 1.51 6.08e-07

Table 4.1 Table of the top 40, most differentially expressed genes between NS and GNS
ordered by p-value (Full tables 7.6 and 7.7)
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4.2.2 Verhaak et al. subtype centroid classification of GNS lines

Glioma tumours have been described as consisting of four distinct subtypes based on a clus-
tering of 202 glioblastoma multiforme samples [270]. All GNS lines investigated were de-
termined to be IDH wild type through targeted sequencing [55] suggesting these lines reflect
the IDH wildtype molecular subtype of glioma [53]. Tumour samples can be divided into
these subtypes using a centroid based classifier [82]. This classifier is based on calculating
the sample correlation to 840 gene centroids for each subtype (Figure 4.5). Classification
of GNS lines using this tumour data derived classifier labels a majority of GNS lines as
classical with the exception of G23 which was more highly correlated to the mesenchymal
centroids (Figure 4.5). This is in contrast to tumour subtype analysis set out in Chapter
3 which indicates no evidence of a classical subtype. Although this is the strictly correct
way to apply this classifier, differences in expression profile and cell type content between
glioma tumours and the tumour derived GNS cells leads to niche specific correlation biases
therefore affecting classification.

While many genes in the Verhaak centroids are also highly expressed in GNS cells the
correlation of mean expression between GNS and glioma data is low (Pearson’s r = 0.53,
Figure 4.6). With variation in average gene expression between GNS and glioma data cor-
relations to classifier centroids does not produce equivalent results. This may be due to
differences in cellular composition where tumours are composed of a mixed population of
cells such as macrophages, fibroblasts and the glioma cells themselves that each contribute
proportionally to the subtype signature. This resulting mixed cell signature is then com-
pared to a homogenous clonal cell line leading to distinct differences in expression. Other
components of the tumour niche like hypoxia and rate of proliferation may also have an
effect on the comparason between cell line and tumour sample. As such the correlation
for each GNS line to its closest subtype centroid is relatively low compared to glioma data
classification (Mean Pearson’s r, GNS = 0.07, glioma = 0.54) suggesting limited utility in
the centroid correlations’s predictive value.
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Fig. 4.6 Verhaak et al. centroid genes in glioma (Log2 FPKM) and GNS data (Log2 in-
tensity) showing both mean expression (Left panel) and variation in expression across each
dataset (Right panel). Differences in cellular composition and environmental factors be-
tween glioma tumour and GNS expression produces an inconsistent correlation between
conditions. This implies that classification methods that rely on relative expression ranking,
like centroid-based methods, will produce non-representative results when applied outside
of a tumour context. Colored dots reflects the subtype to which each gene belongs and grey
’violin’ shapes illustrate the average density of all genes in each dataset. Many subtype
marker genes with high variance in glioma have low variance in GNS lines and vice versa
implying these low variance markers are of reduced predictive value in GNS.

An alternative to centroid classification would be to compare the relative expression of
centroid genes and determine the subtype by high expression of marker genes compared
to other GNS lines. Samples that are representative of a distinct subtype should present
the highest levels of a marker gene compared to non-subtype samples. Dependent on the
assumption that all subtypes are present in this panel of GNS lines, subtypes could be dis-
tinguished based on summarised relative gene expression of subtype marker genes. This
allows for the differences in within-group variation and average gene expression between
glioma and GNS data. The centroid genes identified by Verhaak et al. overexpressed in
each subtype were converted into z-scores and the highest mean z-score of each subtype’s
marker genes was used to classify samples as the nearest subtype. Using this method on
the data used by Verhaak et al. to construct their centroid classifier resulted in 96.6% re-
classification accuracy (Figure 4.7a). Applying this method to the GNS expression data
classifies seven lines as mesenchymal, six as proneural, alongside single classical and neu-
ral lines (Figure4.7b, Total fifteen lines). In contrast to the centroid classifier this relative
expression based method identifies relatively few GNS lines as being closest to the classical
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subtype. In summary, classification of GNS lines into the four subtypes defined by Verhaak
et al. is dependent on method used and the different assumptions they depend on. As GNS
cells and tumour samples present considerable differences in average expression and vari-
ation, a tumour based classifier could be considered a poor method of characterising these
lines and alternative methods should be identified.
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4.2.3 Expression modules identified in GNS lines correspond to glioma
derived proneural and mesenchymal expression modules

To characterise gene expression variation across these GNS lines, CMC coexpression clus-
tering was employed as previously described in Chapter 2 for examining tumour expression
datasets. A total of 96 CMC modules were found and from this set modules of interest
were prioritised based on a selection of different criteria. Associations between these GNS
modules and glioma proneural and mesenchymal CMC modules described in Chapter 2
were found by identifying GNS modules with intersecting gene sets and a positive correla-
tion to the respective glioma module (≥ 3 shared genes). For the glioma proneural module
the largest intersection to a GNS module was 20 genes (GNS module 2, Table 4.3). For the
glioma mesenchymal module a GNS module was identified that shares 15 genes (GNS mod-
ule 1, Table 4.3). These GNS proneural and mesenchymal associated modules are amongst
the largest and most variable found in the GNS panel (Figure 4.8).

Fig. 4.8 Variance and gene number of coexpression modules. Modules with large mean vari-
ation and many component genes, tend to have intersecting gene sets with glioma proneural
(Purple) or mesenchymal modules (Red). The highest variance genes are found within the
first two coexpression modules that also intersect the highest number of glioma proneural
or mesenchymal modules. Module variance is based on log2 microarray intensity units.

These two proneural and mesenchymal associated, highly variable modules separate
the GNS samples into two distinct clusters (GNS modules 1 and 2, Figure 4.9). This sep-
aration of GNS lines is also mirrored in the first three principal components of the data
(Figure 4.10). The biological replicates for each line also cluster closely to each other in-
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dicating these signatures are a true characteristic of each independently derived line rather
than experimental variation. As these clusters become apparent in the GNS modules most
representative of the glioma proneural and mesenchymal modules, these distinct clusters
were labeled as proneural and mesenchymal GNS subtypes. The separation of proneural
and mesenchymal GNS lines is somewhat mirrored by the centroid-based subtype classifi-
cation with the exceptions of G32 (CMC: proneural, Centroid: classical) and G26 (CMC:
mesenchymal, Centroid: neural) (Figure 4.7b).

Fig. 4.9 Proneural and mesenchymal CMC modules separate GNS cells into two clusters.
NS lines tend to cluster more closely with mesenchymal GNS lines with average expression
of these genes. Units are z-score normalised log2 intensity units.

Beyond the primary GNS proneural and mesenchymal modules several other GNS mod-
ules are enriched for glioma proneural and mesenchymal genes. Visualisation of these mod-
ules reveals some consistency between independent cell lines yet also clear variation in
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Fig. 4.10 Principal component analysis of GNS array data (log2 intensity units) showing
distinctively separated proneural (Purple) and mesenchymal (Red) clusters.

other modules (Figure 4.11). Three additional proneural modules reveal cell line specific
proneural gene expression with G144 showing high expression of all 4 proneural associated
modules. For mesenchymal associated modules there is no GNS line that shows consistently
high mesenchymal signature in all mesenchymal like modules in comparison to the consis-
tent high expression of the GNS proneural modules in G144. Interestingly NS lines tend to
cluster more closely to the mesenchymal GNS lines than to the proneural GNS lines. While
expression of these genes in NS lines is inconsistently correlated, these karyotypically nor-
mal cell lines tend to express mesenchymal associated genes more highly than proneural
associated genes. Examining the consensus genes shared between the glioma and major
GNS proneural module (GNS module 1) reveals many genes consistently associated with
the established proneural phenotype in glioma (Table 4.3). The well characterised OLIG2
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and OLIG1 transcription factors along with SOX6 are found within this proneural module
and may be considered the best candidates for the root of a proneural transcriptional net-
work. The Notch ligands DLL3, DLL1 and BCAN are also established cell surface markers
for the proneural phenotype. The consensus shared mesenchymal genes shared between
glioma and GNS mesenchymal modules (GNS module 1) include CCL2, LOXL1, PTRF,
SERPINE1 and THBS1.

Fig. 4.11 Heatmap showing expression of proneural and mesenchymal modules in GNS and
NS data. NS lines tend to cluster with mesenchymal GNS lines with inconsistant expression
of GNS derived modules. Proneural GNS lines cluster separately from GNS mesenchymal
and NS cell lines. Colours within the heatmap are representations of row mean normalised,
log2 intensity units. Column colour makers represent the cell type including NS (blue) and
GNS subtypes (Discussed in Figure 4.9, red = mesenchymal, purple = proneural). Row
colour markers indicate the inclusion of Verhaak et al. proneural and mesenchymal marker
genes within each CMC module.
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Mesenchymal lines Proneural lines
Gene name Log2 fold change Adj. p-value Gene name Log2 fold change Adj. p-value
LAYN -3.29 3.43e-10 GRIK3 4.16 2.16e-11
MET -3.46 5.98e-10 SEZ6L 3.92 2.41e-11
DKK1 -4.62 5.19e-09 ASCL1 4.84 8.84e-11
CASP4 -2.47 3.22e-08 NLGN3 2.89 2.44e-10
BAG2 -1.70 1.66e-07 ATCAY 2.93 2.61e-10
CARD16 -3.48 2.00e-07 ADCYAP1R1 3.66 1.07e-09
ALPK1 -1.72 3.15e-07 DLL3 3.23 4.51e-09
FAM65B -2.09 3.24e-07 LRRTM3 2.17 4.72e-09
ARHGAP29 -3.13 9.09e-07 STMN4 2.16 5.19e-09
RAB27A -1.68 9.58e-07 SCG3 3.41 8.64e-09
CALCRL -3.68 5.81e-06 WSCD1 3.36 8.73e-09
LATS1 -1.21 5.81e-06 SEPT3 2.16 8.96e-09
NABP1 -1.65 6.01e-06 OLIG2 1.78 1.74e-08
ECE1 -1.54 6.59e-06 LHFPL3 3.17 2.04e-08
TLR4 -2.31 6.60e-06 C1orf61 4.23 3.22e-08
MDK -1.69 8.61e-06 ELAVL3 2.79 4.13e-08
B3GALNT1 -1.73 8.76e-06 NKAIN4 2.09 6.89e-08
GBP1 -2.14 8.90e-06 CSPG5 1.30 7.39e-08
DCBLD2 -1.87 9.17e-06 SMOC1 3.17 9.23e-08
APOBEC3F -1.03 9.50e-06 MEGF10 2.15 1.06e-07
AMIGO2 -1.64 9.62e-06 BMP7 2.75 1.12e-07
FAM188B -0.97 1.03e-05 ZDHHC22 3.24 1.83e-07
FBLN1 -2.30 1.06e-05 ADGRB1 1.42 2.47e-07
PDCD1LG2 -1.85 1.09e-05 DCX 3.33 2.92e-07
PAK1 -1.82 1.15e-05 PREX1 2.23 3.15e-07
NT5DC3 -2.27 1.25e-05 FAM131B 2.09 3.15e-07
TRIM34 -0.71 1.26e-05 MOB3B 2.12 3.16e-07
CAPG -1.11 1.27e-05 HEPN1 2.79 3.41e-07
ARHGAP18 -1.92 1.45e-05 TRIM9 2.32 5.40e-07
CCL2 -3.59 1.45e-05 HEY2 2.32 7.06e-07
MID2 -2.18 1.48e-05 MTSS1 2.26 8.12e-07
PALLD -1.70 1.53e-05 BCAN 3.57 8.54e-07
GPRASP2 -1.19 1.59e-05 GAD1 2.61 8.54e-07
CAV1 -2.62 1.96e-05 KCNA2 1.95 9.02e-07
NRP1 -2.27 1.96e-05 CACNG7 1.95 9.49e-07
COPZ2 -1.60 1.96e-05 GPR19 2.94 1.01e-06
GULP1 -1.77 1.96e-05 EPHB1 2.78 1.27e-06
DDO -0.91 1.98e-05 SOX6 2.47 1.66e-06
UBA7 -1.19 2.16e-05 SHC3 2.33 1.92e-06
TRIM21 -0.82 2.16e-05 PTP4A3 1.48 2.39e-06

Table 4.2 Table of top 40 differentially expressed genes between proneural and mesenchy-
mal GNS lines ordered by p-value (Full tables 7.6 and 7.7)
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Consensus proneural Consensus mesenchymal

ACSL6 ABCC3
ATCAY ANXA2
BCAN C1R
DLL1 C1RL
DLL3 CCL2
GNAO1 CFI
GRIA2 COL6A2
MAP2 GLIPR1
MYT1 HFE
NCAM1 LOXL1
OLIG1 MYOF
OLIG2 PTRF
PHYHIPL SERPINE1
RUNDC3A THBS1
SCG3 TMBIM1
SEPT3
SEZ6L
SHD
SOX6
ZDHHC22

Table 4.3 Consensus proneural and mesenchymal genes found in both Verhaak et al. glioma
and GNS CMC modules.

4.2.4 GNS proneural associated modules

The modules that are associated with the proneural subset of GNS lines show variation
between lines and a general enrichment for genes associated with neural and glial develop-
ment. Comprehensive investigation of the genes that differentiate subsets may help inform
on the cellular origin or distinctive epigenetic state of glioma stem cells. Here I examine
these genes and modules in detail extracted from the literature (Figure 4.12).

The primary GNS proneural module

Examining the core GNS proneural module (GNS module 2) many canonically proneural
associated genes are presented. Of these Olig2 is perhaps the most commonly described
proneural gene. Olig2 was initially identified as an early expressed transcription factor in
the differentiation of oligodendrocyte precursor cells [294]. Following this discovery Olig2
was found to be relevant to glioma with high expression in oligodendrogliomas and low
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expression in astrocytomas [149, 161]. With the arrival of cancer subtype methods gliomas
were divided into different subsets with proneural Olig2 being a critical component of these
signatures [198, 270]. Olig2 is also described as a key transcription factor for the prop-
agation of glioma and furthermore was able to reprogram differentiated cells towards a
tumour propagating cell [252]. Another highly variable transcription factor is ASCL1 (also
known as MASH1), a complex master regulator of neurogenesis promoting proliferation
and differentiation of neural progenitor cells [268]. The role of ASCL1 in glioma is not well
understood. Forced expression of ASCL1, BRN1 and NGN2 enabled the differentiation of
GSCs into functional neurones [291]. RAS/ERK signalling was found to modulate ASCL1
induced differentiation of NS cells towards either neuronal (RAS/ERK low) or glial progen-
itors (RAS/ERK high) [148]. Mouse studies found that C1orf61, also known as CROC-4
was found to participate in brain specific c-FOS signalling [111]. The glutamate receptors
including GRIA2 and GRIK3 have been identified as potential regulators of migration pro-
liferation and differentiation of NS cells [109]. CHRDL1 was found to antagonise BMP-4
induced astrocyte differentiation of NS cells and instead steer the cells towards a neural
lineage [72].

The most variable gene is the well characterised cell cycle regulator cyclin D2 (CCND2)
and along with the commonly amplified CDK4 (not included in a CMC proneural module) is
a critical regulator of the G1/S cell cycle transition. RNA interference mediate suppression
of cyclin D2 caused G1 arrest of GSCs [128]. Cyclin D2 expression was also reduced on
serum differentiation. Asymmetrically dividing neural stem cells were shown to transport
CCND2 mRNA to the basal process biasing apical proximal daughter cells towards terminal
differentiation during cell division indicating a critical role in NS and GNS self renewal
[265].

Brevican (BCAN) is a brain specific proteoglycan that forms a component of the neural
extra cellular matrix though interactions with tenacin-C, tenacin-R and hyaluronic acid [66].
Importantly brevican expression is limited to histologically glial-like tumours and brevican
status has been shown to correlate to infiltrative capability [110]. Xenograft cultures of in

vivo brevican negative GSCs failed to infiltrate the host brain and produced tumours similar
to carcinoma metastasises while some lines while presenting as brevican negative in cul-
ture, expressed brevican in vivo and grew as infiltrative tumours suggesting that brain niche
specific factors enabled this transformation. While these CSCs were cultured in serum con-
taining media, GSC growth in FGF-2 and EGF enables the expansion of brevican positive
cells that are capable of infiltrative growth. Brevican shRNA-mediated knockdown did not
lead to the reduction of proneural regulators like ASCL1 or OLIG2 but did reduce the infil-
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trative capability of GSCs [52]. Neurocan (NCAN) is a proteoglycan, with similar functions
to brevican, that forms a component of perineuronal nets (PNNs) [1, 66, 105]. It was sug-
gested that neurocan inhibits neural adhesion [64]. PTPRZ1 (phosphacan) is a proteoglycan
similar to brevican, is a receptor for Midkine (MDK) and the expression of both these genes
varies thougout the brain [68]. Analysis of PTPRZ1 knock-out mice suggests this receptor
has a negative regulatory role in oligodendrocyte development [131]. Further work sug-
gests that both soluble and membrane bound PTPRZ1 interact with contactin-1 (CNTN1),
amongst other extracllular matrix proteins, to regulate the proliferation and differentiation
of oligodendrocyte progenitor cells [133]. Gene fusions of PTPRZ1 and the HGF receptor
MET are also common in glioma [35]. The pituitary adenylyl cyclase-activating peptide
receptor ADCYAP1R1 (Also known as PAC1-R) has a complex relationship to both CNS
and systematic inflammation, differentiation and repair [279]. In a reactive astrocyte model
ADCYAP1R1 and GFAP were found to be unregulated on injury [180]. Hypoxia acting via
HIF-1α activates a PACAP38-PAC1-R signalling cascade to facilitate bone marrow-derived
immune cells resulting in reduced injury [152]. Similarly GAP43 expression was found to
be highly upregulated one day after ischemic lesion [81]. Doublecortin (DCX) is a micro-
tubule assocciated protein that is crucial for cell movement [188] and has been proposed as
a marker for adult migrating neuroblasts [273]. The Shc-like adaptor protein Rai (SHC3)
was also shown to regulate Doublecortin dependent migration and infiltration [187].
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Fig. 4.12 Variation of genes across GNS samples within proneural modules. The primary
proneural module (GNS module 2) is shown alongside secondary proneural modules (GNS
modules 66, 40 and 16). Variance based on log2 microarray intensity values.

Secondary GNS proneural modules

The secondary proneural modules are relatively small and contain few highly variable genes.
Differences in IGF2 expression was found to identify neurogenic NS cells expressing SOX2

and DCX from the dentate gyrus compared to comparable NS cells from the subventricular
zone [18]. Proliferation of NS cells was regulated by IGF2 in a primarily autocrine manner
via AKT-dependent signalling. IGF2 was also found to be critical to the ’Shh’ subtype of
medulloblastoma [135, 213]. Another component of the PNN, HAPLN1 (Crtl1), encodes an
adaptor protein that binds to both hyaluronan and neural proteoglycans [274]. The formation
of PNNs is induced by Crtl1 production and HAPLN1 knockout mice show aberrant PNN
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formation [32]. Hedgehog-interacting protein (HHIP) encodes a Shh inhibitor that is also
most commonly associated with Medulloblastoma [132, 162].

4.2.5 GNS mesenchymal associated modules

GNS derived modules with mesenchymal associated genes show some of the largest vari-
ation in these GNS cells (Figure 4.13). Mesenchymal gene expression in glioma tumours
is associated with immune cell infiltration, hypoxia, tumour grade and progression (Chap-
ter 3). A detailed review of the literature for these module genes may help identify the
functional or causative origins of this variation.

The primary GNS mesenchymal module

The primary mesenchymal module has the greatest number of consensus genes shared with
the glioma mesenchymal module and also show some of the greatest variation between
GNS cell lines (Figure 4.13). The gene showing the highest variation in this module is
EDIL3, also known as Del-1, encodes an anti-adhesive factor that inhibits integrin bind-
ing limiting inflammatory promoting leukocytes [38]. IL17 expression and subsequent
neutrophil recruitment was higher in EDIL3−/− mice suggesting Del-1 acts as a locally
induced suppressor of inflammation reducing subsequent tissue damage [57]. Del-1 also
suppresses macrophage activation further limiting inflammatory responses [144]. Inflam-
mation in the central nervous system is associated with many conditions including multiple
sclerosis. While expression of EDIL3 in endothelial cells is long established, expression
within neuronal cells was recently detected [39]. The blood brain barrier in EDIL3−/− mice
was significantly disrupted yet double knockout EDIL3−/− IL17RA−/− mice were less dis-
rupted.

TMEFF2, expressed in both the brain and prostate, enhances the survival of midbrain
and hippocampal neurones [102] and regulate RhoA activation and Integrin expression in
prostate cancer cells [36]. Thrombospondin-1 (THBS1) has a role in both neural devel-
opment and response to injury [153, 229]. Astrocytes have been shown to express CCL2

induced my mechanical injury [79] and CCL2 induced migration of microglia, NS and
oligodendrocytes has been observed [100, 178]. Overexpression of GLIPR1 induces the
production of reactive oxygen species leading to apoptosis [147] and recombinant GLIPR1
protein has been considered to have therapeutic potential [118]. Fibulin-3 (EFEMP1) ex-
pression inhibits Notch signalling to promote growth in glioma [103].
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Fig. 4.13 Variation of genes across GNS samples within mesenchymal modules. Primary
mesenchymal (GNS module 1), interferon type II module (GNS module 7) and HLA class
II module (GNS module 6) are shown alongside secondary mesenchymal modules (GNS
modules 4, 17, 38 and 8). Variance based on log2 microarray intensity values.
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Secondary GNS mesenchymal modules

Analysis of secondary mesenchymal modules may help further contextualise the mesenchy-
mal phenotype. Additional mesenchymal modules include two modules enriched for in-
terferon type II response and major histocompatibility complex class II genes. Other mes-
enchymal modules are enriched for hypoxia and mesenchymal phenotype genes. CARD16

is a component of the inflammasome and promotes IL-1β processing [119]. Inflammasome
functioning in non-myeloid cells is not well understood, however inflammasome activity has
been identified in neurons and astrocytes [271]. Dihydropyrimidine dehydrogenase (DPYD)
has recently been described as critical for inducing the epithelial to mesenchymal transition
most likely via pyrimidine degradation metabolites [233]. DPYD is also implicated in the
degradation of chemotheraputic agents [140]. Mesenchymal associated GNS module 4 in-
cludes the Wnt inhibitor DKK1 that is induced by hypoxia in glioma [89]. Another notable
gene found within this module is the tyrosine kinase receptor MET which also is associ-
ated with hypoxia, necrosis and high grade [196] and has been found to be amplified in in
individual glioma cells in a mutually exclusive mosaic fashion [240].

GNS Interferon type II and MHC II modules

Expression of interferon type II response genes has previously been described in cancer
[50] and was identified as a consensus coexpression module across multiple cancer types
in Chapter 1 of this thesis. The role of interferon induced genes in cancer is poorly under-
stood with most work focused on their antiviral functions. Many of the genes listed in GNS
module 7 including IFI44L, MX1 and MX2 were identified as interferon stimulated genes
(ISGs) that inhibit viral replication [228]. Different combinations of ISGs were found to be
effective against different viruses suggesting a broad range of effectors evolved to counter
the diversity of viral threats. The expression of ISGs is induced by multiple pathways in-
cluding NF-κB, RIG-1 (DDX58) and STAT1,2 [282]. The RNA helicase RIG-1, gene name
DDX58 and member of the ISG-like GNS module 7, is expressied in response to interferon
and initiates antiviral pathways, activated by the detection of intracellular viral components
[282]. Members of the OAS gene family synthesise 2′-5′ oligoadenylates which bind and
activate RNAse L to degrade cellular and viral RNAs [282]. Interferon treatment has been
used against various cancer types [15]. Interferon treatment has been shown to suppress an-
giogenesis, inhibit proliferation, promote cell death and modulate immune response [231].
Variation in interferon response has been associated with multiple diseases including viral
infections, multiple sclerosis as well as cancer [16]. Whether ISG expression in cancer is
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related to viral infection or rather as a consequence of other interferon pathway functions
is in question. Viral infections have been found in cancers, however it has been suggested
that increased chance of infection is a consequence of tumour development rather than a tu-
mour initiating factor [117, 211, 243, 244]. Interferon-γ signalling induces the expression of
major histocompatability complex II (MHC II) genes via the MHC II transactivatior CIITA
[16]. Expression of MHC II genes is mostly associated with bone marrow-derived anti-
gen presenting cells like dendritic cells, however some non-professional antigen presenting
cells have been shown to possess MHC II antigen presentation including cancer cells [200].
Examining the induction, expression and function of ISG and MHC II responses in GNS
cells may further illuminate the complex relationship between tumour cells and immune
response.

4.2.6 Analysis of GNS proneural and mesenchymal modules in GNS-
like cells

Having established coexpression modules in our GNS panel I explored if these obser-
vations provided any insight in three previously published GSC datasets alongside GNS
cells assayed on the Affymetrix U133 Plus 2.0 array [87, 143, 204] and one dataset on
the Affymetrix U133 version 2 array [11]. Lee et al examined how GSCs respond when
transferred from growth factor media to serum containing media. Two separate GSC lines
established from in growth factor media all present a proneural expression signature cluster-
ing along with G144, G144ED, GliNS2, the oligoastrocytoma derived G174 and normal NS
cells (Figure 4.14). Remarkably, transfer of proneural like GSC lines to serum containing
media led to a shift towards a mesenchymal phenotype clustering with mesenchymal GNS
lines G166 and G179 as well as traditional glioma cell lines which have been maintained
long term in serum. Expression of the mesenchymal module increases with greater pas-
sage numbers in the 1228-GSC line. Murine xenograft tumours from growth factor derived
1228-GSC cells present the lowest mesenchymal signature of the 1228-GSC samples and
demonstrated extensive infiltration and migration along white matter tracts [143] (Figure
4.15). Similarly 308-GSC xenograft tumours show low mesenchymal expression yet serum
cultured 308-GSC cells produced non-infiltrative tumours similar to the long term serum
maintained glioma cell lines and expresses high levels of the mesenchymal module [143].
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Fig. 4.14 GNS proneural and mesenchymal modules in GNS-like GSCs (data from Lee et
al [143]). GSC lines cultured initially in EGF/FGF (Purple) and then transferred to serum
based culture conditions (Red) are represented by either triangle (NOB0308) or diamond
shaped symbols (NOB1228). Neural stem cells cluster with the proneural GSCs here (Light
blue circles). GNS lines assayed on the same microarray platform are dispersed along the
proneural to mesenchymal axis or EGF/FGF to serum axis without serum culture. Tra-
ditional serum cultured glioma cell lines present high mesenchymal signature and cluster
with the other serum cultured cells. Units are z-score normalised log2 microarray intensity
values.
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Fig. 4.15 Sorted GNS mesenchymal module expression in data from Lee et al [143] showing
serum associated mesenchymal transition through increasing passage number for two cell
lines. Cell lines initiallly established in EGF/FGF when transferred to serum containing
media transition to a high mesenchymal gene expression state. Passage number is denoted
by p[passage number], see Lee et al. for the details of each sample displayed. Units are
z-score normalised log2 microarray intensity values.

Günther et al reported two distinct phenotypes of GSCs distinguished by morphology
and CD133 expression [87]. Examining proneural and mesenchymal modules in GSCs iso-
lated and classified by Günther et al finds the same distinct proneural (GSf) and mesenchy-
mal (GSr) cell line clusters as found in GNS and cell lines generated by Lee et al (Figure
4.16). Bhatt et al also found two major clusters of GSCs [11] and when mapped to GNS co-
expression modules produce a proneural to mesenchymal axis with less distinct separation
between the clusters. In their paper, Bhatt et al state that TNF-α/NF-κB activation induced
a mesenchymal shift, however TNF-α treated lines did not present particularly high levels
of the mesenchymal module in comparison to other mesenchymal lines suggesting either in-
complete differentiation or alternate definitions of what a mesenchymal signature describes
(Figure 4.16). Generally the examination of proneural and mesenchymal modules in other
datasets reinforces the dominant impact of these signatures that have been previously iden-
tified before in separate studies without unification into a comprehensive picture.
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Fig. 4.16 GNS proneural and mesenchymal coexpression modules in data from Günther et
al [87] and Bhatt et al [11]. The clustering of GNS-like GSCs reveals a comparable proneu-
ral to mesenchymal axis as derived in our GNS panel matching independently proposed
GSf/GSr and cluster 1/2 classifications from their respective papers (Figure 4.9). Units are
z-score normalised log2 microarray intensity values.

4.3 Discussion

In this chapter the transcriptomic characterisation of glioma derived cancer stem cells (GNS)
is set out by comparisons to karyotypically normal fetal neural stem cells, classification by
glioma subtype signatures and coexpression clustering. Extending the analysis by Engström
et al. expression profiling of 12 GNS and 4 NS lines reveals an more detailed profile of the
transcriptomic differences between these phenotypically similar yet ontologically distinct
cell types. The consistency of NS expression contrasts sharply with the diversity of expres-
sion found between GNS lines. Many of the over expressed in GNS compared to NS are
transcription factors implicated in neural development like FOXG1, TFAP2A, NKX2-2, and
LMO4. Regulators of proliferation and cell division like RNF114, OGFR and TGFA are
likewise highly expressed in GNS cells. Comparatively overexpressed in NS cells are mem-
bers of the Ran activated importin family including RANBP17, KPNA3 (IPOA4) and IPO5

(RANBP5). Differential expression of these genes may imply differences in the transport of
molecular cargo into the nucleus. Further studies may help reveal the role of these importins
on GNS and NS biology. Another class of genes that are highly expressed in NS cells are
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established tumour suppressors like RB1, PTEN EPB41L3, NEDD4 and PTPRD. While the
degree to which these GNS-like cell lines are capable of recapitulating the cellular state of
tumour cells in vivo I show that genes differentially expressed between GNS and NS cells
show a anticorrelated and coexpressed relationship in glioma tumours. While these results
do not ensure GNS cells are a perfect reflection of the functional reality present within tu-
mours it could be suggested that these cells are the most tractable model for high throughput
characterisation of live cells. Care should be take to avoid long term growth of cell lines in
in vitro to avoid selection for a phenotype that is readily proliferative in culture and far from
the cell types from which they were originally derived.

Examination of the subtypes established by Verhaak et al. in GNS lines reveal the diffi-
culty in comparing between relatively homogeneous cell lines and tumour samples that are
composed of multiple cell types in varying microenvironment. A modified approach to Ver-
haak et al.’s centroid classification was able to identify subtype diversity between GNS lines
with a bias towards the proneural and mesenchymal subtypes. The application of coexpres-
sion clustering to GNS expression data reveals many modules that contain proneural or mes-
enchymal associated genes. The two GNS modules that intersected the largest number of
glioma proneural and mesenchymal genes respectively have the some of the most variance
across GNS lines. Expression of these modules and principal component analysis replicates
the separation of GNS lines into two distinct proneural or mesenchymal clusters indicat-
ing the dominance of glioma subtype line expression. NS lines were found to cluster more
closely with the GNS mesenchymal cluster lines than GNS proneural. A total of 4 modules
were associated with glioma proneural genes and 7 modules were associated with glioma
mesenchymal expression. The observation that proneural GNS-like cells shifted towards a
mesenchymal phenotype when cultured in serum containing media suggests that these cells
are not locked into a single subtype expression program. Moreover it raises the possibility
that proneural cancer stem cells may transition towards a mesenchymal phenotype in vivo

as a response to environmental cues. The identification of proneural or mesenchymal-like
subtypes in GSCs is not novel as many of these distinguishing features have been described
before [11, 45, 87]. The analysis set out in this chapter is distinguished in reference to
the novel identification of a proneural to mesenchymal axis between and within glioma
tumours. Exclusion of other non-identifiable subtypes suggests these GSCs subtypes are
able to represent the major forms of GSC variance in glioma tumours. Mapping research
that describes these distinct GSC features, previously considered to be independent, back
to an intratumoural glioma context may provide substantial insight into the development,
progression and treatment of this complex disorder.



86 Transcriptomic analysis of glioma derived neural stem cells

A survey of the literature describing the highly variable genes within the proneural
and mesenchymal modules reveals a functional insight that deserves further experimental
work. Classically proneural genes like OLIG2, OLIG1, BCAN and DLL3 are represented
in the primary proneural module. Many other genes found within the proneural modules
are transcription factors with established roles in neural development and fate specification
including ASCL1, NFIA and NEUROD1. Proneural expression of CyclinD2/Cdk4 cell cycle
control genes may relate to cell type specific regulation of proliferation and asymetric cell
division that is promoted by alternative mechanisms in mesenchymal GNS cells.

Another proneural associated group of genes are those encoding extracellular matrix
proteoglycans like BCAN, NCAN and PTPRZ1. These PNN related proteins have roles ad-
hesion and migration of CNS resident cells and may play a role in the distinct morphology of
proneural GNS cells. The neural developmental skew of these genes suggests the proneu-
ral phenotype of glioma represents the disregulated proliferation of glial progenitors like
oligodendrocyte precursor cells.

GNS mesenchymal modules contain little gene expression directly relating to immune
cell infiltration as seen in glioma coexpression modules due to their in vitro culture sepa-
rately from immune cells. Mesenchymal associated modules in GNS are enriched for genes
involved in inflammation, immune modulation and response to injury including EDIL3 and
CCL2. These associated processes suggest that the mesenchymal phenotype relates to CNS
immune responses and inflammatory processes. The association of many of these genes
with CNS injury responses like glial scar formation draws the suggestion that the mes-
enchymal signature may represent a co-opted transcriptional response to CNS injury that is
exploited by glioma cells in response to changes in their microenvironment. This co-opted
transcriptional program could be compared to the epithelial to mesenchymal transition ob-
served in carcinomas. The enrichment of these microenvironmental response processes in
the mesenchymal phenotype compared to the proneural phenotype suggests the mesenchy-
mal signature is a response to the shifting tumour environment increasingly burdened by
the tumour bulk with gradually worsening grade. The identification of interferon response
and MHC class II genes highlights what is a poorly understood mechanism in cancer. The
function of induced interferon response genes in GNS cells may represent a pre-emptive
programmed response to potential viral infection or may play a unique role in a different
aspect of GNS biology. Understanding these processes may help improve the application of
Interferon-γ as a therapeutic strategy. Similarly an understanding of MHC class II expres-
sion in GNS cells may assist in the search for targeted therapeutics. In a recent paper by
Meyer et al., multiple clonal GSC lines derived from within single tumours were shown to
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show glioma subtype expression patterns [174]. In this study separate clones from within
the same tumour were found to present differential response to temozolomide therapy. The
genes found to be differentially expressed between resistant and non-resistant lines include
many described in this chapter as members of proneural or mesenchymal modules includ-
ing OLIG2, GRIA2, BCAN, GRIK3, NCAN, MAPT for the non-resistant clone and NMEFF2,
CALCRL, RNF217, LOX and CD44 for resistant clones. This may suggest that resistance to
temozolomide and other therapeutics is higher in mesenchymal phenotype cells.

The analysis set out in this chapter presents many avenues of potential further work.
Identifying critical differences between GNS and NS cells could help identify exploitable
targets for therapeutic intervention. Likewise understanding the origins and plasticity of
proneural and mesenchymal phenotypes in GNS cells may help to understand the complex
origins and evolution of gliomas or more significantly identify the mechanisms exploited by
these cells.





Chapter 5

ATAC-seq analysis and its application to
GNS and NS cells

5.1 Introduction

Examination of cancer gene expression, like the analysis described in the preceding chap-
ters, is critical to understanding the regulatory gap between genotype and phenotype. How-
ever transcriptome analysis alone reveals little information describing how gene expression
is controled beyond expression of known regulators. In order to investigate other contribu-
tions to the regulation of expression, various methods utilising next generation sequencing
have been developed. Most methods for interrogating genomic features are based on the rel-
ative enrichment of DNA sequences at different loci. For example ChIP-seq uses antibody
specificity to a protein of interest to selectively isolate target protein bound regions of ge-
nomic DNA. These methods rely on intentionally enriching the DNA library with genomic
DNA sequences proximal to features of interest. Using the relative density of alignments
allows for examining features genome wide. As such, a great variety of methods have
been developed to exploit the signal of relative density of aligned reads to identify various
features of interest. One genomic feature with a regulatory role describes the physical ac-
cessibility and compaction of DNA. Accurate identification of open chromatin can identify
regulatory features like gene promotors, enhancers or insulators and from these features,
regulated genes can be inferred and motifs describing the DNA sequences at which tran-
scription factors (TFs) may bind can be identified.
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Methods for detecting chromatin accessibility

Various methods have been applied to identify open chromatin. The most commonly used
methods are MNase-seq, DNase-seq and the comparatively new method ATAC-seq [288].
MNase-seq exploits the single-stranded nucleic acid digesting MNase enzyme to identify
nucleosome-bound digestion protected DNA fragments [97]. The MNase enzyme has a
preference towards digestion of AT-rich sequences which may bias downstream analysis
[173]. Similarly MNase-seq relies upon a DNA fragment size selection step to intentionally
extract DNA associated with a particular class of proteins. For the analysis of nucleosome
positioning, fragments of ∼150bp are selected with the knowledge that MNase digests up
to the edge of nucleosome protected DNA. Smaller fragments have been used to identify
protected TF binding sites and associated open chromatin [97]. By contrast DNase-seq
identifies accessible chromatin by DNaseq I mediated fragmentation [99]. These fragments
are then ligated to polymerase chain reaction (PCR) adaptors for library preparation and
sequencing. The DNase enzyme does not possess exonuclease activity, in comparison to
MNase, and fragment size selection is commonly restricted to ≤100bp to avoid the inclusion
of overwhelming numbers of ≥150bp nucleosome bound fragments. DNase also has a sig-
nificant strand, sequence and CpG methylation binding site bias that influence the frequency
and location of DNA cleavage events [139]. A variant of DNAse-seq called FAIRE-seq uses
formaldehyde assisted crosslinking of DNA to regulatory proteins followed by selective iso-
lation of these protein/DNA complexes in an aqueous phase extraction [78]. This method
has the advantage of restricting the library to protein bound DNA.

Other considerations for the analysis of sequencing based methods include sequencing
depth, PCR amplification bias and PCR duplicates. The depth to which each library is se-
quenced influences how much information can be extracted with a degree of confidence.
Methods like MNase-seq for nucleosome bound fragments will typically require compara-
bly deeper sequencing due to the abundance of nucleosome bound DNA in comparison to
methods intended to identify the open chromatin regions which make up a smaller frag-
ment of the epigenome. The amount of PCR amplification will also influence the quality
of library preparation as a restricted number of over amplified sequences can overwhelm a
sequencing library with duplicates, reducing the pool of other more unique fragments. The
effect of PCR bias may also introduce amplification variation with over or under estimation
of particular loci.
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ATAC-seq

A recently described method for profiling accessible chromatin and nucleosome positioning
exploits a hyperactive derivative of the bacterial transposase Tn5. Wild-type Tn5 acts as a
dimer to insert its transposon which is flanked by two IS50-element mosaic ends. Load-
ing the transposase with single mosaic ends, not linked to the dimer partner’s mosaic end
DNA, leads to fragmentation of the bound double stranded genomic DNA, as opposed to
the transposon insertion generated in wild-type Tn5 transposition. This random fragmen-
tation of double strand DNA was used to efficiently prepare whole genome sequencing
libraries with the added benefit of utilising the inserted mosaic end DNA as PCR primers
for library amplification [2]. This fragmentation of DNA by sequencing adaptor insertion
was applied to in vitro native chromatin structure where open chromatin is identified by the
ability of the transposase to bind accessible loci [24]. Heavily condensed heterochromatin
wrapped around nucleosomes is protected from transposition therefore ATAC-seq fragments
are largely restricted to regions of open chromatin (Figure 5.1). Genome alignment of Tn5
fragmented DNA allows for the length of the DNA fragment to be evaluated. As nucleo-
some bound DNA is protected from transposase access, transposition of sequencing adap-
tors either side of a nucleosome produces ≥150bp length fragments. This protection and
enrichment of ∼150bp fragments is observed in fragment size distribution with ∼180bp pe-
riodicity with two nucleosome and three nucleosome bound fragments enriched at ∼260bp
and ∼340bp respectively (Figure 5.1). This enrichment for likely nucleosome-bound frag-
ments enables the identification of nucleosome bound sites using ATAC-seq.

Another advantage to Tn5 fragmentation is that sequencing adaptors are directly inte-
grated into the native chromatin which leads to reduced fragment loss in subsequent library
preparation steps. This means that fewer cells are required for library preparation facilitat-
ing the analysis of samples that can only be isolated in small populations. Indeed, these
reduced input requirements ATAC-seq has even been applied to analyse chromatin accessi-
bility in single cells [25]. ATAC-seq libraries can also be prepared quickly suggesting that
this method could be applied to clinical samples providing swift analysis and extraction of
prognostic features on clinical time scales. It was also suggested that the relative protection
TF binding sites or footprints could be used to reconstruct regulatory networks [24], how-
ever this methodology has not been comprehensively investigated. Another factor affecting
ATAC-seq analysis is the Tn5 transposase’s preference for binding to GC nucleotides [2].
This bias towards GC rich loci will influence both the identification and quantification of
accessible loci.
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Fig. 5.1 Sequencing adaptor transposition into accessible chromatin via ATAC-seq. Tightly
condensed heterochromatin and open euchromatin are differentially accessible for DNA
binding by the Tn5 transposasome. Sequencing adaptors shown in red and blue are inserted
into accessible chromatin consequently producing an enrichement for short nucleosome free
fragments or long ∼150bp nucleosome bound fragments. Adapted from Buenrostro et al.
[24].

5.2 Results: Methods for ATAC-seq analysis

Methods and tools for preparing ATAC-seq data for robust downstream analysis are not yet
well established as of the time of writing. To enable downstream analysis and eventual
conclusions novel methods and analysis pipelines had to be developed. In this section I set
out some of the unique attributes of ATAC-seq data preprocessing and analysis. Sources of
potential bias in the ATAC-seq method are also identified and evaluated in this chapter.

5.2.1 An analysis of the Tn5 transposase DNA binding bias

As may be expected for a DNA binding enzyme, the Tn5 transposase used for ATAC-seq
library preparation has been described as having A GC base bias and physically covers
an ∼28bp footprint of double strand DNA [2]. Sites of native Tn5 transposition are char-
acterised by a 9bp replicated region flanking the donor inserted or transposed DNA. Tn5
transposition in ATAC-seq analysis attaches sequencing adaptors to both 5′ ends of the tar-
get DNA duplex and duplicates a 9bp replicated region in both strands through the action
of host cell DNA repair factors. After sequencing and adaptor trimming the sequence read
will therefore start with this 9bp replicated region continuing through to the non-replicated
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sequence downstream. The binding bias of the Tn5 transposase is however not comprehen-
sively understood having unknown effects on the downstream analysis of ATAC-seq data.
In order to characterise the transposase binding site (TBS), 10,000 random paired end reads
were selected from two seperate human ATAC-seq libraries and the nucleotide frequencies
for 60bp upstream and downstream of the read ends were extracted. Examining the GC
content of these sites finds variation within the 9bp replicated region as well as ∼7bp on
either flank of the replicated region (Figure 5.2). The GC content extending into the read
is slightly higher than the flank of genome not sequenced which may be explained by PCR
bias in the amplification of the sequencing library [129].
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Fig. 5.2 GC nucleotide bias in transposase insertion site. Variation in the nucleotide bias
of the Tn5 transposase extends 7bp beyond the edge of the read and 16bp within the read
incorporating the 9bp replicated region and a symmetrical 7bp overhang. The frequency
of GC nucleotides are shown in red and AT nucleotides in green. GC content is enriched
relative to the genome background within the read, likely due to PCR bias. Boundary edges
of the 9bp replicated region are indicated by thick and thin dashed lines. The black thicker
dotted line indicates the boundary edge to which the sequencing adaptor was ligated for this
fragment.

Examination of the 23bp region within the TBS reveals reflectional and rotational sym-
metry in AT/CG and purine/pyrimidine content respectively (Figure 5.3). The 9bp replicated
region has a general enrichment for GC content with the exception of the central nucleotide
which has an 11% higher frequency of AT bases. On the boundary of the 9bp replicated
region there is a preference for GC on the inside boundary and AT on the outside of the
boundary replicated in both read pairs. This boundary bias is highest on the sequencing
adaptor bound edge compared to the within-read boundary edge. This subtle asymmetry
in GC content extends beyond the 9bp replicated region with a preference for two alternat-
ing GCs with ATs followed by a string of ∼3 GC bases. This boundary difference may in
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part relate to PCR bias however the observation of AT enrichment beyond the edge of the
read, and thus a sequence replaced by a sequencing adaptor for PCR amplification, sug-
gests this bias may originate with the transposase itself. One potential explanation is that
the AT to GC boundary is biochemically favourable for the sequencing adaptor’s ligation to
the target DNA. In this way the within read 9bp boundary would still be favoured for the
transposase dimer binding, yet fragments sitting on a AT to GC boundary are slightly more
likely to be represented in the sequencing library. Alongside the GC bias there is also a bias
in purine/pyrimidine content showing rotational symmetry through the middle of the 9bp
replicated region. This rotational symmetry fits with the proposed transposase binding as
a dimer with each unit orientated with opposing DNA strands. These results describing a
GC bias and the footprint of the transposase on accessible chromatin are crucial for further
downstream analysis.

5.2.2 Considerations for ATAC-seq pre-processing

With the establishment of new methods, the processing steps necessary for downstream
analysis are evolved to adapt to the unique biases and experimental factors that effect the
utility of the method. For ATAC-seq the transposase’s preference for binding GC rich loci
will affect the estimation of accessibility at varying loci. Likewise the effect of DNA frag-
ment insert size variation between libraries may introduce another form of bias to the anal-
ysis. Experimental factors like variation in chromatin structure, disruption or disassociation
during exposure to the transposase may introduce other types of bias or experimental varia-
tion to consider.

Adaptor trimming

ATAC-seq libraries are amplified using the transposed sequencing adaptors as PCR primers.
As the transposase occupies ∼28bp the minimal fragment insert size is ∼38bp including
two 9bp replicated regions and two ∼9.5bp flanking regions [2]. Adaptors from ATAC-
seq library reads are found at both 5′ and 3′ ends of each strand so when the sequencing
extension length is longer than the insert size, the sequencing adaptor will be included in
the 3′ end of the sequence. For this reason the identical adaptor sequence must be trimmed
from both 5′ and 3′ ends of each read before alignment.
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Fig. 5.3 GC/AT and purine/pyrimidine bias within the transposase binding site (TBS). AT
or Purine bias is represented by green positive bars and GC or Pyrimidine bias is repre-
sented by red negative bars (% change from genome average frequency). A model of the
Tn5 transposase binding as a dimer and transposition of sequencing adaptors is illustrated,
approximately scaled to its predicted footprint. Boundary edges of the 9bp replicated re-
gion are indicated by thick and thin dotted black lines. The thicker dotted line indicates the
boundary edge to which the sequencing adaptor was ligated for this fragment. Replicates
of these plots derived from an independent ATAC-seq library can be found in the appendix
(Figure 7.9).

Detecting accessible chromatin

Having established the nucleotide biases and physical footprint of the Tn5 transposase the
next step in the analysis of ATAC-seq data is determining how to identify open chromatin.
The process by which ATAC-seq finds open chromatin is by identifying regions of the
genome where the transposase is able to bind and successfully insert sequencing adaptors.
Extending this logic, the 28bp transposase footprint represents the known locus of open
chromatin stretching 9.5bp beyond the edge of the read and 18.5bp into the read inclusive
of the 9bp replicated region and the symmetrical 9.5bp flanking region. For practical pur-
poses to annotating these loci the extension flanking the 9bp replicated region were reduced
to 9bp for a conservative total footprint of 27bp. These transposase binding site (TBS) foot-
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prints across the genome can then be used to look for enrichment with peak calling or used
for differential accessibility using loci counts. An additional factor to consider is that a TBS
is only detected if a comparable second transposition event happens proximal to the first.
Stochastic events where a single transposase finds rare access to a region of compacted chro-
matin should be less likely to be presented in an ATAC-seq library compared to insertion
events that take place in larger accessible loci.

Paired-end insert size analysis

As ATAC-seq tags chromatin fragments with sequencing adaptors, paired-end sequencing
and subsequent alignment returns an additional feature of interest, the fragment insert size.
Analysis of the fragment insert size density revealed an ∼200bp periodicity which was pro-
posed to represent nucleosome bound loops of transposase protected chromatin [24]. Using
these ∼200bp multiple insert size fragments, nucleosome binding sites could be inferred.
Fragments with an insert size of less than 100bp were considered to likely originate from
nucleosome free loci. Comparing the insert size distribution of 30 ATAC-seq libraries re-
veals substantial variation between libraries (Figure 5.4). Eight libraries were purified using
a slightly different AMPure bead protocol at the insistence of the sequencing facility result-
ing in a reduced capture of fragments less than ∼120bp compensated by a higher represen-
tation of fragments larger than ∼150bp. These libraries with greater average insert size also
seem to have a more pronounced 200bp "nucleosome bound" periodicity likely representing
an enrichment for these protected fragments.
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Fig. 5.4 Variation in insert/fragment size between libraries. The red to blue gradient of
lines represents the ratio of average insert sizes in windows between 40-100bp and 170-
230bp (represented by grey boxes). The eight libraries prepared using the slightly different
protocol are dark blue and have a distinct enrichment at around ∼200bp insert size. Y axis
shows the Log2 transposed fragments per million.

Theoretically variation in the ratio of nucleosome free and nucleosome bound regions
at different loci could lead to over or under estimation of specific loci in insert size skewed
libraries. While experimental variation in insert size distribution can be mitigated by im-
proved and more consistent library preparation, variatiation of insert size between libraries
is somewhat inescapable therefor examination of this potential bias may be of importance.
Using the karyotypically normal foetal forebrain U3, U4 and U7 NS libraries to mitigate the
effect of genomic copy number variation, counts of TBSs for fragments between 40-100bp
or 170-230bp at 266,060 loci (See “Loci selection” below) were compared (Figure 5.5 and
5.6). As expected the potentially nucleosome bound 170-230bp insert size counts are more
frequent in large fragment biased libraries compared to short 40-100bp insert counts. Clus-
tering and principal component analysis of the sample and insert size counts reveals that
library insert size counts tend to cluster together indicating that the variation between insert
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Fig. 5.5 Analysis of library insert/fragment size variation on loci accessibility estimates.
Counts for transposase binding sites extracted from reads with either 40-100bp or 170-
230bp insert sizes alongside insert size distribution plots for 6 karyotypically normal NS
lines. Counts from libraries with an enrichment for ∼200bp insert size fragments show
a relative over abundance of counts in the 170-230bp insert size set but remain broadly
correlated.

size counts is lower than between cell lines and passages. These findings indicate that while
library insert size distribution differences do introduce some additional variation, this vari-
ation is low for even the most divergent libraries biased by experimental library preparation
differences.

Detecting nucleosome positioning

The observed periodicity of ∼200bp multiple fragments suggests that nucleosome bound
DNA, which covers ∼150bp extended by 18bp on each flank of the nucleosome to allow for
transposase binding, is protected from transposition. Enrichment of these ∼200bp multiple
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Fig. 5.6 Clustering analysis of library insert/fragment size variation on loci accessibility
estimates. Principal component analysis and hierarchical clustering of 40-100bp or 170-
230bp insert size count sets reveals a preference for inset size counts to cluster together
rather than separating into separate 40-100bp or 170-230bp insert size clusters irrespective
of original line. This preference for within cell line clustering suggests that insert size
variation has less effect on accessibility estimates than other forms of variation.

fragments was used to infer nucleosome enrichment at genomic loci [24]. As the insert size
distribution varies between libraries the power to consistently identify nucleosome bound
regions will differ between libraries. Splitting aligned reads into ≤100bp nucleosome free
reads and ≥150bp nucleosome bound reads can reveal the organisation of genomic features
like transcription start sites [24].

5.2.3 Application of ATAC-seq for differential analysis of chromatin
accessibility

Loci selection

In ATAC-seq analysis open chromatin is identified by finding loci enriched with TBSs com-
pared to the genome background. As set out above the Tn5 transposase has a GC base bias
which will cause more TBSs to be identified in GC rich regions. Likewise the likelihood of
transposition at individual loci with be partially influenced by similarity to the preferred Tn5
transposase AT/GC or purine/pyrimidine sequence. At the time of writing no peak-calling
algorithm is described that can integrate binding bias variables to adjust the influence of
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individual access sites on enrichment. The flexible peak-calling software package F-seq
identifies sequence tag enriched loci compared to the background using local kernel density
estimates for specified feature sized windows [17]. Applying F-seq to TBS loci identifies the
loci more accessible compared to the condensed heterochromatin background. The F-seq
model enables the enrichment of different expected feature sizes. To enable the identifica-
tion of both broad and relatively small regions of accessible chromatin F-seq was applied
using two separate sets of parameters for broad (2kb window) and fine peaks (600bp). En-
riched loci for each feature size were called using TBS loci for each ATAC-seq library and
were subsequently merged into a collection of broad or fine loci identified in any individual
ATAC-seq library. Combining the broad and fine loci into a single loci set enables counts
of TBSs to be compared across different libraries for the same sites. Loci that overlapped
regions blacklisted for functional genomics analysis by the ENCODE consortium were re-
moved from further analysis [259]. Any loci uniquely more accessible in a single library or
phenotype should be represented in the final sample/loci count matrix. Loci for TBS count
extraction can also be selected based on annotated features like transcription start sites or
known enhancers.

Conditional quantile normalisation and differential analysis

The established GC bias of the Tn5 transposase leads to over estimation of accessibility of
GC rich loci. Loci varying in GC content are therefore not directly comparable without
adjusting for GC bias. Similarly differences in the distribution of counts must be accounted
for and proportionally adjusted before comparing between samples. The conditional quan-
tile normalization (CQN) algorithm was implemented to robustly normalise RNA-seq data
taking in to account both the proportion of GC content and transcript length [94]. These loci
accessibility estimates normalised by CQN taking into account GC content and loci length
provides both a general use matrix for the visualisation of chromatin accessibility. The off-
sets calculated by CQN normalisation can also be passed to differential count enrichment
tools like DEseq and edgeR as loci specific normalisation factors [173]. The application of
differential count enrichment tools allows for the identification of loci differentially acces-
sible between different groups or conditions.
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5.3 Results: Application of ATAC-seq to the characterisa-
tion of GNS and NS cells

The above discussed pre-processing, biases and methods used for the analysis of ATAC-
seq datasets were then applied to examine chromatin accessibility in a panel of seven GNS
and five NS cell lines with biological replicates. The analysis of these ATAC-seq libraries
broadly mirrors the expression analysis from Chapter 3 by comparing GNS versus NS cell
chromatin accessibility as well as identifying variation within GNS lines that is representa-
tive of GNS proneural and mesenchymal chromatin organisation.

5.3.1 ATAC-seq GNS to NS cell line comparison

A total of 266,060 enriched loci were found across twenty three ATAC-seq libraries. Prin-
cipal component analysis of CQN normalised counts finds the NS cells cluster together
with one outlying NS library (U3 p14) in principal component 1 (Figure 5.7). Meanwhile
the GNS libraries are dispersed across the first three principal components. This within
NS consistency and significant diversity between GNS samples mirrors the equivalent gene
expression profiles described in Chapter 3 (Figure 4.3). Differential analysis of CQN nor-
malised counts using DESeq2 [159] between fourteen GNS and nine NS libraries finds
40,579 loci enriched in GNS cells covering 50.6Mb and 30,157 loci enriched in NS cells
covering 22.9Mb (p ≤ 0.05). While GNS cell line genomes are highly aneuploid with
frequent amplification of chromosome 7 and loss of heterozygosity of chromosome 10, dif-
ferential accessibility is not strictly dependent on copy number variation. Significantly en-
riched loci on the frequently amplified chromosome 7 are biased towards the GNS lines with
12,042 loci in GNS compared to 500 in NS. For chromosome 10, which is regularly deleted
in glioma, the relationship is inverted with 407 GNS enriched loci compared to 3,541 in NS.
While this strictly represents the reality that genes and regulatory regions residing on chro-
mosome 7 tend to be more accessible in GNS due to the increased copy number, loci that are
a selectively made relatively inaccessible may be difficult to identify without compensatory
larger fold changes. The effects of copy number variation may be compensated by attempts
to accurately quantify copy number or simply by estimating the library size for differential
analysis in sub-chromosome windows. Attempts to adjust for copy number variation will
however depend on the accuracy of genomic copy number estimates.
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Fig. 5.7 Principal component analysis of GNS and NS CQN normalised log2 TBS counts.
NS lines cluster together as a tight group with the exception of the U3 p14 library. GNS
libraries appear to be responsible for a majority of the variation across this dataset as may
be expected from their transcriptional and genomic diversity.
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Fig. 5.8 Heatmap of the top 1000 high fold-change normalised loci counts differentially
accessible between GNS and NS (p ≤ 0.05). NS enriched loci show relative consistency in
comparison to the diversity seen in GNS enriched loci. This pattern of NS consistency and
GNS diversity matches the expression profiles of these lines (Figures 4.3 and 7.8). Units
used in the heatmap represent row mean subtracted, CQN normalised log2 TBS counts.

Visualisation of high fold change differentially accessible loci between GNS and NS
cells again echoes the expression analysis from Chapter 3 with generally consistent variation
between the NS lines and comparably more diversity within the GNS lines (Figure 5.8).
Examining the loci of large fold change genes differentially expressed between GNS and NS
lines (Chapter 4, Figure 4.1) reveals differentially accessibility of these genes transcription
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start sites (Table 5.1). Those genes with larger expression fold changes are more likely to
have a significantly differentially accessible TSSs. These results reinforce the importance
of these gene sets in differentiating between GNS and NS cells but also reveal a consistency
of results originating from both expression analysis and ATAC-seq.



5.3 Results: Application of ATAC-seq to the characterisation of GNS and NS cells 105

Overexpressed in GNS Differential TSS in GNS Overexpressed in NS Differential TSS in NS

RNF114 ✓ ANO4 ✗

FOXG1 ✓ EPB41L3 ✓

TFAP2A ✓ CELSR1 ✗

GET4 ✓ REC8 ✓

MR1 ✓ IPO5 ✓

HOXD10 ✗ NEDD4 ✗

FAM102A ✓ MGST1 ✓

NKX2-2 ✓ SORBS2 ✗

TGFA ✗ ACTA2 ✓

APCDD1 ✗ TAGLN ✓

HPSE ✗ AP3M1 ✗

CD82 ✗ FAM204A ✗

NUDCD3 ✓ SYT1 ✓

NMNAT3 ✓ NHLRC2 ✗

MITF ✓ GFRA1 ✓

SHOX2 ✓ GNG12 ✗

PMS2P3 ✓ PDLIM1 ✗

NR1D1 ✗ BASP1 ✓

KATNAL2 ✗ ME1 ✓

LMO4 ✗ RGMB ✗

SNAI2 ✗ FAM160B1 ✗

HIST2H2BF ✗ PPP3CB ✗

TBC1D8 ✗ RNF182 ✗

NID2 ✗ KPNA3 ✗

DNAH9 ✗ TUSC3 ✓

MRM1 ✗ MYO1B ✓

SKAP2 ✗ H2AFY2 ✓

FAM220A ✓ ZFAND4 ✓

GLUL ✗ TLE4 ✓

CLDN15 ✓ PHKB ✗

WDR91 ✓ FARP1 ✗

SIX1 ✗ WDFY3 ✗

HOXC6 ✗ ATE1 ✗

TRRAP ✓ SUPT3H ✗

PCDHB3 ✗ RB1 ✗

SLC47A1 ✗ LOX ✗

ANAPC2 ✗ GLUD1 ✗

C10orf90 ✗ INPP5F ✗

GRB10 ✓ SHOC2 ✗

MOCS1 ✗ KIF1BP ✗

Table 5.1 Transcription start site (TSS) accessibility in genes differentially expressed be-
tween GNS and NS. Blue cell checkmarks indicate that a differentially more accessible loci
for that cell type, overlaps with the respective gene’s TSS. More significantly differentially
expressed, and high fold change, genes are more likely to also have a significantly differen-
tially accessible TSSs.
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In order to directly compare ATAC-seq and gene expression datasets, TBS counts from
1kb upstream and 200bp downstream of transcription start sites for genes identified as dif-
ferentially expressed in the microarray dataset. Comparing log fold change intensity and
normalised ATAC-seq transposase accessibility ratio between GNS and NS samples reveals
a strong relationship between expression and chromatin accessibility (Figure 5.9, F-test p <
2.22×10−16). This relationship is far from determinative with a large proportion of differ-
entially expressed genes showing little change in accessibility between cell types. Moreover
many genes overexpressed in one condition are more accessible in the opposite condition
(i.e. More expressed in GNS yet more accessible in NS). This reflects what we would ex-
pect from the complex process of gene regulation alongside cancer associated copy number
changes.
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Fig. 5.9 Relationship between expression fold change and ATAC-seq TSS accessibility
between NS and GNS samples. Higher values on both axes indicate higher expression
or accessibility in NS samples. Regression fit is illustrated by a black line (F-test p <
2.22× 10−16, R2 = 0.09). Expression units are the log fold change of microarray log in-
tensity and ATAC-seq units represent log normalised TBS count ratio between mean NS
and GNS samples. Units used in the for accessibility are DESeq2 derived, CQN normalised
log2 fold change TBSs (X axis) and log2 fold change intensity units for the expression
values (Y axis).

5.3.2 ATAC-seq GNS subtype analysis reveals proneural and mesenchy-
mal associated differences in chromatin accessibility

As with gene expression profiles of GNS cells, extensive variation within the ATAC-seq
accessibility profiles for different GNS cell lines is apparent. Clustering both with NS cells
(Figure 5.8) and in GNS libraries alone Figure 5.10 reveals that GNS lines can be separated
into two major groups. The sample to group assignment of these lines largely mirrors the
expression based clustering into proneural and mesenchymal GNS lines (Chapter 3) with
the exception of G25. In the expression analysis G25 clusters with the mesenchymal lines
however in the ATAC-seq profile this line clusters with the proneural lines G7 and G144.
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A subset of loci used in the GNS clustering are highly enriched within G25 compared to
the other GNS lines. These loci are spaced across 17.2Mb of chromosome 12 including the
frequently amplified CDK4 and appears to represent significant amplification of this region
beyond the level of any amplification found in other GNS lines making these loci some of
the most variable in this dataset.

Comparing between the proneural and mesenchymal-like lines, the loci differentially
accessible between these two subtypes were identified. This analysis identified 21,273 loci
more accessible in proneural-like lines and 18,586 loci more accessible in the mesenchymal-
like lines. Examining the transcription start sites for consensus proneural or mesenchymal
genes (Table 5.2) finds subtype specific differential accessibility. Further examination of
GNS proneural and mesenchymal coexpression module genes described in Chapter 3 re-
veals a clear enrichement for differential accessibility of proneural loci at proneural gene
transcription start sites 5.3. The association of mesenchymal accessible chromatin with
mesenchymal module genes is comparatively poor which could be explained by the rela-
tive diversity within the mesenchymal subtype (Figure 5.7). Comparing between expression
and ATAC-accessibility for the GNS proneural and mesenchymal subtypes reveals a similar
significant positive relationship (Figure 5.11, F-test p < 2.22×10−16) to that between GNS
and NS samples (Figure 5.9).

5.3.3 Transcription factor motif enrichment in differentially accessible
chromatin

Maintenance and specification of gene expression programs and developmental lineages are
at least in part controlled by the binding of sequence specific transcription factors (TFs)
to suitable loci regulating gene expression. Identification of loci readily accessible to TF
binding may be enriched for their associated TF DNA motifs inferring a regulatory role. The
MEME-suite tool AME [169] was applied to sequences extracted from loci differentially
accessible between GNS and NS to identify known TF motifs relatively enriched within
each cell type compared to all accessible loci. Comparing motif enrichment in GNS and
NS finds 1,003 motifs for GNS and 11 for NS (Tables 7.10 and 7.11). All motifs found to
be enriched in NS cells are minor variants of the AP-1 transcription factor motif. Motifs
enriched in GNS loci include a majority of large developmental TF families including, in
alphabetical order, CEBP, E2F, ELF, ELK, ETS, FOX, GATA, HMGA, HOX, MEF, NKX,
PAX, POU, SOX, and STAT. Many of the highest ranked GNS enriched motifs are variants
of the forkhead motif with 13 of the top 20 motifs associated with various FOX/forkhead
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Consensus proneural Differential TSS Consensus mesenchymal Differential TSS
ACSL6 ✗ ABCC3 ✓
ATCAY ✓ ANXA2 ✗
BCAN ✓ C1R ✗
DLL1 ✗ C1RL ✗
DLL3 ✓ CCL2 ✓
GNAO1 ✗ CFI ✓
GRIA2 ✓ COL6A2 ✗
MAP2 ✓ GLIPR1 ✓
MYT1 ✗ HFE ✗
NCAM1 ✗ LOXL1 ✓
OLIG1 ✓ MYOF ✗
OLIG2 ✓ PTRF ✗
PHYHIPL ✓ SERPINE1 ✗
RUNDC3A ✓ THBS1 ✗
SCG3 ✓ TMBIM1 ✗
SEPT3 ✗
SEZ6L ✓
SHD ✗
SOX6 ✗
ZDHHC22 ✓

Table 5.2 Consensus proneural and mesenchymal genes and TSS accessibility status. Con-
sensus proneural genes are highly likely to have a more accessible TSS in proneural lines
with 13 out of 16 genes identified. Consensus mesenchymal genes and TSS accessibility is
comparatively poorly associated with only 7 out of 23 identified. The influence of glioma
copy number variation may explain this reduced association with expression.

transcription factors. Transcription factor motifs enriched in loci differentially accessible
between the proneural and mesenchymal-like lines were also identified. A total of 214
TF motifs were found to be significantly enriched within the proneural-like accessible loci
and for the mesenchymal counterpart loci, a total of 492 motifs were identified. Proneural
enriched motifs include members of the forkhead family Foxl1, Foxo1, Foxo3, Foxp2 and
Foxq1, amongst other developmentally significant TF familes such as Sox, Hox and Pou
to highlight a few (Table 7.12). Meanwhile the mesenchymal enriched TFs include the TF
families CEBP, AP-1, Fox, Hox, Irf, Pou and Sox (Table 7.13). One of the few motifs sets
enriched within the NS lines attributed to the AP-1 TF associated proteins are also enriched
within the mesenchymal-like GNS lines suggesting low AP-1 motif frequency may be a
feature of proneural GNS lines instead.

The identification of motifs that are found in differentially accessible loci does not quan-
titatively describe the comparative presence of TF motifs but rather helps to inform whether
a motif could be identified as having a potential role in that cell type. Instead the locations of
motif instances were identified within regions of open chromatin and the frequency of mo-
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Primary proneural GNS module Differential TSS Primary mesenchymal GNS module Differential TSS
CCND2 ✗ EDIL3 ✗
C1orf61 ✗ TMEFF2 ✗
ASCL1 ✓ THBS1 ✗
GRIA2 ✓ CCL2 ✓
GRIK3 ✓ GLIPR1 ✓
BCAN ✓ EFEMP1 ✗
AGT ✗ PRICKLE1 ✓
CHRDL1 ✗ CFI ✓
NCAN ✗ CTGF ✗
SEZ6L ✓ ABCC3 ✓
LHFPL3 ✓ SERPINE1 ✗
PTPRZ1 ✓ LIPG ✗
WSCD1 ✗ CAV1 ✗
ADCYAP1R1 ✓ MYOF ✗
DCX ✗ SDC2 ✗
SCG3 ✓ CYR61 ✗
MIR4697HG ✗ PLK2 ✗
GABRQ ✓ FBLN1 ✗
GAP43 ✗ ITGA3 ✓
GPR19 ✗ NT5DC3 ✗

Table 5.3 Primary proneural and mesenchymal GNS module genes and TSS accessibility
status. Similarly to the consensus proneural and mesenchymal genes, the primary proneural
module genes are highly likely to have a significantly more accessible TSS where primary
mesenchymal module genes are inconsistently accessible. PRICLE1 has proneural and mes-
enchymal differential accessibility at alternative TSSs.

tif instances per megabase of differentially accessible DNA found in GNS, NS, proneural
and mesenchymal lines were used as a metric to identify motifs associated with each condi-
tion. Comparing motif frequencies for each condition versus to the motif frequency found in
global accessible DNA reveals that loci differentially accessible between conditions tends to
be enriched compared to the background accessible chromatin (Figure 5.12). This general
enrichment for motifs may be explained by a relative abundance of promotor proximal and
enhancer-like regions within differentially accessible chromatin in comparison to generally
accessible loci.
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Fig. 5.12 Quantification of motif instances in differentially accessible chromatin versus
global accessible chromatin. Differentially accessible loci tend to contain more motif in-
stances compared to the background loci indicating that regulatory regions may be enriched
within these differential sets. Linear regression indicates that loci enriched in NS compared
to GNS have the highest relative frequency of motif instances which may be explained by an
enrichment of genomic amplifications present in the GNS differentially accessible loci. The
red line indicates a linear regression fit and the black line represents equal motif frequency
between background and the different conditions.

Comparing motif frequency between GNS and NS differentially accessible loci reveals
that there are slightly more motif instances per megabase in NS differentially accessible
loci compared to the GNS differentially accessible loci (Linear regression, β = 1.28 ver-
sus 1.41, Figure 5.13). This may be explained by the calling of large amplified regions of
DNA as GNS enriched which may contain fewer motif instances than more defined regu-
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latory regions. As the relative frequencies of motifs will be biased by the unique features
of each differential accessibility set, motifs associated with each condition were extracted
in a ranked fashion in comparison to its control (GNS versus NS and proneural versus mes-
enchymal). The top 50 motifs for each condition are presented in tables 7.14, 7.15, 7.16 and
7.17. The top 19 motifs enriched within NS loci are variants of the AP-1 motif and form
the outlying NS motifs shown in figure 5.13. Remarkably the AP-1 motif also represents
the top 28 motifs in mesenchymal loci compared to proneural loci. The motifs with the
highest relative frequency in GNS loci compared to NS loci are variants of ZNF238 motif.
Other motifs enriched within GNS loci include Tal1, IKZF1, CEBPB and the MEF2 family.
In NS loci the TEAD, SOX and Runx family of motifs as well as the abundant AP-1 like
motifs are more accessible compared to GNS loci. Motifs that have a higher frequency in
mesenchymal enriched loci compared to proneural loci again include the AP-1 motifs as
well as OTX2 and PITX2 alongside TEAD, RAR and Runx family motifs reflecting a simi-
larity to NS enriched motifs. The top proneural motifs include ARIA3A and NHP6B motifs
alongside Fox and Pou family members.
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Fig. 5.13 Comparing motif instance frequency in differentially accessible loci identifies
motifs enriched in each condition. A subset AP-1 transcription factor motifs are enriched in
both tests between NS versus GNS as well as mesenchymal versus proneural. These AP-1
motifs are displayed as the outlying points dispersed above the black line which indicates
equality of motif frequency between conditions. Non AP-1 associated motifs with less
drastic differences in frequency are described in detail in tables 7.14, 7.15, 7.16 and 7.17.
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5.3.4 An examination of transcription factor motif footprint profiles

Examination of the profile of accessible chromatin proximal to instances of a transcrip-
tion factor’s motif may reveal functional characteristics or steric footprints. Aggregate ac-
cessibility at motif instances of the top 50 ranked motifs enriched in each condition were
extracted covering 3kb in either direction from the center of the motif. The average tran-
scription factor accessibility profile (TFAP) across GNS and NS libraries is presented in
figure 5.14. TFAPs tend to follow a trend from high accessibility at the motif steric foot-
print edge and low accessibility ∼1.1kb distal from the motif to low proximal and high
distal accessibility. A similar distal/proximal trend is seen in the predicted nucleosome den-
sity plots (Figure 5.14, right column). A more detailed view on the proximal accessibility
reveals the profile of steric hinderance within ∼30bp of the motif center alongside a re-
flective symmetry in predicted nucleosome signal (Figure 5.14, bottom row). The TFAPs
with high proximal and low distal accessibility have a pronounced predicted nucleosome
signal ∼120bp from the center of the motif which may represent an enriched positioning
of nucleosomes either side of the transcription factor motif. DNA bound by nucleosomes
cover ∼150bp therefore the edge of the nucleosome would sit at ∼45bp sitting close to the
∼30bp steric footprint allowing space for transposes binding. TFAPs with low proximal
and high distal accessibility also present a transposition protected steric footprint, however
in these profiles the accessibility increases from the motif center to peak at ∼1.1kb distal.
The predicted nucleosome signal for these TFAPs suggests nucleosomes may be frequently
positioned directly over these motif instances however it is also possible that other DNA
binding factors at these sites lead to an enrichment of ∼150kb fragments that are inappro-
priately inferred to represent nucleosomes. Motifs for known transcription factor families
tend to cluster this trend for variable proximal and distal accessibility (Figure 5.15). TFAPs
with the highest proximal and lowest distal accessibility are variants of the symetrical AP-1
transcription factor motif. These AP-1 like motifs compose the majority of this class of
TFAPs followed by the RUNX and SOX families. The TFAPs with the lowest proximal and
highest distal accessibility were attributed to the FOX and MEF2 families of transcription
factors. Curiously this proximal/distal trend of AP-1 and RUNX versus FOX and MEF2 fac-
tors matches the assocciation of these motifs between GNS and NS enriched loci as well as
between proneural and mesenchymal enriched loci (Tables 7.14,7.15,7.16,7.17). This bias
for the type of transcription factor motifs that are found in differentially accessible loci may
relate to differences in the functional roles of the loci like enhancers, promotors, insulators
or silencers.



114 ATAC-seq analysis and its application to GNS and NS cells

Fig. 5.14 Transcription factor accessibility profiles (TFAPs) follow a trend between proxi-
mal and distal enrichment. Examining TFAPs either 3kb (Top row) or 300bp (Bottom row)
either side of the motif in both accessibility (Left column) and predicted nucleosome density
(Right column). The symmetrical AP-1 motifs make up a majority of the highest proximal
and lowest distal accessibility TFAPs (Red). Steric hinderance of each transcription factor
protecting its motif site (footprinting) can be seen in the bottom left plot as a less accessible
groove in the profile. Nucleosome density estimates suggest high proximal and low distal
accessibility TFAPs tend to have nucleosomes directly flanking the motif and low proxi-
mal and high distal accessibility TFAPs (Blue) present the inverse. Units used are z-score
normalised average TBS density.
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Fig. 5.10 Heatmap clustering of 2,000 highly variable normalised loci counts in GNS cell
lines. The proneural like libraries G7, G144 and G25 cluster separately from the more
mesenchymal like libraries. A large proportion of the most variable loci map back to a
highly enriched 17.2mb section of chromosome 12 in G25. Units within the heatmap are
row mean normalised log2 TBS counts normalised with CQN.
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Fig. 5.11 Relationship between expression fold change and ATAC-seq TSS accessibility
between GNS subtypes. Higher values on both axes indicate higher expression or acces-
sibility in mesenchymal samples. Regression fit is illustrated by a black line (F-test p <
2.22× 10−16, R2 = 0.11). Units used in the for accessibility are DESeq2 derived, CQN
normalised log2 fold change TBSs (x axis) and log2 fold change intensity units for the
expression values (y axis).
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5.4 Discussion

Set out in this chapter is an overview of the methodological challenges apparent in the anal-
ysis of ATAC-seq data. Application of these methods to the characterisation of GNS and NS
cell lines finds that chromatin accessibility mirrors and further supports the identification of
differences between GNS and NS cells as well as the separation of GNS lines into proneural
and mesenchymal subtypes. The characterisation of the Tn5 transposase binding site reflects
the rotational and reflectional symmetry of the transposase which binds DNA as a dimer. As
the transposase has a preferred binding site sequence, methods that integrate this sequence
preference may enable more accurate accessibility estimates and improve the identification
of enriched open chromatin loci. With the limitation of current tools the GC base bias of
the transposase is accounted for by including loci GC estimates as a cofactor in the nor-
malisation of loci accessibility estimates. Differences in paired-end library insert size were
shown to have little overall effect on the intra-sample variation. Application of ATAC-seq
to the characterisation of GNS and NS cells finds a general consistency of NS line accessi-
bility profiles. GNS lines on the other hand display a diverse range of accessibility variation
with GNS lines separating into proneural and mesenchymal profiles. Genes differentially
expressed between GNS and NS cells are also shown to have differential TSS accessibil-
ity. Extending the analysis to clustering within GNS lines finds comparable proneural and
mesenchymal clusters. Genes from proneural and mesenchymal modules are likewise dif-
ferentially accessible between GNS subtype lines. Analysis of transcription factor motif
accessibility finds enrichment for numerous neural development related transcription fac-
tors. The most significant differences observed relates to variation in AP-1 transcription
factor accessibility. Loci more accessible in both NS versus GNS as well as loci more ac-
cessible in mesenchymal versus proneural lines are enriched for AP-1 motifs. This may
suggest that proneural accessible loci are depleted for AP-1 motifs rather than the inverse.



Chapter 6

Discussion and Outlook

6.1 Discussion

Identifying sources of variation both within cancer tissues or between normal and neoplas-
tic cells is a critical process in the understanding of the disease. Variation between tumour
samples and by extension, individual patient’s tumours have generally been characterised as
members of discrete subtype categories. While this discrete subtypes hypothesis has been
successful for breast cancer tumours, other tumour types, including glioma, have been diffi-
cult to divide into reproducible and distinct categories [166]. This inconsistency of subtype
distinctions extends into the analysis of GSCs, where cells removed from the tumour niche
unsurprisingly present an independent expression profile to their derived tumour tissue sam-
ples. Many have questioned whether GSC cultures can accurately represent the diversity and
functional potential of the neoplastic cells found in vivo [71, 87, 106, 143, 237, 263]. Set out
within this thesis I apply a novel coexpression method to identify features of subtype like
expression in tumour samples including a proneural to mesenchymal axis in glioma. I then
continue to show how this proneural to mesenchymal axis can be comparably identified in
GSCs using both microarray expression and ATAC-seq data. Along side this core finding
other results have included an investigation of breast cancer subtypes, ATAC-seq analysis
and a comparison of the differences between GNS and NS cell lines.

Analysis of tumour transcriptomes and cancer subtypes

The analysis of tumour transcriptomes has focused either on discrete categories of can-
cer subtypes or broad networks of coexpressed genes largely used to associate genes with
biological processes. Discrete subtypes are intended to reduce the diversity of tumour ex-
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pression into a set of profiles that can provide clinical and therapeutic benefits to the patient.
In contrast coexpression studies have largely focused on identifying relationships among
genes. The observation that common biological processes allow for coexpressed gene net-
works implies a large component of tumour expression variation can be ascribed to these
common features. These coexpression networks represented by independent gradients of
expression would therfore be expected consequences for the establishment of discrete sub-
types. Application of discrete clustering methods to a smooth continuous gradient will
still identify discrete separations of the data regardless of whether the data can be better
represented as a gradient. Set out in this thesis I show that these two distinct methodolo-
gies, subtype discovery and coexpression, can be combined to reveal reproducible subtypes
and infer gene expression that characterises them. Application of the novel coexpression
method, correlation marker clustering, was applied to two types of tumours that have pre-
viously been the focus of frequent subtype analysis. In breast invasive ductal carcinoma
(BRCA) I find coexpression modules representative of luminal and basal like expression
in agreement with previous subtype study signatures. Similarly in glioma the primary co-
expression modules are representative of the established proneural and mesenchymal sub-
types. Where low expression of the luminal module distinguishes basal like samples from
the luminal-like samples, expression of the glioma proneural and mesenchymal modules
presents a continuous gradient representative of a subtype axis. As all BRCA samples and
subtypes present basal module expression (Figure 3.4b), clustering within the basal module
reveals that FOXC1 and SFRP1 are more highly expressed in basal subtype samples than
in the luminal subtype samples that present high basal module expression. This process of
clustering within each independent coexpression module enables the identification of inde-
pendent subtype classifications that relate to established subtypes. The correlation marker
subclustering methodology enables the reclassification of established BRCA basal, luminal,
claudin-low and Her2-enriched subtypes within independent modules. Basal subtype sam-
ples are best distinguished by high FOXC1 expression relative to other basal module genes.
Similarly the claudin-low are distinguished by stromal gene variation and the Her2-enriched
subtype by loss of ESR1 expression and retention of FOXA1 and SPDEF expression.

In comparison clustering within glioma proneural and mesenchymal modules reveals a
poor intersection between established subtypes. No discrete clusters of glioma samples are
identified mirroring other studies that have suggested the classical and neural subtypes to be
absent. Instead glioma variation presents a dominant proneural to mesenchymal axis that is
present intratumourally, is associated with immune infiltration, progression and grade. This
lack of subtype identification may indicate that within module variation presents a more
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complex substructure that cannot be summarised by a simple dominant sample clustering.
Some established glioma subtypes may be replicated through analysis of coexpression mod-
ules at a range of different cut off heights and a diverse range of within module subcluster k
divisions. Future work will seek to examine if robust glioma subtype can be extracted using
further developed CMC-like methods.

Analysis of GNS and NS expression

Having investigated the variation found between glioma samples I move forward to examine
the variation found with glioma stem cell lines and between GSCs (or GNS cells) and neural
stem cells (NS). Comparing between GNS and NS lines I replicate and reinforce analysis
by Engström et al [55] highlighting overexpression of FOXG1 and TFAP2A in GNS cells
alongside Importins and numerous tumour suppressors including RB1 PTPRB and NEDD4

in NS cells. This characterisation of genes associated with either GNS or NS cells may help
identify glioma specific features that can be used to develop targeted therapeutics and direct
future GSC research alongside reassurance that these cells are a good in vitro representation
of the disease they are proposed to model. Application of the Verhaak et al. classifier [270]
to GNS expression profiles demonstrates that tumour derived signatures must be adapted to
enable in vitro characterisation due to differences in cellular environment. Application of
the CMC coexpression method to GNS expression data finds modules enriched for proneu-
ral and mesenchymal genes. These GNS proneural and mesenchymal modules separate
GNS lines into proneural and mesenchymal clusters. Proneural GNS lines cluster more
closely together than the more divergent mesenchymal lines. Mesenchymal modules are
enriched for genes associated with immune cell infiltration and inflammation suggests this
phenotype is may be induced, or enable, the increased presence of macrophages and other
immune cells into the tumour microenvironment. The association of neural developmental
transcription factors, perineuronal net and asymmetric division related genes with proneural
modules may suggest this phenotype is closest to the glial progenitor cell type in compar-
ison to the mesenchymal GNS cells. Through reanalysis of public data in the context of
GNS coexpression modules finds that cells transferred from EGF/FGF growth factor media
to serum media shifted towards a mesenchymal phenotype. The factors that lead to this
transformation are not well understood. Furthermore its not clear if GNS cells can transi-
tion from a mesenchymal to proneural phenotype or if this process can occur during tumour
expansion. As proneural GSC have been able to transition to a mesenchymal type, these
cells for fill the cancer stem cell ability to propagate tumours with differentiated progeny
representative of the parental tumour [136]. If however mesenchymal GSCs are unable to
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transition to a proneural subtype, mesenchymal GSCs may be better described as cancer
propagating cells.

Application of ATAC-seq for the characterisation of GNS and NS cells

As a method for interrogating chromatin accessibility, ATAC-seq is an exciting and flexible
new method [24]. In order to apply this method I discuss technical biases and practical
aspects of ATAC-seq analysis. Subsequent application of these methods on a panel of GNS
and NS ATAC-seq libraries reveals chromatin organisation that mirrors the expression dif-
ferences between GNS and NS cell lines. Similarly comparative ATAC-seq analysis reveals
proneural and mesenchymal subtype specific chromatin organisation. Examination of tran-
scription factor motif enrichment finds an over representation of AP-1 motifs in both NS
lines compared to GNS and in mesenchymal lines versus proneural lines. Combination of
ATAC-seq data with other high-throughput ’omics methods like ChIP-seq, RNA-seq and
4C-seq will improve efforts to comprehensively integrate different components of transcrip-
tional regulation.

6.2 Outlook and potential future work

Tumour subtype analysis

The application of CMC to simultaneously profile both samples and genes in independent
modules to other tumour types and other large expression datasets may provide further
valuable insight. Provision of CMC sample, gene and module information as a publicly
accessible database could become a useful resource for both research and clinical usage.
Association of clinical factors like drug efficacy to coexpression modules and sample sub-
clusters may extend the reach of personalised medicine. For research the association of
genes in CMC modules could be used in a similar way to gene ontology terms, annotating
genes with coexpression features. Itterative improvement of CMC-like methods may assist
in clarifying generally inconsistant tumour expression subtypes like GBM.

GNS analysis

For GNS and GSC biology a number of important questions become apparent following
the results set out in this thesis. The proneural and mesenchymal phenotypes of GNS lines
are of unknown importance to glioma biology. While these profiles clearly relate to glioma
proneural and mesenchymal subtypes, further work is required to profile their functional
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and clinical significance. While the proneural to mesenchymal axis is present within indi-
vidual tumours, it has yet to be shown that both phenotypes of GNS cell could be extracted
from each tumour. Having established that proneural like cells can be forced towards a mes-
enchymal phenotype, the factors present in serum that enable this transition are unknown.
Similarly its unknown whether mesenchymal like cells can be converted into a proneural
phenotype by any viable experimental methods. If proneural transition can be achieved,
what processes are required to force NS cells into proneural or mesenchymal phenotypes.
Another aspect to follow up is subtype specific differences in asymmetric division with
proneural expression of CCND2 and noted quiescent GSC populations and clonogenic ca-
pacity mediated by cell-cell contact [28]. It may be possible to identify both proneural and
mesenchymal GSCs within individual tumours. The derivation and characterisation of these
GSCs within individual tumours would reveal a switch in GSC type as reflective of the
tumour environment and lineage potential.

ATAC-seq analysis

As a relatively new method, many of the unique attributes and opportunities to exploit
ATAC-seq data have yet to be explored. A significant improvement in the accuracy of
ATAC-seq accessibility estimates could be achieved by including the Tn5 transposase’s
binding site sequence preferences as a cofactor. Many stages of ATAC-seq analysis could
benefit from this including peak-calling, transcription factor footprinting, accessibility esti-
mation and normalisation. Another area that could be improved is the provision of software
tools for ATAC-seq analysis. Toolsets like Bedtools [209] and Samtools [146] are essen-
tial components of many analysis pipelines and a comparable ATACtools package would
improve the speed and consistency of ATAC-seq data analysis for the bioinformatic com-
munity at large. The relationship between transcription factor motifs and transposase ac-
cessibility is another area of significant potential. Deeper sequencing of individual libraries
and normalisation for transposase bias may enable the estimation of transcription factor
binding at individual loci. This could work similarly to ChIP-seq estimates for transcription
factor binding with the weakness of a greater reliance on motif accuracy but also a lesser
dependence on antibody quality. The other advantage is that many different motifs could be
estimated from one library preparation as opposed to a single transcription factor per library
in CHIP-seq. ATAC-seq also has a reduced dependence on the quantity of genomic DNA
required for each library.
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Fig. 7.1 Comparison of UPGMC and UPGMA derived modules and subtypes. Feature re-
lated coexpression modules derived from the same correlation matrix and aggregated using
both UPGMC (Left column) and UPGMA (Right column) can replicate the BRCA basal,
claudin-low and Her2-enriched subtype distinctions set out in Chapter 2. Samples classified
as each subtype are highlighted in color for each subtype/plot row. Comparable CMC plots
in the main text can be found in figure 3.4. Units used are z-score normalised log2 FPKM.
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Fig. 7.2 Average linkage module metrics at a range of cut off heights. Coexpression modules
derived using the UPGMA linkage method are examined using metrics for average and
maximum number of genes per module (Top panel) as well as correlation to module z-score
summarised as the mean (Middle panel) or minimum (Bottom panel) of all module metrics.
The red line indicates the chosen cut off height of 0.45 for UPGMA derived modules.
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GO:ID p-value GO Term
GO:0002376 2.259E-39 immune system process
GO:0006955 2.470E-38 immune response
GO:0002682 1.110E-33 regulation of immune system process
GO:0002684 7.879E-29 positive regulation of immune system process
GO:0006952 3.879E-26 defense response
GO:0045321 8.346E-26 leukocyte activation
GO:0050776 2.122E-25 regulation of immune response
GO:0051249 4.508E-25 regulation of lymphocyte activation
GO:0046649 1.459E-24 lymphocyte activation
GO:0001775 2.700E-24 cell activation
GO:0002694 4.968E-24 regulation of leukocyte activation
GO:0050865 1.335E-23 regulation of cell activation
GO:0050778 1.909E-23 positive regulation of immune response
GO:0050863 3.624E-23 regulation of T cell activation
GO:0034110 8.829E-23 regulation of homotypic cell-cell adhesion

Table 7.1 Top 15 gene ontology terms enriched within the consensus immune cell module.
The gene universe used for this analysis was all genes contained within a coexpression
module at the 0.2 cut off used in each CMC run (total 6620 genes).

GO:ID p-value GO Term
GO:0007049 1.703E-86 cell cycle
GO:0000278 2.802E-80 mitotic cell cycle
GO:0022402 2.523E-78 cell cycle process
GO:1903047 1.670E-75 mitotic cell cycle process
GO:0000280 1.679E-73 nuclear division
GO:0048285 1.012E-72 organelle fission
GO:0007067 3.048E-64 mitotic nuclear division
GO:0007059 7.610E-55 chromosome segregation
GO:0051301 6.133E-54 cell division
GO:1902589 3.847E-35 single-organism organelle organization
GO:0006996 1.924E-34 organelle organization
GO:0000819 1.196E-33 sister chromatid segregation
GO:0044772 5.843E-33 mitotic cell cycle phase transition
GO:0051276 8.735E-33 chromosome organization
GO:0044770 2.983E-32 cell cycle phase transition

Table 7.2 Top 15 gene ontology terms enriched within the consensus mitosis module. The
gene universe used for this analysis was all genes contained within a coexpression module
at the 0.2 cut off used in each CMC run (total 6620 genes).



7.1 Supplementary figures and tables 161

Claudin-low / Low expression Claudin-low / High expression
COL10A1 SPON1
MMP11 DPYSL3
WISP1 NID1
BGN LAMB1
INHBA SRPX2
P4HA3 C14orf37
FN1 HTRA1
CTHRC1 PRRX1
C1QTNF6 MMP2
LRRC15 LOX
COL1A1 MRC2
COL5A1 CTSK
COL5A2 PCOLCE
FAP ANTXR1
POSTN ADAMTS2
LOXL1 CRISPLD2
FNDC1 CMTM3
VCAN COL8A2
OLFML2B COL6A2
COL1A2 DACT1
THY1 LUM
COL3A1 SPARC
CDH11 EMILIN1
ADAMTS6 CHSY3
MMP14 COL6A1
COL12A1 SPOCK1

SFRP2
HTRA3
SCARF2
ITGA11

Table 7.3 Stromal module genes differentially expressed compared to the module average
z-score for claudin-low like CMC subcluster samples.
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Fig. 7.3 Expression of CMC modules representative of high copy number amplifications
of the ERBB2 and CDK4 amplicons in BRCA and glioma respectively. Based only on
expression its possible to infer the copy number status of highly amplified loci. Y-axis units
represent module z-score log2 FPKM.
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Fig. 7.4 Basal module vs. SFRP1 expression showing Basal expression variation in luminal
samples and higher than expected SFRP1 expression in the basal samples. Colours indicate
PAM50 classification and units used are log2 FPKM (y axis) and z-score normalised log2
FPKM (x axis).
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Fig. 7.5 Luminal module vs. FOXA1 and SPDEF expression showing retention of FOXA1
and SPDEF expression in HER2 enriched samples (Purple circles). Units used are log2
FPKM (Y axis) and z-score normalised log2 FPKMs (X axis).
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Fig. 7.6 Clustering of BRCA expression data for the identification of Claudin-low subtype
samples. Clustering using Claudin-low marker genes identified by Herschkowitz et al. [98]
(Red and blue row markers). Sample column markers indicate either PAM50 subtypes or
the Claudin-low subtype samples inferred by this clustering (Blue samples). Units used are
row mean normalised log2 FPKMs.
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Proneural module Mesenchymal module
KLRC2 POSTN
PRLHR LTF
GRIN1 CHI3L1
HPSE2 PLA2G2A
GABRG2 HOXA7
CSMD3 MMP9
TNR IBSP
PCDH15 ABCC3
SPHKAP HOXC10
SVOP HOXA10
CACNG2 HOXA4
MYT1L HOXB3
CHGA HOXA3
SSTR1 HOXD13
GABRG1 CA9
GPR17 HOXD10
CPLX2 CHI3L2
CUX2 NNMT
FAM123C COL3A1
VSTM2A HOXA5
INA ESM1
SLC1A6 COL1A1
GLRA3 CLEC5A
KSR2 HOXD11
AGXT2L1 SPOCD1

Proneural module Mesenchymal module
C2orf85 TNFSF12-TNFSF13
SLC22A6 CXCL10
HRH3 PDPN
LRTM2 AQP5
RIMS2 CD163
L1CAM TREM1
CBLN1 SERPINA5
CDH18 IGFBP2
PCDH11X HOXA2
WSCD2 TIMP1
CALN1 SERPINA3
SCRT1 FMOD
ST8SIA3 FCGR2B
ACTL6B EMP3
JPH3 SRPX2
HMP19 SERPINE1
GFRA1 METTL7B
DACH2 GDF15
AFF2 STC1
GALNT13 HOXB4
PTPRT COL6A3
KLRC3 HOXB2
ATP8A2 HOXC6
DLL3 ACTG2
ELFN2 HOXC13

Table 7.4 Table of top 50 most variable proneural and mesenchymal genes.
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Mesenchymal Interferon Immune Cell
AQP5 CXCL11 SERPINA1
CHI3L1 CXCL10 SCIN
TREM1 LOC400759 RHOH
HK3 ISG15 FBP1
RBP1 IFI6 SLC2A5
CLEC5A OASL TLR8
METTL7B MX1 C16orf54
TMEM71 RSAD2 LOC100233209
COL1A1 BST2 IL12RB1
FN1 OAS2 CARD9
IGFBP2 GBP1 CD84
COL3A1 IFI44 C3
ABCC3 OAS1 PTPRC
RAB36 CMPK2 MS4A7
COL1A2 EPSTI1 WDFY4
ADAM12 PSMB9 CSF3R
SH2D4A SAMD9L CCR5
COL5A1 TAP1 SLC16A3
RARRES2 MX2 PYCARD
PDLIM4 STAT1 GPR160
FAM129A IFIH1 CYTIP
MIR155HG HLA-A NCF1
BATF HLA-B LILRA1
PTPN22 PSMB8 RIPK3
FBXO17 HLA-C PIK3CG

Mesenchymal Interferon Immune Cell
LUM PARP14 FGL2
ANXA1 B2M ADAM28
EVC2 DAPP1
C11orf63 CLEC7A
PYGL CIITA
C1S RNASE2
MYO1G GAPT
PDCD1LG2 SLC11A1
COL6A3 CMTM7
TYMP FCGR1A
PDPN VSIG4
FCGR2B ITGAL
TNFRSF12A FPR1
PLAU TRAF3IP3
CARD16 GPR34
SRPX2 CSF2RB
APOBEC3G HLA-DRB1
FCGR2C C17orf87
CISH PTAFR
PLEK2 CYBB
COL6A2 LILRA2
NNMT TFEC
PLAUR KCNK13
CD248 ARHGAP9
S100A4 HCST

Table 7.5 Table of mesenchymal module genes split into smaller and highly correlated in-
terferon, immune cell and mesenchymal modules.
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Fig. 7.7 Glioma proneural to mesenchymal axis showing tumour grade. Replicate figure
3.9a with coloring indicating tumour grade instead of Verhaak et al. subtypes. Units used
are z-score normalised log2 FPKMs.
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Fig. 7.8 Heatmap illustrating consensus genes differentially expressed between NS and GNS
in analysis by Engström et al. [55] and new data presented in this document. Genes over
and underexpressed in NS cells show relative consistency compared to GNS lines.
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GNS genes Table 7.6

Gene name Entrez id Adj. p-value Gene name Entrez id Adj. p-value

FOXG1 2290 1.72e-13 PPARA 5465 1.29e-03
NRN1 51299 2.59e-10 ATG101 60673 1.31e-03
PCDHB9 56127 5.42e-08 GEMIN6 79833 1.32e-03
TTC39C 125488 5.97e-08 PPAN 56342 1.33e-03
ZFAND2A 90637 9.27e-08 MKRN1 23608 1.38e-03
LDHA 3939 2.98e-07 HOOK2 29911 1.41e-03
KLHL13 90293 5.52e-07 DOCK10 55619 1.45e-03
FAM102A 399665 5.93e-07 DIRAS1 148252 1.49e-03
DYNLL2 140735 5.93e-07 ATP6V1F 9296 1.49e-03
MT2A 4502 6.08e-07 P2RX7 5027 1.49e-03
TNFRSF21 27242 1.02e-06 HDHD3 81932 1.58e-03
PMS2P3 5387 1.28e-06 5380 1.62e-03
NUDCD3 23386 1.55e-06 TMEM116 89894 1.64e-03
MTG2 26164 1.58e-06 RAB29 8934 1.64e-03
ADGRE5 976 1.68e-06 TPI1P2 286016 1.64e-03
THY1 7070 1.79e-06 WIPI2 26100 1.69e-03
CD9 928 2.02e-06 CASP4 837 1.69e-03
NKX2-2 4821 2.15e-06 ST8SIA5 29906 1.74e-03
LMO4 8543 2.87e-06 POLR2J 5439 1.74e-03
MT1L 4500 3.02e-06 KIZ 55857 1.77e-03
WDR91 29062 3.02e-06 PLOD3 8985 1.78e-03
C12orf66 144577 3.02e-06 INPP5K 51763 1.79e-03
SHOX2 6474 3.25e-06 MT1B 4490 1.80e-03
TGFA 7039 3.85e-06 CBLL1 79872 1.80e-03
FAM122C 159091 5.09e-06 AMER1 139285 1.83e-03
ADAMTS9 56999 6.20e-06 APOD 347 1.84e-03
RNF114 55905 7.20e-06 BPGM 669 1.85e-03
APCDD1 147495 8.42e-06 APOL1 8542 1.85e-03
OGFR 11054 9.17e-06 ZDHHC4 55146 1.85e-03
MR1 3140 1.07e-05 ITGA6 3655 1.86e-03
BCAM 4059 1.11e-05 DDX31 64794 1.88e-03
HSF2BP 11077 1.13e-05 ARFRP1 10139 1.91e-03
TFAP2A 7020 1.29e-05 MSI2 124540 1.91e-03
WBSCR22 114049 1.43e-05 LRRC23 10233 1.91e-03
CNTNAP3 79937 1.43e-05 727849 1.93e-03
GCC1 79571 1.56e-05 TTLL11 158135 1.94e-03
PPM1K 152926 1.76e-05 ZNF786 136051 1.98e-03
QSOX2 169714 1.93e-05 ZNF212 7988 1.98e-03
MT1G 4495 2.52e-05 C9orf114 51490 1.99e-03

Continued on next page
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Table 7.6 – continued from previous page
Gene name Entrez id Adj. p-value Gene name Entrez id Adj. p-value

MT1H 4496 2.52e-05 ARFGAP1 55738 1.99e-03
GATAD1 57798 2.85e-05 ZNF783 100289678 1.99e-03
ZSCAN25 221785 2.96e-05 TNFRSF19 55504 2.00e-03
STARD10 10809 3.21e-05 MALSU1 115416 2.00e-03
FBXW4 6468 3.33e-05 NME3 4832 2.00e-03
ARAP3 64411 3.45e-05 URGCP 55665 2.07e-03
HOXD10 3236 3.45e-05 84054 2.07e-03
URB1-AS1 84996 3.65e-05 RPS21 6227 2.07e-03
MT1X 4501 3.91e-05 PPFIBP2 8495 2.09e-03
DDX56 54606 4.15e-05 BRAT1 221927 2.20e-03
ATP1A1 476 4.24e-05 RAB11FIP4 84440 2.20e-03
PTCD1 26024 4.32e-05 SERPINE2 5270 2.22e-03
MITF 4286 4.51e-05 MRM2 29960 2.22e-03
CIART 148523 5.72e-05 TMED4 222068 2.25e-03
TMEM186 25880 7.08e-05 ZNF394 84124 2.26e-03
GET4 51608 7.13e-05 SEMA4D 10507 2.28e-03

548321 7.19e-05 MT3 4504 2.29e-03
EIF3B 8662 7.82e-05 CSF1 1435 2.29e-03
PSMG3 84262 8.18e-05 KAT2A 2648 2.30e-03
CD82 3732 8.18e-05 JUNB 3726 2.32e-03
MRPS24 64951 8.50e-05 PRRX1 5396 2.33e-03
DUSP15 128853 9.29e-05 POFUT1 23509 2.33e-03
HPSE 10855 9.29e-05 CBX7 23492 2.35e-03
SNAI2 6591 1.04e-04 USP36 57602 2.38e-03
NSD1 64324 1.11e-04 HILPDA 29923 2.39e-03

326343 1.16e-04 POSTN 10631 2.39e-03
PPFIBP1 8496 1.22e-04 HEMK1 51409 2.43e-03
MOCS1 4337 1.24e-04 ABHD11 83451 2.46e-03
SURF1 6834 1.31e-04 BAALC 79870 2.46e-03
IFRD1 3475 1.31e-04 MRPS33 51650 2.47e-03
SLC37A3 84255 1.34e-04 GRIK4 2900 2.50e-03
YKT6 10652 1.36e-04 FAM122B 159090 2.51e-03
FAM156A 727866 1.56e-04 UBE2E1 7324 2.52e-03
MDH2 4191 1.60e-04 PLEKHH2 130271 2.56e-03
SIX1 6495 1.60e-04 ARHGAP26 23092 2.56e-03
HEY1 23462 1.61e-04 DDX27 55661 2.58e-03

100133091 1.63e-04 LRWD1 100616367 2.59e-03
TSHZ3 57616 1.68e-04 LSMEM1 286006 2.59e-03
TBL2 26608 1.69e-04 CHCHD10 400916 2.61e-03

Continued on next page
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Table 7.6 – continued from previous page
Gene name Entrez id Adj. p-value Gene name Entrez id Adj. p-value

ANG 283 1.73e-04 C7orf26 79034 2.68e-03
MRGBP 55257 1.73e-04 TPD52 7163 2.68e-03
PCDHB10 56126 1.73e-04 ZCWPW1 55063 2.68e-03
NCAM1 4684 1.74e-04 CPQ 10404 2.69e-03
DPM3 54344 1.91e-04 ZNF232 7775 2.70e-03
TBX2 6909 1.91e-04 MAPT 4137 2.70e-03
PCDHB12 56124 1.95e-04 HIP1R 9026 2.74e-03
NMNAT3 349565 1.95e-04 NOL4 8715 2.75e-03
HIST2H2BF 440689 2.02e-04 KIAA0040 9674 2.75e-03
BUD31 8896 2.09e-04 AAMP 14 2.77e-03
TOMM7 54543 2.10e-04 RBCK1 10616 2.78e-03
SMIM19 114926 2.15e-04 SHFM1 7979 2.78e-03
MRPS25 64432 2.17e-04 STARD5 80765 2.78e-03
RBM28 55131 2.38e-04 ASPHD1 253982 2.79e-03
LINC00921 283876 2.45e-04 TCEA2 6919 2.83e-03
GIGYF1 64599 2.51e-04 PMS2 5395 2.85e-03
GPR156 165829 2.53e-04 PCDHB16 57717 2.85e-03
CLCN4 1183 2.54e-04 CCDC126 90693 2.89e-03
MT1E 4493 2.54e-04 TMX4 56255 2.91e-03
TBRG4 9238 2.60e-04 PLA2G4C 8605 2.92e-03
TSPAN13 27075 2.60e-04 CHST12 55501 2.92e-03
NR1D1 9572 2.65e-04 ACACB 32 2.99e-03
ZNF767P 79970 2.74e-04 CBX4 8535 3.01e-03
MT1M 4499 2.84e-04 PQBP1 10084 3.03e-03
KATNAL2 83473 3.00e-04 LETMD1 25875 3.10e-03
TBC1D8 11138 3.04e-04 CORO2A 7464 3.11e-03
NID2 22795 3.04e-04 BAP1 8314 3.15e-03
TM4SF1 4071 3.04e-04 RFTN2 130132 3.15e-03
TMEM101 84336 3.13e-04 POM121 9883 3.17e-03
CLDN15 24146 3.16e-04 FAM3C 10447 3.22e-03
OTUD7B 56957 3.26e-04 GIMAP2 26157 3.27e-03
ASB6 140459 3.34e-04 ULBP2 80328 3.27e-03
GRK4 2868 3.43e-04 KANK2 25959 3.31e-03
SKAP2 8935 3.44e-04 BRI3 25798 3.38e-03
HOXD11 3237 3.71e-04 DDX55 57696 3.44e-03
VCAN 1462 3.74e-04 MREG 55686 3.45e-03
FAM110B 90362 3.85e-04 SFMBT1 51460 3.46e-03
GUSB 2990 4.22e-04 ACTR3B 57180 3.48e-03
PILRB 29990 4.30e-04 GSTK1 373156 3.49e-03

Continued on next page
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Table 7.6 – continued from previous page
Gene name Entrez id Adj. p-value Gene name Entrez id Adj. p-value

GRB10 2887 4.38e-04 DHX8 1659 3.50e-03
TMEM79 84283 4.41e-04 RELL2 285613 3.51e-03
FAM185A 222234 4.45e-04 TMEM205 374882 3.55e-03
PDP2 57546 4.48e-04 WRAP73 49856 3.62e-03
FASTK 10922 4.51e-04 GCAT 23464 3.63e-03
ATP6V1B1 525 4.68e-04 C8orf4 56892 3.63e-03
EXOSC7 23016 4.95e-04 PCDHB4 56131 3.65e-03
FIS1 51024 5.01e-04 MPP6 51678 3.66e-03
AGFG2 3268 5.05e-04 PCYOX1L 78991 3.66e-03
PSD3 23362 5.05e-04 IL17RB 55540 3.67e-03
RARRES3 5920 5.05e-04 FBXW4P1 26226 3.68e-03
DNAJA3 9093 5.17e-04 PFDN6 10471 3.68e-03
RAB24 53917 5.18e-04 AGAP3 116988 3.74e-03
VEGFA 7422 5.19e-04 ABCF2 10061 3.77e-03
CYTH1 9267 5.20e-04 ABCG2 9429 3.77e-03
ILF3-AS1 147727 5.36e-04 SMURF1 57154 3.77e-03
TOR1B 27348 5.55e-04 ANAPC2 29882 3.77e-03
SNX21 90203 5.64e-04 ALDH2 217 3.77e-03
AIMP2 7965 5.70e-04 FAM27E3 100131997 3.81e-03
NUB1 51667 5.72e-04 AP4M1 9179 3.93e-03
CUEDC1 404093 5.91e-04 SEMA3B 7869 3.99e-03
HIST1H3C 8352 6.01e-04 KCNIP3 30818 4.02e-03
GLUL 2752 6.04e-04 COX5B 1329 4.03e-03
RCC1L 81554 6.29e-04 KRI1 65095 4.05e-03
OXSM 54995 6.29e-04 HIBADH 11112 4.11e-03
LAS1L 81887 6.32e-04 TUSC2 11334 4.16e-03

25845 6.32e-04 TLE2 7089 4.19e-03
SIPA1L2 57568 6.35e-04 CDK5 1020 4.28e-03
FAM220A 84792 6.36e-04 PARL 55486 4.36e-03
TRIM4 89122 6.38e-04 RNASEH1 246243 4.45e-03
PRKRIP1 79706 6.42e-04 HOXA2 3199 4.47e-03
RRP9 9136 6.43e-04 80154 4.52e-03
UPK3BL 100134938 6.50e-04 TRMO 51531 4.53e-03
PGM1 5236 6.50e-04 FAM96B 51647 4.55e-03
TRMU 55687 6.85e-04 CA13 377677 4.56e-03
BLCAP 10904 6.85e-04 RILPL2 196383 4.66e-03
MRM1 79922 6.96e-04 SLC25A35 399512 4.71e-03
TRAF3IP3 80342 7.16e-04 FKBP4 2288 4.71e-03
DNAH9 1770 7.17e-04 CRIPAK 285464 4.71e-03

Continued on next page
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Table 7.6 – continued from previous page
Gene name Entrez id Adj. p-value Gene name Entrez id Adj. p-value

HOXC6 3223 7.35e-04 NAT9 26151 4.71e-03
ZKSCAN5 23660 7.36e-04 SAMD9 54809 4.72e-03
RAD52 5893 7.55e-04 PJA1 64219 4.72e-03
GSC 145258 7.77e-04 LINC01089 338799 4.72e-03
STK32B 55351 7.85e-04 NDRG1 10397 4.75e-03
CAMK2N1 55450 7.90e-04 11068 4.75e-03
FAM73B 84895 7.92e-04 RNF216 54476 4.75e-03
CDC14B 8555 7.92e-04 SMIM14 201895 4.83e-03
CDKN2C 1031 7.94e-04 DPY19L2P2 349152 4.86e-03
VOPP1 81552 7.95e-04 CEBPB 1051 4.86e-03
TUB 7275 7.98e-04 GUCY1B3 2983 4.86e-03
MT1JP 4498 8.02e-04 MRPS18B 28973 4.86e-03
PCDHB3 56132 8.02e-04 ZNF343 79175 4.86e-03
SLC47A1 55244 8.08e-04 NSUN5P2 260294 4.88e-03
SLC41A1 254428 8.22e-04 POLR1E 64425 4.89e-03
UCK1 83549 8.26e-04 CYP2J2 1573 4.91e-03
ACSS1 84532 8.36e-04 DMTN 2039 4.95e-03
DDRGK1 65992 8.52e-04 KLHDC8A 55220 4.97e-03

5383 8.53e-04 IDH3B 3420 4.97e-03
NDRG2 57447 8.72e-04 PIGL 9487 4.98e-03
SURF6 6838 8.81e-04 TSPAN7 7102 5.00e-03
CSPG4P12 440300 8.81e-04 ZNF774 342132 5.06e-03
MEPCE 56257 8.81e-04 RSAD1 55316 5.09e-03
NDEL1 81565 9.04e-04 LHX2 9355 5.11e-03
REXO4 57109 9.05e-04 PDPR 55066 5.11e-03
SLC12A9 56996 9.17e-04 RRBP1 6238 5.11e-03
CDC25B 994 9.57e-04 HKR1 284459 5.11e-03
STYXL1 51657 9.65e-04 SIM2 6493 5.14e-03
ANKS3 124401 9.88e-04 HSPB8 26353 5.18e-03
C8orf33 65265 9.94e-04 TMEM175 84286 5.18e-03
C7orf49 78996 1.01e-03 MAVS 57506 5.19e-03
GCNT2 2651 1.01e-03 ICA1 3382 5.25e-03
TMEM208 29100 1.01e-03 FAIM2 23017 5.26e-03
DDR2 4921 1.01e-03 FBXO31 79791 5.26e-03

441194 1.03e-03 PDGFRA 5156 5.27e-03
GHDC 84514 1.06e-03 RAB3D 9545 5.29e-03
BIN3 55909 1.08e-03 B3GNT9 84752 5.40e-03
C10orf90 118611 1.08e-03 HES1 3280 5.42e-03
TRRAP 8295 1.13e-03 TRPS1 7227 5.51e-03

Continued on next page
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Table 7.6 – continued from previous page
Gene name Entrez id Adj. p-value Gene name Entrez id Adj. p-value

C1orf109 54955 1.20e-03 SULF2 55959 5.54e-03
HS3ST5 222537 1.22e-03 OLIG2 10215 5.55e-03
TMEM51 55092 1.24e-03 STX1A 6804 5.56e-03

2310 1.24e-03 442578 5.68e-03
NDUFB2 4708 1.24e-03 SLC11A2 4891 5.71e-03

Table 7.6 Table of top 400 genes overexpressed in GNS compared to NS sorted by adjusted
p-value.
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NS genes Table 7.6

Gene name Entrez id Adj. p-value Gene name Entrez id Adj. p-value

RANBP17 64901 1.11e-22 NETO2 81831 2.63e-04
TES 26136 2.03e-14 ARHGEF28 64283 2.74e-04
RASGRF2 5924 4.16e-14 TEAD1 7003 2.81e-04
EPHA7 2045 4.16e-14 ERCC6 2074 2.89e-04
OTX2 5015 1.01e-13 ATP6V1B2 526 2.96e-04
TNFRSF10D 8793 4.84e-13 MICALL1 85377 2.96e-04
CDCP1 64866 1.55e-12 NMT2 9397 3.00e-04
AFF2 2334 2.92e-12 MACF1 23499 3.13e-04
SYT1 6857 1.37e-11 ADAMTS16 170690 3.26e-04
ANO4 121601 1.95e-11 SPCS3 60559 3.29e-04
AK7 122481 5.04e-11 FNBP1L 54874 3.31e-04
BTBD11 121551 1.03e-10 PLEKHA5 54477 3.37e-04
MCHR1 2847 2.28e-10 LIMS1 3987 3.43e-04
CRHBP 1393 2.47e-10 NHS 4810 3.43e-04
GREB1L 80000 6.73e-10 ZDHHC20 253832 3.43e-04
IGF2BP1 10642 6.73e-10 RBM24 221662 3.44e-04
NELL2 4753 9.44e-10 EXO5 64789 3.68e-04
PBX3 5090 9.44e-10 KIF1BP 26128 3.71e-04
NEFM 4741 1.88e-09 SORBS1 10580 3.85e-04
EPB41L3 23136 2.98e-09 USP12 219333 3.85e-04
MGST1 4257 3.18e-09 KIAA1217 56243 3.85e-04
NEGR1 257194 7.97e-09 TIAL1 7073 3.95e-04
LRRC7 57554 8.47e-09 LBH 81606 4.01e-04
WBSCR17 64409 9.58e-09 WEE1 7465 4.01e-04
GRPR 2925 1.34e-08 NDST2 8509 4.14e-04
RSU1 6251 5.47e-08 ENAH 55740 4.25e-04
RAB11FIP1 80223 6.16e-08 SERPING1 710 4.28e-04
REC8 9985 6.73e-08 SPATS2L 26010 4.40e-04
NECAB1 64168 1.32e-07 ATXN10 25814 4.41e-04
RGMB 285704 1.32e-07 TEX2 55852 4.48e-04
HS3ST3A1 9955 1.49e-07 AP1S2 8905 4.95e-04
NXN 64359 1.59e-07 FNDC3A 22862 5.06e-04
CELSR1 9620 1.91e-07 PCSK5 5125 5.18e-04
SLC18A3 6572 2.53e-07 ALS2 57679 5.18e-04
OCA2 4948 2.83e-07 MSMO1 6307 5.51e-04
DAPK1 1612 3.04e-07 CACUL1 143384 5.55e-04
MYO1B 4430 3.40e-07 HEPH 9843 5.55e-04
TLE4 7091 3.59e-07 LNX2 222484 5.72e-04
DOCK2 1794 3.80e-07 ARHGAP32 9743 5.74e-04

Continued on next page
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Table 7.7 – continued from previous page
Gene name Entrez id Adj. p-value Gene name Entrez id Adj. p-value

OXTR 5021 6.08e-07 UBAP1 51271 5.83e-04
CNN1 1264 6.08e-07 REEP3 221035 5.85e-04
ANK3 288 6.08e-07 ADK 132 6.32e-04
CACHD1 57685 6.08e-07 BEND6 221336 6.32e-04
CCDC6 8030 6.12e-07 SPATA18 132671 6.35e-04
ANXA3 306 6.55e-07 CAP2 10486 6.60e-04
SEMA3D 223117 6.98e-07 SLC9A7 84679 6.63e-04
CAMK1D 57118 9.12e-07 SMAD7 4092 6.68e-04
MSRB3 253827 9.12e-07 ARHGAP12 94134 6.75e-04
NXPH2 11249 9.12e-07 C3AR1 719 6.82e-04
PDE4D 5144 1.33e-06 PTPRD 5789 6.86e-04
INPP5A 3632 1.33e-06 SCD 6319 7.04e-04
FAM84B 157638 1.39e-06 TCN2 6948 7.09e-04
ZFAND4 93550 1.45e-06 PTEN 5728 7.11e-04
PREP 5550 1.53e-06 ADGRL2 23266 7.14e-04
UACA 55075 1.59e-06 FAM118A 55007 7.25e-04
LPP 4026 1.73e-06 IDI1 3422 7.45e-04
UBE2D1 7321 1.73e-06 XPR1 9213 7.47e-04
TCF7L2 6934 1.73e-06 ADAM19 8728 7.56e-04
ATRNL1 26033 1.79e-06 E2F5 1875 7.94e-04
AMIGO2 347902 1.85e-06 AUTS2 26053 7.95e-04
IRX3 79191 2.37e-06 STK10 6793 7.95e-04
NEDD4 4734 2.39e-06 KMO 8564 7.96e-04
SORBS2 8470 2.48e-06 WDFY1 57590 8.01e-04
PDZD8 118987 2.84e-06 BLOC1S2 282991 8.05e-04
IPO5 3843 2.86e-06 ARMT1 79624 8.26e-04
STK32A 202374 2.89e-06 PACS1 55690 8.40e-04
NHLRC2 374354 3.02e-06 MAP6 4135 8.55e-04
CAP1 10487 3.02e-06 GBF1 8729 8.72e-04
NETO1 81832 3.24e-06 THUMPD2 80745 8.77e-04
GFRA1 2674 3.54e-06 PTPRU 10076 9.80e-04
WDFY2 115825 4.06e-06 PALLD 23022 9.80e-04
WDFY3 23001 4.06e-06 SFRP1 6422 1.00e-03
THSD4 79875 4.12e-06 ACTR1A 10121 1.01e-03

8464 4.12e-06 PTPRE 5791 1.02e-03
PDLIM1 9124 4.13e-06 RBPMS 11030 1.06e-03
GNG12 55970 4.95e-06 ANTXR1 84168 1.10e-03
TAGLN 6876 5.20e-06 TRPC4 7223 1.13e-03
LEPR 3953 5.64e-06 CCSER2 54462 1.14e-03

Continued on next page
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Table 7.7 – continued from previous page
Gene name Entrez id Adj. p-value Gene name Entrez id Adj. p-value

ADGRL4 64123 5.66e-06 ROR1 4919 1.20e-03
EXT1 2131 5.92e-06 BAG3 9531 1.21e-03
SKIDA1 387640 6.27e-06 WWTR1 25937 1.21e-03
ABCC4 10257 7.05e-06 B3GAT2 135152 1.22e-03
SPOPL 339745 7.20e-06 LPCAT2 54947 1.25e-03
EFR3B 22979 7.20e-06 BVES 11149 1.26e-03
VGLL3 389136 7.41e-06 RAI14 26064 1.26e-03
GTF2A1L 11036 7.57e-06 ATP11C 286410 1.28e-03
ACTA2 59 7.86e-06 RPP30 10556 1.29e-03
RFX3 5991 9.77e-06 COL14A1 7373 1.33e-03
TXLNB 167838 1.03e-05 LINC01006 129790 1.33e-03
BCAR3 8412 1.16e-05 GDI2 2665 1.33e-03
ST8SIA2 8128 1.16e-05 CTTNBP2NL 55917 1.33e-03
PDLIM5 10611 1.17e-05 DCP1B 196513 1.36e-03
RFX7 64864 1.17e-05 CHST7 56548 1.37e-03
TM4SF18 116441 1.21e-05 HMGCS1 3157 1.38e-03
PPP1R21 129285 1.25e-05 TERF1 7013 1.39e-03
FAM21C 253725 1.27e-05 MINPP1 9562 1.40e-03
EMB 133418 1.37e-05 SYTL5 94122 1.40e-03
DACH1 1602 1.40e-05 BST1 683 1.44e-03
TPH1 7166 1.43e-05 C11orf80 79703 1.49e-03
MMP15 4324 1.46e-05 100133106 1.49e-03
BASP1 10409 1.52e-05 AJUBA 84962 1.49e-03
ITSN1 6453 1.60e-05 AKT3 10000 1.50e-03
PHKB 5257 1.84e-05 GJA1 2697 1.50e-03
QDPR 5860 1.94e-05 GCNT1 2650 1.52e-03
EPHX4 253152 2.08e-05 AK5 26289 1.54e-03
MAB21L1 4081 2.12e-05 FAM49B 51571 1.54e-03
TPM1 7168 2.31e-05 NFATC4 4776 1.57e-03
BMPR1A 657 2.35e-05 HHEX 3087 1.57e-03
LGR4 55366 2.36e-05 ARNTL2 56938 1.59e-03
TRDMT1 1787 2.40e-05 TMEM135 65084 1.64e-03
PPP3CB 5532 2.46e-05 POPDC3 64208 1.64e-03
AP3M1 26985 2.60e-05 COTL1 23406 1.64e-03
LOX 4015 2.69e-05 NTSR1 4923 1.64e-03
FAM160B1 57700 2.76e-05 PTPN14 5784 1.69e-03
LCOR 84458 2.86e-05 ARL3 403 1.75e-03
CCDC177 56936 2.88e-05 CUL2 8453 1.78e-03
NOX4 50507 3.07e-05 C15orf41 84529 1.81e-03

Continued on next page
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Table 7.7 – continued from previous page
Gene name Entrez id Adj. p-value Gene name Entrez id Adj. p-value

PDLIM7 9260 3.07e-05 BTBD7 55727 1.84e-03
MYO1E 4643 3.15e-05 UBE2J1 51465 1.84e-03
FAM204A 63877 3.33e-05 CBLB 868 1.86e-03
RB1 5925 3.45e-05 MKL2 57496 1.86e-03
UNC5D 137970 3.64e-05 CUBN 8029 1.86e-03
ACTC1 70 3.64e-05 ACTR3 10096 1.86e-03
GYG2 8908 3.65e-05 STARD4 134429 1.88e-03
PLA2G3 50487 3.65e-05 CAPG 822 1.91e-03
FARP1 10160 3.65e-05 DHX32 55760 1.91e-03
DOCK1 1793 3.86e-05 TOR1AIP2 163590 1.93e-03
SHOC2 8036 3.91e-05 MLLT3 4300 1.93e-03
MTCL1 23255 4.10e-05 NDFIP2 54602 1.94e-03
LRRIQ1 84125 4.10e-05 TRHDE 29953 1.96e-03
SORCS2 57537 4.18e-05 MEGF10 84466 1.98e-03
KPNA3 3839 4.24e-05 MYO5C 55930 1.98e-03
SFXN3 81855 4.32e-05 ATXN1 6310 1.98e-03
ME1 4199 4.54e-05 WDR11 55717 1.98e-03
FLNB 2317 4.87e-05 TDG 6996 1.98e-03
TUBGCP2 10844 6.06e-05 ASCC3 10973 2.00e-03

11245 7.11e-05 VAMP8 8673 2.00e-03
CAPN2 824 7.17e-05 TNFRSF10A 8797 2.00e-03
SMAD1 4086 7.17e-05 GALNT7 51809 2.00e-03
KCNS1 3787 7.29e-05 PAN3 255967 2.07e-03
DAAM1 23002 7.82e-05 HTRA1 5654 2.11e-03
MANEA 79694 7.82e-05 SRD5A1 6715 2.12e-03
TNKS2 80351 8.28e-05 MORC4 79710 2.15e-03
CHRNB1 1140 8.50e-05 FERMT1 55612 2.18e-03
USP6NL 9712 8.96e-05 SDC2 6383 2.19e-03
ANKS1B 56899 9.17e-05 HS3ST3B1 9953 2.30e-03
MTHFD1L 25902 9.98e-05 BOK 666 2.31e-03
SIAH3 283514 1.01e-04 SLC25A24 29957 2.33e-03
RNF182 221687 1.01e-04 TOM1L2 146691 2.33e-03
NEDD1 121441 1.02e-04 BMPR1B 658 2.34e-03
MMP10 4319 1.03e-04 RAB4A 5867 2.38e-03
RAP1GDS1 5910 1.04e-04 TACC1 6867 2.38e-03
CHRFAM7A 89832 1.04e-04 ZHX2 22882 2.38e-03
PBLD 64081 1.05e-04 GLRX 2745 2.38e-03
TP53INP1 94241 1.20e-04 ECHDC1 55862 2.39e-03
TMEM163 81615 1.22e-04 XPNPEP1 7511 2.40e-03

Continued on next page
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Table 7.7 – continued from previous page
Gene name Entrez id Adj. p-value Gene name Entrez id Adj. p-value

CCNY 219771 1.24e-04 HNRNPF 3185 2.40e-03
FLNC 2318 1.25e-04 OPHN1 4983 2.41e-03
COL25A1 84570 1.26e-04 CYFIP1 23191 2.46e-03
MMS19 64210 1.26e-04 ANXA11 311 2.46e-03
TUSC3 7991 1.27e-04 IGF1R 3480 2.46e-03
DNMBP 23268 1.29e-04 RFTN1 23180 2.49e-03
IRX5 10265 1.32e-04 TMEM132D 121256 2.50e-03
SCHIP1 29970 1.33e-04 HOMER2 9455 2.51e-03
SSPN 8082 1.36e-04 STX7 8417 2.58e-03
INPP5F 22876 1.36e-04 IDE 3416 2.62e-03
FZD3 7976 1.40e-04 CD99 4267 2.67e-03
TNFRSF10C 8794 1.45e-04 TCTN3 26123 2.68e-03
HACD1 9200 1.56e-04 EPHB2 2048 2.70e-03
PLD3 23646 1.63e-04 C10orf76 79591 2.74e-03
H2AFY2 55506 1.63e-04 NT5C2 22978 2.74e-03
ICK 22858 1.63e-04 WWC2 80014 2.76e-03
B3GALT5-AS1 114041 1.65e-04 FAM172A 83989 2.78e-03
NR2F2 7026 1.68e-04 ZIC1 7545 2.78e-03
ARHGAP10 79658 1.68e-04 ISYNA1 51477 2.81e-03
EFNB2 1948 1.68e-04 LARGE1 9215 2.83e-03
GRK5 2869 1.73e-04 CAPZB 832 2.90e-03
B3GALT5 10317 1.75e-04 TRAM2 9697 2.92e-03
C11orf70 85016 1.82e-04 DOCK5 80005 2.92e-03
NUDT15 55270 1.87e-04 FGD6 55785 2.94e-03
DIAPH3 81624 1.95e-04 BHLHE41 79365 3.02e-03
HSPG2 3339 1.95e-04 POLR1D 51082 3.07e-03
RUNX1T1 862 1.95e-04 CCKBR 887 3.10e-03
PPP2R2D 55844 2.03e-04 TMOD3 29766 3.10e-03
CCNJ 54619 2.09e-04 SESN1 27244 3.12e-03
FNBP1 23048 2.15e-04 TSPAN14 81619 3.12e-03
ATE1 11101 2.15e-04 SPTLC2 9517 3.12e-03
MYL12A 10627 2.17e-04 SQLE 6713 3.16e-03
TMEM2 23670 2.18e-04 RPS6KA6 27330 3.18e-03
PTENP1 11191 2.23e-04 AGPS 8540 3.22e-03
MAB21L2 10586 2.28e-04 ZYG11A 440590 3.28e-03
ANTXR2 118429 2.36e-04 KLF11 8462 3.29e-03
PTCHD4 442213 2.37e-04 MPZL1 9019 3.33e-03
EIF2AK4 440275 2.37e-04 SKP2 6502 3.33e-03
UXS1 80146 2.38e-04 FGF11 2256 3.38e-03

Continued on next page
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Table 7.7 – continued from previous page
Gene name Entrez id Adj. p-value Gene name Entrez id Adj. p-value

ZMYND11 10771 2.45e-04 PAK1 5058 3.40e-03
TMEM98 26022 2.46e-04 KDM5B 10765 3.40e-03
WDR17 116966 2.51e-04 NCOA4 8031 3.46e-03
GLUD1 2746 2.53e-04 TMEM178A 130733 3.48e-03
PAX3 5077 2.60e-04 FAM149B1 317662 3.50e-03

Table 7.7 Table of top 400 genes overexpressed in NS compared to GNS sorted by adjusted
p-value.
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GOBPID Pvalue Term
GO:0034470 3.81e-03 ncRNA processing
GO:0048704 3.81e-03 embryonic skeletal system morphogenesis
GO:0034660 6.67e-03 ncRNA metabolic process
GO:0048706 6.67e-03 embryonic skeletal system development
GO:0007600 1.33e-02 sensory perception
GO:0045333 1.33e-02 cellular respiration
GO:0048663 1.33e-02 neuron fate commitment
GO:0006820 1.45e-02 anion transport
GO:0042254 1.98e-02 ribosome biogenesis
GO:0043900 1.98e-02 regulation of multi-organism process
GO:0022613 2.23e-02 ribonucleoprotein complex biogenesis
GO:0045165 2.27e-02 cell fate commitment
GO:0006364 2.48e-02 rRNA processing
GO:0006986 2.48e-02 response to unfolded protein
GO:0016072 2.48e-02 rRNA metabolic process
GO:0034976 2.48e-02 response to endoplasmic reticulum stress
GO:0035966 2.48e-02 response to topologically incorrect protein
GO:0043903 2.48e-02 regulation of symbiosis, encompassing mutualism through parasitism
GO:0050792 2.48e-02 regulation of viral process
GO:0071241 2.48e-02 cellular response to inorganic substance
GO:0071248 2.48e-02 cellular response to metal ion
GO:0001501 2.51e-02 skeletal system development
GO:0006139 2.86e-02 nucleobase-containing compound metabolic process
GO:0055085 2.99e-02 transmembrane transport
GO:0016070 3.15e-02 RNA metabolic process

Table 7.8 Top 25 Gene ontology terms for genes overexpressed in GNS cells. The gene
universe used in this case was the combined GNS and NS differentially expressed gene sets.
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GOBPID Pvalue Term
GO:0032989 3.69e-06 cellular component morphogenesis
GO:0000902 1.32e-05 cell morphogenesis
GO:0009653 2.43e-05 anatomical structure morphogenesis
GO:0032990 2.66e-05 cell part morphogenesis
GO:0048858 2.66e-05 cell projection morphogenesis
GO:0030030 1.41e-04 cell projection organization
GO:0031175 1.55e-04 neuron projection development
GO:0048869 2.05e-04 cellular developmental process
GO:0048468 2.21e-04 cell development
GO:0048666 2.34e-04 neuron development
GO:0000904 2.56e-04 cell morphogenesis involved in differentiation
GO:0048667 2.58e-04 cell morphogenesis involved in neuron differentiation
GO:0030154 3.00e-04 cell differentiation
GO:0048812 3.08e-04 neuron projection morphogenesis
GO:0007167 3.34e-04 enzyme linked receptor protein signaling pathway
GO:0007411 5.44e-04 axon guidance
GO:0097485 5.44e-04 neuron projection guidance
GO:0006936 5.61e-04 muscle contraction
GO:0016043 8.38e-04 cellular component organization
GO:0003012 1.05e-03 muscle system process
GO:0032502 1.41e-03 developmental process
GO:0048856 1.75e-03 anatomical structure development
GO:0007369 1.82e-03 gastrulation
GO:0044767 1.97e-03 single-organism developmental process
GO:0006935 2.30e-03 chemotaxis

Table 7.9 Top 25 Gene ontology terms for genes overexpressed in NS cells. The gene
universe used in this case was the combined GNS and NS differentially expressed gene sets.
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Fig. 7.9 Replicate transposase bias plots in a separate ATAC-seq library. See figure 5.3.
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GNS motifs Table 7.10
Motif name TF name Adjusted p-value
TAL1_f1 TAL1 0
ZN238_f1 ZN238 0
MA0091.1 TAL1::TCF3 0
ZNF238_DBD 0
ZNF238_full 0
MA0497.1 MEF2C 1.523e-303
MA0095.2 YY1 1.533e-295
MA0052.2 MEF2A 2.902e-295
TYY1_f2 TYY1 1.059e-288
TFE2_f2 TFE2 1.64e-285
MA0466.1 CEBPB 2.477e-280
TFAP4_full 2.166e-277
IRF1_si IRF1 9.194e-277
Atoh1_DBD 2.755e-276
TAL1_f2 TAL1 5.76e-272
MA0522.1 Tcf3 8.315e-268
MA0481.1 FOXP1 4.302e-267
TCF4_DBD 6.17e-265
FOXF1_f1 FOXF1 6.928e-263
TFAP4_DBD 7.133e-263
FOXC1_DBD_1 1.186e-261
HTF4_f1 HTF4 1.439e-258
FOXJ3_f2 FOXJ3 5.718e-258
NEUROG2_DBD 3.467e-254
FOXJ3_si FOXJ3 1.398e-252
MA0517.1 STAT2::STAT1 5.819e-252
NEUROG2_full 1.965e-251
MA0102.3 CEBPA 4.019e-250
MA0521.1 Tcf12 4.672e-250
MA0488.1 JUN 9.999e-247
MEF2A_DBD 2.262e-245
FOXC2_DBD_2 3.04e-241
MA0050.2 IRF1 6.826e-241
MYOD1_f1 MYOD1 1.978e-239
IRF2_f1 IRF2 2.201e-239
MEF2D_f1 MEF2D 2.034e-237
MA0548.1 AGL15 1.761e-236
MA0058.2 MAX 4.795e-233
Foxc1_DBD_1 2.216e-232
Tcf21_DBD 3.19e-231
MA0545.1 HLH-1 6.954e-231
MEF2D_DBD 9.31e-229
Foxj3_DBD_4 1.795e-228
IRF5_f1 IRF5 2.513e-228
MEF2A_f1 MEF2A 2.54e-228
IRF7_DBD_1 7.438e-227
MA0537.1 BLMP-1 1.926e-226
MA0041.1 Foxd3 9.534e-226
YY2_full_1 2.709e-225
FOXD3_f1 FOXD3 5.735e-225
MA0593.1 FOXP2 3.322e-224
MA0045.1 HMG-I/Y 3.779e-222
MA0480.1 Foxo1 8.404e-221
MITF_f1 MITF 2.148e-220
Rarg_DBD_1 3.533e-220
MSC_full 6.09e-220
IRF4_si IRF4 1.752e-219
Ascl2_DBD 2.207e-219
MA0500.1 Myog 1.381e-218
MA0559.1 PI 3.97e-218
TCF3_DBD 1.258e-217
FOXC2_DBD_3 4.351e-217
MA0558.1 FLC 5.403e-217
IRF7_f1 IRF7 7.573e-217
FOXA2_f1 FOXA2 7.903e-217
FOXA1_f1 FOXA1 3.035e-216
IRF8_si IRF8 7.135e-215
MA0388.1 SPT23 2.876e-214
NDF1_f1 NDF1 2.93e-214
Nr2f6_DBD_1 9.55e-214
FOXO1_si FOXO1 2.751e-213
RARA_DBD_2 4.898e-213
MEF2C_f1 MEF2C 4.907e-213
MEF2B_full 4.275e-212
RARA_f1 RARA 4.303e-212
FOXC2_f1 FOXC2 2.793e-211

GNS motifs Table 7.10
Motif name TF name Adjusted p-value
RARB_full 5.792e-211
FOXJ3_DBD_3 8.88e-211
FOXO3_si FOXO3 7.724e-210
NR2E3_f1 NR2E3 3.513e-209
MA0093.2 USF1 5.235e-209
NR1I3_si NR1I3 2.173e-208
MA0049.1 hb 6.383e-208
FOXC1_DBD_3 1.578e-206
TFE3_f1 TFE3 5.682e-206
MA0160.1 NR4A2 5.758e-206
NR2F1_DBD_3 7.26e-206
OLIG3_DBD 8.352e-206
MYF6_f1 MYF6 1.086e-205
MA0042.1 FOXI1 1.843e-205
MA0546.1 PHA-4 2.489e-205
CEBPA_do CEBPA 2.437e-204
RARG_f1 RARG 1.105e-203
MA0563.1 SEP3 1.197e-203
HMGA1_f1 HMGA1 3.499e-203
PRDM1_full 5.015e-203
MA0277.1 AZF1 7.924e-203
MA0555.1 SVP 2.483e-202
FOXJ2_DBD_3 2.504e-202
RARG_DBD_1 1.085e-201
FUBP1_f1 FUBP1 2.345e-201
FOXO1_DBD_1 5.048e-201
MA0377.1 SFL1 5.114e-201
RORA_f1 RORA 6.404e-201
STAT2_f1 STAT2 8.275e-201
FOXP2_si FOXP2 1.012e-200
USF1_f1 USF1 1.195e-200
MA0492.1 JUND 2.39e-200
FOXB1_DBD_3 3.334e-200
MA0508.1 PRDM1 5.366e-200
MA0561.1 PIF4 6.851e-200
FOXJ2_f1 FOXJ2 1.092e-199
PPARA_f1 PPARA 1.576e-199
HXD13_f1 HXD13 1.655e-199
Rara_DBD_3 5.001e-199
PRDM1_f1 PRDM1 8.143e-199
NR2F1_full 2.314e-198
MA0526.1 USF2 6.429e-198
FOXL1_full_2 1.081e-197
Rarb_DBD_1 1.091e-197
IRF8_DBD 2.074e-197
Foxj3_DBD_3 2.682e-197
COT2_f1 COT2 3.474e-197
MA0147.2 Myc 5.394e-197
CEBPB_f1 CEBPB 8.158e-197
FOXQ1_f1 FOXQ1 1.288e-196
MA0296.1 FKH1 1.968e-196
HOXB13_DBD_1 4.13e-196
MA0148.3 FOXA1 5.239e-196
VDR_f1 VDR 1.524e-195
CEBPD_f1 CEBPD 3.803e-195
MA0071.1 RORA_1 1.059e-194
FOXF2_f1 FOXF2 1.404e-194
MA0157.1 FOXO3 1.693e-194
RARA_full_1 2.061e-194
MA0458.1 slp1 4.074e-194
FOXO4_f1 FOXO4 4.771e-194
HOXC13_DBD_1 6.318e-194
IRF3_f1 IRF3 3.223e-193
COT1_si COT1 1.598e-192
MA0113.2 NR3C1 3.544e-192
FOXA3_f1 FOXA3 8.294e-192
MA0556.1 AP3 2.098e-191
FOXM1_f1 FOXM1 1.503e-190
MA0560.1 PIF3 3.037e-190
MA0047.2 Foxa2 4.872e-190
TEAD4_f1 TEAD4 1.436e-189
MA0398.1 SUM1 4.088e-189
SPDEF_DBD_3 5.464e-189
TBX1_DBD_1 1.241e-188
PRGR_do PRGR 1.743e-188
TBX3_f1 TBX3 2.809e-188
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GNS motifs Table 7.10
Motif name TF name Adjusted p-value
NR6A1_do NR6A1 1.081e-187
Foxg1_DBD_1 2.24e-187
NFIA_full_2 3.001e-187
CDX1_DBD 5.506e-187
FOXJ2_DBD_2 4.219e-186
Spic_DBD 4.455e-186
HOXA13_full_1 7.448e-186
NR2F6_DBD_1 1.272e-185
NFAC2_f1 NFAC2 1.242e-184
RARG_full_1 3.065e-184
NHLH1_full 3.162e-184
MA0051.1 IRF2 1.101e-183
HOXC10_DBD_1 1.965e-183
NFAC3_f1 NFAC3 2.12e-183
MA0554.1 SOC1 2.96e-183
TFEB_full 1.39e-182
SPI1_full 2.142e-182
HOXA13_DBD_1 2.415e-182
HOXA13_full_2 3.122e-182
MA0461.1 Atoh1 3.395e-182
IRF8_full 3.681e-182
HOXC10_DBD_2 4.75e-182
RARB_f1 RARB 8.806e-182
MA0446.1 fkh 1.39e-181
NFIX_full_3 1.586e-181
YY1_full 2.861e-181
IRF9_full 3.182e-181
BPTF_si BPTF 6.358e-181
SPIB_DBD 7.469e-181
MYF6_full 9.555e-181
HOXC11_full_2 2.535e-180
MYOG_f1 MYOG 8.318e-179
FOXB1_full 9.034e-179
ESRRB_DBD 1.58e-178
HXA13_f1 HXA13 4.355e-178
MA0512.1 Rxra 5.568e-178
ATF5_si ATF5 8.691e-178
HOXD13_DBD_1 2.232e-177
PRGR_f1 PRGR 6.211e-177
OLIG1_DBD 5.177e-176
TFEC_DBD 1.594e-175
NR2F1_DBD_2 2.108e-175
FIGLA_DBD 2.706e-175
Hoxd13_DBD_1 3.289e-175
CDX2_DBD 4.43e-175
Rarb_DBD_2 4.63e-175
FOXC1_f1 FOXC1 7.599e-175
MEIS3_DBD_2 1.006e-174
ERR1_f1 ERR1 1.794e-174
CEBPG_si CEBPG 2.562e-174
MEIS2_DBD_1 4.728e-174
MA0007.2 AR 1.071e-173
MA0115.1 NR1H2::RXRA 2.525e-173
ESRRA_DBD_1 2.886e-173
Meis2_DBD_2 3.906e-173
NR4A1_f1 NR4A1 1.465e-172
NFAC4_f1 NFAC4 1.713e-172
MA0100.2 Myb 1.901e-172
CPEB1_full 2.542e-172
USF1_DBD 4.103e-172
FOXG1_DBD_1 5.812e-172
MA0287.1 CUP2 6.836e-172
RORA_DBD_2 7.168e-172
MA0464.1 Bhlhe40 7.748e-172
MA0562.1 PIF5 1.247e-171
TBX4_DBD_1 2.075e-171
ESRRA_DBD_4 2.418e-171
ESR2_si ESR2 6.797e-171
Meis3_DBD_2 1.847e-170
RXRG_f1 RXRG 2.094e-170
PKNOX2_DBD 8.685e-170
Rarg_DBD_3 2.593e-169
CDX1_f1 CDX1 5.278e-169
HOXD11_DBD_2 1.954e-168
OLIG2_DBD 2.378e-168
PPARG_si PPARG 6.458e-168
MA0040.1 Foxq1 1.191e-167

GNS motifs Table 7.10
Motif name TF name Adjusted p-value
GCR_si GCR 2.894e-167
Foxc1_DBD_2 1.872e-166
EHF_si EHF 1.911e-166
IRF9_f1 IRF9 2.907e-166
SOX17_f2 SOX17 5.496e-166
TBX20_full_2 1.08e-165
MA0043.1 HLF 1.137e-165
PKNOX1_DBD 2.012e-165
ZN384_f1 ZN384 4.673e-165
MA0165.1 Abd-B 6.168e-165
MA0174.1 CG42234 6.168e-165
Rara_DBD_2 7.283e-165
MEIS3_DBD_1 1.305e-164
ID4_DBD 1.476e-164
FOXJ2_DBD_1 1.521e-164
MA0465.1 CDX2 1.648e-164
MA0030.1 FOXF2 1.855e-164
MA0019.1 Ddit3::Cebpa 5.685e-164
MA0321.1 INO2 1.391e-163
OLIG2_full 2.718e-163
NR4A2_si NR4A2 1.757e-162
MA0319.1 HSF1 1.833e-162
FOXI1_full_1 2.157e-162
FOXO4_DBD_2 2.157e-162
FOXO6_DBD_2 2.157e-162
MA0582.1 RAV1 4.725e-162
Nr2f6_DBD_2 5.661e-162
SPIC_full 1.451e-161
NKX2-8_DBD 1.919e-161
MA0247.2 tin 3.943e-161
HOXC12_DBD_1 4.47e-161
NR4A2_full_3 5.84e-161
Hoxc10_DBD_2 9.619e-161
MA0010.1 br_Z1 2.038e-160
NFIX_full_2 3.181e-160
MA0451.1 kni 4.949e-160
MA0152.1 NFATC2 1.379e-159
RXRG_DBD_2 1.429e-159
NR1D1_f1 NR1D1 1.595e-159
ESRRG_full_3 1.671e-159
TBX5_si TBX5 1.821e-159
MA0136.1 ELF5 1.867e-159
Srebf1_DBD 2.197e-159
HOXC11_DBD_2 5.532e-159
NR1H2_f1 NR1H2 8.98e-159
MA0017.1 NR2F1 1.03e-158
Hoxd9_DBD_1 1.157e-158
Rarg_DBD_2 1.926e-158
MA0407.1 THI2 2.577e-158
ESRRA_DBD_5 2.654e-158
FEV_f1 FEV 2.898e-158
MA0249.1 twi 3.965e-158
Hic1_DBD_2 4.713e-158
NR2F6_DBD_2 5.206e-158
TGIF2_DBD 7.865e-158
NR4A3_f1 NR4A3 1.023e-157
HOXA10_DBD_2 5.134e-157
SPIB_f1 SPIB 6.962e-157
NR1I2_f2 NR1I2 1.152e-156
BHLHA15_DBD 2.501e-156
RARA_DBD_1 4.246e-156
MA0092.1 Hand1::Tcfe2a 5.21e-156
ONEC2_si ONEC2 6.193e-156
NEUROD2_full 9.252e-156
Hoxa11_DBD_2 2.378e-155
IRF3_full 2.62e-155
HXC6_f1 HXC6 2.944e-155
MEIS2_DBD_2 3.498e-155
NKX2-8_full 5.91e-155
PO6F1_f1 PO6F1 9.718e-155
RXRG_full_1 9.96e-155
GLI3_si GLI3 1.056e-154
MA0141.2 Esrrb 1.151e-154
HNF4A_full_4 1.253e-154
MA0083.2 SRF 1.437e-154
MA0378.1 SFP1 1.599e-154
Esrra_DBD_2 1.689e-154
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NR2F6_full 1.855e-154
HNF4A_DBD_1 4.765e-154
TBR1_full 7.054e-154
RXRB_f1 RXRB 9.763e-154
MA0346.1 NHP6B 1.084e-153
MA0082.1 squamosa 2.46e-153
THB_f1 THB 3.011e-153
NHLH1_DBD 4.957e-153
MA0156.1 FEV 6.239e-153
NR2C1_si NR2C1 6.392e-153
MA0592.1 ESRRA 1.285e-152
TBX20_full_1 1.44e-152
Atf4_DBD 1.911e-152
RXRA_full_1 5.162e-152
Rarb_DBD_3 5.34e-152
ARI3A_do ARI3A 9.331e-152
BHLHE22_DBD 1.352e-151
HNF4A_full_1 1.824e-151
TBX5_DBD_1 2.205e-151
NFAT5_f1 NFAT5 9.151e-151
ZNF410_DBD 3.095e-150
RORA_DBD_1 3.264e-150
HOXD12_DBD_1 3.325e-150
MGA_DBD_1 3.733e-150
ATF2+ATF4_f1 ATF2+ATF4 3.952e-150
TBX20_DBD_1 4.356e-150
EGR3_f1 EGR3 4.976e-150
NR2C2_DBD 5.77e-150
TBX2_f1 TBX2 8.723e-150
MEIS2_do MEIS2 1.08e-149
NFIA+NFIB+NFIC_si NFIA+NFIB+NFIC 2.037e-149
MA0368.1 RIM101 3.543e-149
MA0585.1 SHP1 4.735e-149
SPDEF_full_3 6.04e-149
NR1I2_si NR1I2 1.005e-148
IRF4_full 1.163e-148
MA0534.1 EcR::usp 1.282e-148
NR2E1_full_1 1.389e-148
MA0322.1 INO4 2.244e-148
COT1_f1 COT1 4.172e-148
TGIF2LX_full 1.397e-147
YY2_full_2 1.431e-147
ERR2_f1 ERR2 1.461e-147
TBX21_full_2 1.575e-147
Nr2e1_DBD_1 2.132e-147
MA0390.1 STB3 2.355e-147
MA0499.1 Myod1 2.654e-147
THA_f1 THA 4.831e-147
HIC2_DBD 7.735e-147
TBX20_DBD_3 1.737e-146
TBX15_DBD_2 1.883e-146
Foxj3_DBD_2 1.932e-146
RARG_full_2 3.189e-146
Hoxd9_DBD_2 3.323e-146
RARG_DBD_3 5.242e-146
MA0459.1 tll 8.823e-146
IKZF1_f1 IKZF1 1.348e-145
ESRRG_full_2 1.602e-145
ESR1_DBD 1.785e-145
Hnf4a_DBD 1.938e-145
MA0547.1 SKN-1 3.168e-145
NR2F6_f1 NR2F6 4.543e-145
MA0498.1 Meis1 5.801e-145
RHOXF1_full_2 1.326e-144
RARG_full_3 1.972e-144
GCR_do GCR 2.445e-144
TFE3_DBD 3.194e-144
HAND1_si HAND1 7.663e-144
MA0033.1 FOXL1 8.573e-144
RARA_full_3 8.919e-144
TGIF1_DBD 1.088e-143
MA0409.1 TYE7 1.875e-143
DBP_si DBP 2.018e-143
ELF5_f1 ELF5 3.387e-143
CEBPB_full 5.275e-143
RXRB_DBD 6.028e-143
ERR3_f1 ERR3 6.126e-143

GNS motifs Table 7.10
Motif name TF name Adjusted p-value
AIRE_f2 AIRE 6.682e-143
MA0133.1 BRCA1 9.463e-143
MA0359.1 RAP1 1.59e-142
NFATC1_full_1 1.817e-142
ESRRA_DBD_2 2.23e-142
USF2_f1 USF2 7.299e-142
MA0598.1 EHF 7.54e-142
TBR1_DBD 9.636e-142
NR2F1_DBD_1 9.67e-142
Pknox2_DBD 1.278e-141
EOMES_DBD_1 1.881e-141
MA0595.1 SREBF1 2.069e-141
ATF4_DBD 2.959e-141
Esrra_DBD_1 3.813e-141
TBX1_DBD_3 5.676e-141
SOX8_DBD_3 5.753e-141
RXRG_DBD_1 7.774e-141
SOX10_full_1 1.94e-140
NFIL3_DBD 3.536e-140
Rxrb_DBD 3.762e-140
ETS1_si ETS1 5.276e-140
PRDM4_full 5.471e-140
TBX21_DBD_2 8.464e-140
CEBPD_DBD 1.101e-139
MA0474.1 Erg 2.239e-139
NR1I3_f2 NR1I3 2.621e-139
RARA_full_2 2.864e-139
MA0473.1 ELF1 3.286e-139
Rxra_DBD_1 4.237e-139
SREBF2_DBD 4.706e-139
TBX5_DBD_2 4.898e-139
Tp53_DBD_1 5.222e-139
RARG_DBD_2 1.102e-138
HXD10_f1 HXD10 1.602e-138
ELF5_DBD 1.948e-138
MA0048.1 NHLH1 2.639e-138
MA0503.1 Nkx2-5 4.963e-138
NFAC1_si NFAC1 7.027e-138
MA0013.1 br_Z4 9.157e-138
SPI1_si SPI1 1.92e-137
MA0119.1 TLX1::NFIC 2.118e-137
Rara_DBD_1 3.314e-137
MEIS1_DBD 9.167e-137
Meis2_DBD_1 9.167e-137
ELF3_f1 ELF3 1.072e-136
MA0270.1 AFT2 1.917e-136
COT2_f2 COT2 2.037e-136
THB_do THB 2.399e-136
MA0596.1 SREBF2 2.405e-136
MEIS1_f2 MEIS1 2.631e-136
TBX21_full_1 3.031e-136
TBX4_DBD_2 3.233e-136
E2F2_DBD_1 8.771e-136
PITX2_si PITX2 1.396e-135
ZSCAN4_full 1.602e-135
TBX2_full_2 1.869e-135
FOXJ3_DBD_2 2.031e-135
RARA_DBD_3 3.374e-135
RXRA_f1 RXRA 3.452e-135
BRCA1_f1 BRCA1 5.539e-135
MA0255.1 z 6.77e-135
TBX20_DBD_2 8.464e-135
MA0468.1 DUX4 9.765e-135
ELF5_full 9.915e-135
MA0584.1 SEP1 1.011e-134
ELF3_full 1.561e-134
SOX9_full_4 3.448e-134
GLI1_f1 GLI1 4.178e-134
MA0012.1 br_Z3 4.506e-134
MA0068.1 Pax4 5.503e-134
KLF3_f1 KLF3 1.489e-133
ANDR_do ANDR 1.557e-133
Elf5_DBD 2.001e-133
MA0484.1 HNF4G 2.357e-133
NFIX_full_4 3.446e-133
TFAP4_si TFAP4 4.152e-133
MA0493.1 Klf1 9.449e-133
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NKX21_f1 NKX21 9.602e-133
MA0104.3 Mycn 1.001e-132
NKX32_f1 NKX32 3.504e-132
HNF4A_full_2 3.561e-132
MA0475.1 FLI1 2.105e-131
MLXIPL_full 2.177e-131
HOXC13_DBD_2 3.265e-131
RXRA_DBD_1 3.813e-131
HLTF_f1 HLTF 6.502e-131
JDP2_DBD_2 9.72e-131
MA0018.2 CREB1 1.001e-130
HOXD8_DBD 1.374e-130
MA0494.1 Nr1h3::Rxra 1.497e-130
ELF3_DBD 1.938e-130
MA0080.3 Spi1 1.958e-130
ETV5_f1 ETV5 4.339e-130
HNF4A_full_3 1.128e-129
STAT4_si STAT4 1.249e-129
MA0302.1 GAT4 1.255e-129
MA0288.1 CUP9 1.33e-129
SOX4_f1 SOX4 1.68e-129
ESRRA_DBD_6 2.528e-129
MA0304.1 GCR1 4.014e-129
ETV6_full_2 6.02e-129
MA0518.1 Stat4 7.189e-129
Cebpb_DBD 1.438e-128
Jdp2_DBD_2 3.408e-128
FOXD3_DBD_1 3.875e-128
MA0072.1 RORA_2 8.131e-128
ELF1_f1 ELF1 1.419e-127
ESR2_do ESR2 1.681e-127
DDIT3_f1 DDIT3 2.982e-127
P63_si P63 3.224e-127
MA0306.1 GIS1 4.551e-127
THRB_DBD_3 7.013e-127
SOX4_DBD 1.483e-126
MA0111.1 Spz1 2.003e-126
CEBPE_DBD 2.228e-126
CREM_f1 CREM 4.42e-126
MA0216.2 CAD 4.438e-126
ESRRG_full_1 5.108e-126
SOX8_full_1 5.297e-126
Hoxd13_DBD_2 5.409e-126
ZNF143_DBD 5.608e-126
MA0031.1 FOXD1 9.167e-126
MA0336.1 MGA1 1.021e-125
SRY_f1 SRY 1.312e-125
MA0098.2 Ets1 1.327e-125
FOXJ3_DBD_1 1.864e-125
HNF4A_f1 HNF4A 1.883e-125
CLOCK_DBD 1.891e-125
MA0323.1 IXR1 1.993e-125
Vdr_DBD 3.191e-125
NFAT5_DBD 4.181e-125
RARG_do RARG 4.319e-125
CEBPB_DBD 1.577e-124
Hoxc10_DBD_1 3.044e-124
FOXO3_full_2 3.091e-124
FOXD2_DBD_1 3.25e-124
FOXD1_si FOXD1 4.256e-124
MA0328.1 MATALPHA2 5.242e-124
MA0182.1 CG4328 5.405e-124
TLX1_f1 TLX1 6.609e-124
ETV2_DBD 7.051e-124
MA0389.1 SRD1 1.012e-123
HNF4G_f1 HNF4G 1.059e-123
JDP2_full_2 1.167e-123
MA0144.2 STAT3 1.246e-123
MA0569.1 MYC4 1.363e-123
TBX1_DBD_2 1.542e-123
MA0301.1 GAT3 1.781e-123
SCRT1_DBD 1.962e-123
MA0029.1 Mecom 2.117e-123
HOXB13_DBD_2 2.887e-123
THRA_FL 3.154e-123
Sox10_DBD_1 5.431e-123
MA0253.1 vnd 6.935e-123

GNS motifs Table 7.10
Motif name TF name Adjusted p-value
MA0130.1 ZNF354C 7.074e-123
MA0543.1 EOR-1 7.124e-123
MA0114.2 HNF4A 1.145e-122
ZNF75A_DBD 1.411e-122
EVI1_f1 EVI1 2.03e-122
MA0022.1 dl_1 2.394e-122
HSF1_f2 HSF1 3.577e-122
NR2E1_full_2 5.663e-122
STF1_f1 STF1 6.697e-122
MCR_f1 MCR 7.155e-122
Tp53_DBD_2 9.374e-122
ZEP1_f1 ZEP1 1.695e-121
VDR_full 2.024e-121
MA0128.1 EmBP-1 2.061e-121
ENOA_si ENOA 2.748e-121
ELF1_full 3.511e-121
MA0269.1 AFT1 1.056e-120
MA0297.1 FKH2 1.386e-120
FOXD2_DBD_2 1.386e-120
FOXD3_DBD_2 1.386e-120
FOXL1_full_1 1.386e-120
FOXP3_DBD 1.386e-120
Foxg1_DBD_3 1.386e-120
Foxk1_DBD_2 1.386e-120
MA0372.1 RPH1 1.644e-120
NFIB_full 1.652e-120
SCRT2_DBD 2.44e-120
MA0505.1 Nr5a2 3.061e-120
TGIF1_si TGIF1 3.184e-120
TEF_f1 TEF 3.612e-120
TP63_DBD 4.819e-120
MA0127.1 PEND 5.137e-120
MA0122.1 Nkx3-2 8.777e-120
MA0108.2 TBP 1.603e-119
MA0205.1 Trl 2.283e-119
CEBPE_f1 CEBPE 3.725e-119
ZNF282_DBD 5.437e-119
MA0452.2 KR 5.997e-119
ATF3_f1 ATF3 6.977e-119
NKX25_f1 NKX25 7.295e-119
PPARA_f2 PPARA 1.198e-118
HBP1_f1 HBP1 2.455e-118
MA0159.1 RXR::RAR_DR5 4.43e-118
ETV7_si ETV7 5.725e-118
NR5A2_f1 NR5A2 6.169e-118
MA0566.1 MYC2 6.577e-118
E2F1_DBD_4 7.613e-118
NR3C1_DBD 7.802e-118
YY2_DBD 9.923e-118
BHLHE23_DBD 1.296e-117
FOXB1_DBD_2 1.587e-117
Creb5_DBD 1.816e-117
ELK4_f1 ELK4 2.542e-117
RHOXF1_DBD_2 2.604e-117
GCM1_full_1 3.201e-117
TBX15_DBD_1 3.446e-117
MA0103.2 ZEB1 4.639e-117
ETV4_f1 ETV4 5.874e-117
Sox11_DBD 6.141e-117
MA0076.2 ELK4 8.103e-117
TBX2_full_1 1.281e-116
ELF4_full 2.614e-116
NR3C2_DBD 4.765e-116
ZNF524_full_1 6.523e-116
MA0423.1 YER130C 7.298e-116
VDR_f2 VDR 1.423e-115
MA0369.1 RLM1 1.807e-115
MA0408.1 TOS8 2.054e-115
E2F7_DBD 2.218e-115
NANOG_f1 NANOG 2.485e-115
PO3F2_si PO3F2 3.251e-115
THRB_DBD_2 5.691e-115
MA0538.1 DAF-12 8.502e-115
Creb3l2_DBD_1 8.65e-115
MA0440.1 ZAP1 9.312e-115
ZBTB6_si ZBTB6 1.012e-114
RXRA_full_2 1.178e-114
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TEAD3_si TEAD3 2.325e-114
Tp73_DBD 3.096e-114
ZNF435_full 3.497e-114
HXB1_f1 HXB1 4.226e-114
TFAP2C_DBD_2 4.683e-114
MA0472.1 EGR2 6.58e-114
MA0317.1 HCM1 6.716e-114
FOXG1_DBD_2 7.281e-114
TCF7L1_full 9.729e-114
POU3F3_DBD_2 1.27e-113
ESRRA_DBD_3 1.587e-113
MA0001.2 SEP4 2.124e-113
HXA9_f1 HXA9 2.152e-113
HIC1_si HIC1 2.561e-113
HOXD12_DBD_4 2.772e-113
MGA_DBD_3 4.049e-113
RXRG_full_2 4.197e-113
SRF_do SRF 4.571e-113
Foxg1_DBD_2 4.789e-113
MA0244.1 slbo 1.015e-112
PPARG_f1 PPARG 1.019e-112
MYBB_f1 MYBB 1.195e-112
MESP1_DBD 1.235e-112
MAX_f1 MAX 1.274e-112
MA0263.1 ttx-3::ceh-10 1.631e-112
MA0027.1 En1 1.665e-112
POU3F1_DBD_2 2.192e-112
Foxk1_DBD_1 2.877e-112
MA0260.1 che-1 4.907e-112
NFYC_f1 NFYC 1.097e-111
SOX15_full_1 1.169e-111
PPARD_f1 PPARD 1.744e-111
MA0479.1 FOXH1 2.105e-111
EHF_full 3.031e-111
NFIA_full_1 3.077e-111
OTX2_si OTX2 3.236e-111
MA0486.1 HSF1 4.01e-111
PIT1_f1 PIT1 5.722e-111
ZNF524_full_2 6.377e-111
AR_full 7.013e-111
MA0502.1 NFYB 1.276e-110
NFIA+NFIB+NFIC+NFIX_f2 NFIA,B,C,X 1.445e-110
MA0314.1 HAP3 1.767e-110
MA0073.1 RREB1 1.893e-110
MAX_DBD_2 2.41e-110
MA0106.2 TP53 3.679e-110
MA0513.1 SMAD2,3,4 4.346e-110
Tp53_DBD_3 6.357e-110
THRB_DBD_1 9.525e-110
MA0109.1 Hltf 1.019e-109
MLX_full 1.026e-109
PROP1_f1 PROP1 1.062e-109
MA0137.3 STAT1 1.215e-109
MA0081.1 SPIB 2.105e-109
MA0005.2 AG 2.622e-109
HOXD13_DBD_2 2.734e-109
E2F8_DBD 2.891e-109
ETS1_DBD_1 3.159e-109
MA0059.1 MYC::MAX 6.364e-109
Hic1_DBD_1 6.44e-109
SOX9_full_1 6.588e-109
TBX1_DBD_5 1.142e-108
MA0293.1 ECM23 1.737e-108
MA0347.1 NRG1 2.066e-108
MA0009.1 T 2.098e-108
MA0066.1 PPARG 2.578e-108
NKX31_si NKX31 4.15e-108
TBP_f1 TBP 5.406e-108
NFIX_full_1 6.615e-108
NFKB2_f1 NFKB2 7.632e-108
POU3F3_DBD_3 7.792e-108
SOX7_full_2 8.709e-108
MA0393.1 STE12 2.887e-107
FOXI1_f1 FOXI1 2.896e-107
CREB3_full_1 3.056e-107
ONECUT3_DBD 4.135e-107
ETV6_full_1 1.01e-106
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BMAL1_f1 BMAL1 1.022e-106
HSF2_DBD 1.687e-106
NFYB_f1 NFYB 2.428e-106
MA0403.1 TBF1 2.517e-106
LEF1_DBD 4.488e-106
ATF7_DBD 4.489e-106
GFI1_f1 GFI1 7.132e-106
LHX2_f1 LHX2 8.073e-106
ERF_DBD 9.196e-106
MA0370.1 RME1 1.31e-105
MA0371.1 ROX1 1.554e-105
BATF3_DBD 5.842e-105
SOX10_full_4 5.958e-105
HXD9_f1 HXD9 5.962e-105
MA0519.1 Stat5a::Stat5b 6.031e-105
MA0011.1 br_Z2 7.936e-105
MA0514.1 Sox3 8.047e-105
MA0193.1 Lag1 8.647e-105
GABPA_f1 GABPA 1.246e-104
MA0520.1 Stat6 2.073e-104
NR4A2_full_1 2.198e-104
NFYA_f1 NFYA 4.404e-104
HXA10_f1 HXA10 4.92e-104
EGR2_si EGR2 5.139e-104
MA0065.2 PPARG::RXRA 7.334e-104
Tcf7_DBD 8.536e-104
MA0026.1 Eip74EF 9.332e-104
MLXPL_f1 MLXPL 1.062e-103
SOX21_DBD_1 1.175e-103
Nr2e1_DBD_2 1.229e-103
POU2F1_DBD_2 1.406e-103
GCM1_f1 GCM1 1.475e-103
SOX8_DBD_1 1.815e-103
HXA1_f1 HXA1 3.247e-103
E2F4_DBD_1 4.148e-103
ARI3A_f1 ARI3A 4.457e-103
Egr1_mouse_mutantDBD 1.067e-102
BRAC_si BRAC 1.452e-102
MA0533.1 SU(HW) 1.61e-102
Foxj3_DBD_1 1.712e-102
MA0120.1 id1 2.15e-102
E2F3_DBD_1 2.922e-102
ELK1_f1 ELK1 2.964e-102
NR1H4_f1 NR1H4 3.631e-102
MA0580.1 DYT1 4.066e-102
RORG_f1 RORG 4.129e-102
FOXB1_DBD_1 5.328e-102
ATF1_si ATF1 7.285e-102
LEF1_f1 LEF1 8.066e-102
GABP1+GABP2_f1 GABP1+GABP2 8.798e-102
ZNF784_full 9.605e-102
TLX1_f2 TLX1 1.171e-101
ELF1_DBD 1.207e-101
RXRA_DBD_2 1.234e-101
HXA7_f1 HXA7 1.572e-101
FOXO3_full_3 1.822e-101
TBX1_DBD_4 1.981e-101
UBIP1_f1 UBIP1 2.7e-101
HOXA13_DBD_2 2.802e-101
MA0305.1 GCR2 4.777e-101
EGR2_full 5.935e-101
Irx3_DBD 6.787e-101
NFKB2_DBD 1.14e-100
HNF4A_DBD_2 1.261e-100
SOX10_full_2 1.417e-100
P53_f2 P53 1.818e-100
ELK3_f1 ELK3 2e-100
THA_f2 THA 2.613e-100
SOX8_DBD_5 2.658e-100
MA0056.1 MZF1_1-4 3.756e-100
FOXO1_DBD_2 4.388e-100
HOXC10_DBD_3 4.961e-100
NKX2-3_DBD 5.451e-100
BHE40_f2 BHE40 6.027e-100
SUH_f1 SUH 9.512e-100
MA0044.1 HMG-1 9.673e-100
ZNF713_full 1.131e-99
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TFAP2A_DBD_4 1.247e-99
HSF4_DBD 1.661e-99
CEBPZ_si CEBPZ 1.731e-99
MA0060.2 NFYA 2.003e-99
NKX28_f1 NKX28 2.406e-99
IRF7_DBD_2 3.414e-99
E2F3_DBD_3 7.509e-99
MA0110.2 ATHB5 1.35e-98
Sox10_DBD_3 1.372e-98
RARA_f2 RARA 2.185e-98
NR2C2_f1 NR2C2 2.201e-98
MA0525.1 TP63 3.408e-98
TFAP2A_DBD_2 5.946e-98
STA5B_f1 STA5B 7.498e-98
MA0032.1 FOXC1 8.374e-98
SPDEF_DBD_1 8.642e-98
FOXO4_DBD_3 9.135e-98
MA0454.1 odd 9.79e-98
MA0143.3 Sox2 1.112e-97
POU2F2_DBD_2 1.135e-97
SOX9_full_3 1.246e-97
SOX10_full_5 1.86e-97
FLI1_full_1 2.991e-97
FOXC1_DBD_2 3.374e-97
FOXO1_DBD_3 4.076e-97
POU2F3_DBD_2 4.388e-97
ETS1_full_1 1.172e-96
MA0483.1 Gfi1b 1.364e-96
ELF2_f1 ELF2 1.488e-96
GCM1_full_2 1.967e-96
MA0258.2 ESR2 2.104e-96
MA0121.1 ARR10 2.467e-96
AR_DBD 3.652e-96
MA0343.1 NDT80 4.046e-96
MA0345.1 NHP6A 1.02e-95
MA0315.1 HAP4 1.508e-95
MA0057.1 MZF1_5-13 2.334e-95
T_full 2.425e-95
SOX8_full_3 3.146e-95
Mlx_DBD 3.628e-95
TFAP2B_DBD_2 4.425e-95
MA0038.1 Gfi1 9.156e-95
SRY_DBD_1 1.203e-94
TF7L2_f1 TF7L2 1.225e-94
FOXP3_f1 FOXP3 1.617e-94
ERG_full_1 2.041e-94
YBOX1_f2 YBOX1 2.829e-94
MA0085.1 Su(H) 2.936e-94
HSF2_si HSF2 3.751e-94
PTF1A_f1 PTF1A 4.672e-94
SOX2_full_1 5.411e-94
SOX14_DBD_1 5.934e-94
HLF_si HLF 6.336e-94
MA0523.1 TCF7L2 6.762e-94
MA0335.1 MET4 7.909e-94
POU4F1_DBD 1.146e-93
SMAD1_si SMAD1 1.224e-93
IRX5_DBD 1.891e-93
FOXO6_DBD_1 1.917e-93
LHX6_full_3 2.6e-93
MA0264.1 ceh-22 2.606e-93
SOX2_DBD_1 2.632e-93
MA0331.1 MCM1 3.213e-93
MA0162.2 EGR1 3.455e-93
MGA_DBD_2 4.451e-93
ZNF232_full 6.855e-93
BHLHE41_full 6.88e-93
IRF5_full_1 7.214e-93
IRX2_DBD 8.045e-93
NR4A2_full_2 9.433e-93
MA0097.1 bZIP911 1.46e-92
SOX8_DBD_4 1.656e-92
Zfp740_DBD 1.687e-92
STAT3_si STAT3 2.113e-92
NKX2-3_full 4.251e-92
FOXC2_DBD_1 5.814e-92
GFI1B_f1 GFI1B 5.99e-92

GNS motifs Table 7.10
Motif name TF name Adjusted p-value
MA0568.1 MYC3 6.041e-92
Sox10_DBD_2 6.912e-92
SOX7_full_3 7.417e-92
EPAS1_si EPAS1 9.678e-92
SP8_DBD 1.066e-91
TCF7_f1 TCF7 1.237e-91
MA0573.1 ATHB9 1.354e-91
MTF1_f1 MTF1 1.67e-91
MA0571.1 ANT 3.647e-91
SMAD4_si SMAD4 4.091e-91
MA0581.1 LEC2 4.245e-91
MA0531.1 CTCF 5.532e-91
ERG_f1 ERG 1.027e-90
ZFHX3_f1 ZFHX3 1.881e-90
POU5F1P1_DBD_2 2.36e-90
SP1_DBD 3.593e-90
MA0268.1 ADR1 5.038e-90
Rxra_DBD_2 6.291e-90
KLF13_full 7.094e-90
STAT1_f2 STAT1 7.44e-90
ETS2_f1 ETS2 8.633e-90
MSX2_DBD_1 1.369e-89
EGR2_DBD 1.42e-89
SPDEF_full_1 1.959e-89
MA0326.1 MAC1 2.176e-89
CREB3L1_full_2 2.333e-89
MA0340.1 MOT3 2.843e-89
MA0463.1 Bcl6 3.247e-89
MA0074.1 RXRA::VDR 3.387e-89
MA0222.1 exd 4.599e-89
SOX18_full_3 5.065e-89
Sox3_DBD_1 5.664e-89
MA0142.1 Pou5f1::Sox2 6.141e-89
ERG_DBD_1 6.83e-89
HSF1_full 8.488e-89
Klf12_DBD 1.132e-88
NFKB1_DBD 1.305e-88
HOXD11_DBD_1 1.342e-88
ETV3_DBD 1.598e-88
ZBTB4_si ZBTB4 1.603e-88
OVOL1_f1 OVOL1 1.722e-88
MA0105.3 NFKB1 2.908e-88
MA0046.1 HNF1A 2.952e-88
SNAI2_DBD 3.305e-88
P73_si P73 3.565e-88
ARI5B_f1 ARI5B 5.317e-88
MA0532.1 STAT92E 5.541e-88
MA0599.1 KLF5 6.033e-88
E2F2_DBD_2 6.384e-88
HOXA10_DBD_1 8.658e-88
Meis3_DBD_1 1.099e-87
SOX8_DBD_2 1.297e-87
CEBPG_full 1.606e-87
MA0386.1 TBP 1.732e-87
ALX3_full_1 1.802e-87
FOXO6_DBD_3 2.031e-87
MA0140.2 TAL1::GATA1 2.356e-87
PITX1_DBD 3.197e-87
ZIC3_f1 ZIC3 3.214e-87
E2F2_DBD_3 4.181e-87
TF65_f2 TF65 4.254e-87
SOX18_f1 SOX18 4.273e-87
SOX10_full_3 5.474e-87
HOXC11_DBD_1 6.893e-87
HSF1_DBD 8.495e-87
MA0070.1 PBX1 9.55e-87
MA0436.1 YPR022C 1.466e-86
CDX2_f1 CDX2 2.216e-86
MA0578.1 AtSPL8 2.413e-86
MA0471.1 E2F6 2.512e-86
MA0589.1 ZAP1 3.138e-86
MA0035.3 Gata1 4.365e-86
EGR4_DBD_1 8.513e-86
POU4F2_DBD 8.953e-86
MA0550.1 BZR1 9.79e-86
POU3F4_DBD_2 1.964e-85
TBX21_DBD_1 1.978e-85
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ARNTL_DBD 2.4e-85
TFEB_f1 TFEB 2.43e-85
Rhox11_DBD 2.472e-85
PBX3_f2 PBX3 2.557e-85
MA0576.1 AtMYB84 3.495e-85
SOX9_full_5 3.601e-85
TFCP2_full_2 4.342e-85
TFAP2C_full_3 4.805e-85
PBX2_f1 PBX2 5.198e-85
NFIL3_si NFIL3 5.37e-85
TBX19_DBD 6.224e-85
MA0025.1 NFIL3 7.375e-85
GCM2_DBD 8.295e-85
SOX8_full_2 1.029e-84
MA0327.1 MATA1 1.274e-84
GABPA_full 2.012e-84
NKX3-1_full 2.035e-84
Hoxd9_DBD_3 2.065e-84
FOXI1_full_2 2.414e-84
POU4F3_DBD 3.426e-84
MA0413.1 USV1 3.874e-84
MA0387.1 SPT2 4.439e-84
MA0294.1 EDS1 4.613e-84
SOX15_full_3 4.84e-84
FOXO4_DBD_1 5.194e-84
ARNT2_si ARNT2 5.557e-84
SOX9_full_6 6.796e-84
STA5A_do STA5A 7.43e-84
MA0530.1 CNC::maf-S 1.092e-83
MA0402.1 SWI5 1.147e-83
Sox17_DBD_1 1.189e-83
MA0235.1 onecut 1.353e-83
ZIC2_f1 ZIC2 2.233e-83
EGR1_DBD 2.711e-83
KLF8_f1 KLF8 3.651e-83
MA0079.3 SP1 3.825e-83
MA0507.1 POU2F2 3.865e-83
MA0015.1 Cf2_II 3.889e-83
GCM1_DBD 4.302e-83
MA0460.1 ttk 4.846e-83
PO5F1_do PO5F1 6.06e-83
GATA3_si GATA3 6.395e-83
MA0482.1 Gata4 7.706e-83
HLF_full 7.927e-83
SRF_full 9.013e-83
MA0126.1 ovo 1.023e-82
MA0239.1 prd 1.023e-82
SOX14_DBD_3 1.453e-82
Ar_DBD 1.483e-82
SRBP1_f2 SRBP1 1.578e-82
Sox17_DBD_2 2.063e-82
MEOX2_DBD_3 3.487e-82
PAX5_si PAX5 6.672e-82
MA0086.1 sna 7.288e-82
Tcfap2a_DBD_2 7.938e-82
MA0504.1 NR2C2 8.002e-82
MA0266.1 ABF2 9.096e-82
NFAC1_do NFAC1 9.342e-82
KLF1_f1 KLF1 1.072e-81
TBX21_full_3 1.097e-81
KLF4_f2 KLF4 1.499e-81
Sox3_DBD_3 1.509e-81
EN1_DBD_2 1.511e-81
MA0357.1 PHO4 1.599e-81
SNAI2_f1 SNAI2 1.662e-81
ZEB1_do ZEB1 1.662e-81
LBX2_DBD_1 2.074e-81
MA0376.1 RTG3 2.076e-81
KLF14_DBD 3.427e-81
GLI2_f1 GLI2 4.518e-81
SMAD2_si SMAD2 6.003e-81
EN1_full_2 6.843e-81
Sox1_DBD_1 9.937e-81
MA0262.1 mab-3 1.007e-80
Sox3_DBD_2 1.343e-80
ZN143_si ZN143 1.434e-80
PITX1_full_2 1.62e-80

GNS motifs Table 7.10
Motif name TF name Adjusted p-value
MA0149.1 EWSR1-FLI1 1.884e-80
TWST1_f1 TWST1 1.885e-80
FOXO3_full_1 1.953e-80
MA0574.1 AtMYB15 3.552e-80
MA0383.1 SMP1 4.165e-80
MA0284.1 CIN5 5.022e-80
ELK1_DBD_2 7.631e-80
MZF1_f1 MZF1 9.245e-80
MA0016.1 usp 1.02e-79
MA0267.1 ACE2 1.023e-79
POU3F2_DBD_1 1.095e-79
HES5_DBD_1 1.139e-79
CEBPG_DBD 1.188e-79
DUXA_DBD 1.237e-79
PAX6_f1 PAX6 1.351e-79
SP3_DBD 1.38e-79
MA0039.2 Klf4 1.727e-79
HXB6_f1 HXB6 1.828e-79
SOX21_DBD_4 3.519e-79
TGIF1_f1 TGIF1 4.684e-79
MSX1_DBD_1 4.942e-79
FEV_DBD 6.973e-79
EGR3_DBD 1.297e-78
HES7_DBD 1.441e-78
Pou2f2_DBD_1 2.144e-78
FOXK1_DBD 3.011e-78
MYB_f1 MYB 3.784e-78
ZIC1_f1 ZIC1 4.036e-78
MA0316.1 HAP5 4.763e-78
MA0088.1 znf143 1.761e-77
FLI1_DBD_1 2.146e-77
STAT6_do STAT6 2.393e-77
HES5_DBD_2 3.189e-77
POU4F2_full 3.338e-77
HMGA2_f1 HMGA2 4.154e-77
ZNF306_full 4.744e-77
POU1F1_DBD_1 5.602e-77
CREB3L1_DBD_1 6.712e-77
HOXD12_DBD_2 7.891e-77
MA0145.2 Tcfcp2l1 8.925e-77
MA0552.1 PIL5 9.546e-77
MA0597.1 THAP1 1.792e-76
MA0274.1 ARR1 1.866e-76
E2F4_DBD_2 1.875e-76
ONECUT1_DBD 2.062e-76
SOX18_full_1 2.285e-76
ELK1_full_1 2.591e-76
NKX22_si NKX22 3.559e-76
PROP1_DBD 3.81e-76
ELK4_DBD 5.003e-76
Sox1_DBD_3 5.457e-76
SRY_DBD_3 5.645e-76
NFATC1_full_3 5.731e-76
HOXC12_DBD_2 5.982e-76
ZBTB7B_full 6.181e-76
MA0572.1 ATHB1 6.589e-76
GLI2_DBD_1 1.26e-75
Hoxa11_DBD_1 1.565e-75
SOX9_full_2 1.84e-75
BHLHB2_DBD 1.84e-75
SOX7_full_1 2.032e-75
NFKB1_f1 NFKB1 3.28e-75
KLF16_DBD 7.711e-75
EOMES_f1 EOMES 8.494e-75
MA0094.2 Ubx 8.59e-75
HNF1A_f1 HNF1A 1.031e-74
SMAD3_f1 SMAD3 1.098e-74
PBX1_do PBX1 1.242e-74
SOX2_f1 SOX2 1.734e-74
ZN219_f1 ZN219 1.811e-74
TEF_FL 2.343e-74
Bhlhb2_DBD_1 2.664e-74
Alx1_DBD_1 2.826e-74
MA0281.1 CBF1 3.082e-74
Elk3_DBD 3.154e-74
REL_do REL 3.298e-74
MNT_DBD 3.425e-74
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MA0023.1 dl_2 5.693e-74
Msx3_DBD_1 7.157e-74
SOX15_full_2 9.623e-74
ZBTB49_DBD 1.505e-73
MA0101.1 REL 3.475e-73
ZNF740_DBD 5.683e-73
HNF6_f1 HNF6 6.243e-73
MA0116.1 Zfp423 6.881e-73
PO2F2_si PO2F2 7.123e-73
MA0004.1 Arnt 8.318e-73
ZNF740_full 8.625e-73
MA0355.1 PHD1 1.076e-72
KAISO_f1 KAISO 1.106e-72
SP4_full 1.368e-72
BCL6_f1 BCL6 1.519e-72
TCF4_full 1.662e-72
SPDEF_DBD_2 2.603e-72
SRF_DBD 3.07e-72
MA0515.1 Sox6 3.131e-72
RELB_si RELB 5.41e-72
PO3F1_f1 PO3F1 7.729e-72
MA0062.2 GABPA 8.675e-72
DBP_full 1.016e-71
GLI2_DBD_2 1.08e-71
MA0278.1 BAS1 1.103e-71
HOXC11_full_1 1.121e-71
HXC8_f1 HXC8 1.167e-71
BHLHB3_full 1.534e-71
MA0183.1 CG7056 1.556e-71
SOX2_DBD_2 1.974e-71
NFATC1_full_2 1.991e-71
BARHL2_full_2 3.048e-71
MA0333.1 MET31 3.277e-71
Barhl1_DBD_2 3.818e-71
Egr3_DBD 5.256e-71
MA0003.2 TFAP2A 5.322e-71
SOX14_DBD_2 6.501e-71
GATA5_f1 GATA5 7.104e-71
MA0443.1 btd 7.335e-71
ONECUT2_DBD 8.607e-71
MA0107.1 RELA 1.124e-70
BHE41_f1 BHE41 1.628e-70
Barhl1_DBD_3 1.768e-70
SRY_DBD_4 2.034e-70
HOXD12_DBD_3 2.55e-70
EGR4_DBD_2 3.595e-70
MA0528.1 ZNF263 5.632e-70
ELK1_DBD_1 8.592e-70
PHOX2A_DBD 1.199e-69
MA0385.1 SOK2 1.513e-69
CREB3L1_DBD_4 2.044e-69
BARX1_DBD_1 2.175e-69
MA0154.2 EBF1 2.227e-69
MA0540.1 DPY-27 2.265e-69
SOX15_f1 SOX15 2.306e-69
RREB1_si RREB1 5.063e-69
PAX9_DBD 6.188e-69
ZBTB4!METH_f1 ZBTB4!METH 7.9e-69
HEN1_si HEN1 8.51e-69
MA0163.1 PLAG1 8.855e-69
BARHL2_full_3 1.143e-68
ETV4_DBD 1.285e-68
Nkx3-1_DBD 1.5e-68
MA0197.1 Oct 1.967e-68
MAFK_DBD_1 2.769e-68
ELK3_DBD 2.867e-68
MA0516.1 SP2 3.934e-68
CDC5L_si CDC5L 4.527e-68
MA0564.1 ABI3 7.075e-68
DLX2_f1 DLX2 1.452e-67
ALX1_si ALX1 1.699e-67
MA0188.1 Dr 2.024e-67
PLAG1_f1 PLAG1 2.349e-67
MAX_DBD_1 2.486e-67
NKX3-2_DBD 2.712e-67
MA0037.2 GATA3 3.632e-67
MA0350.1 TOD6 4.393e-67
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E2F3_DBD_2 4.411e-67
POU3F3_DBD_1 4.848e-67
MA0381.1 SKN7 5.412e-67
XBP1_DBD_1 7.267e-67
ZEP2_si ZEP2 1.396e-66
SOX18_full_2 1.756e-66
MNX1_DBD 2.52e-66
EGR1_f2 EGR1 2.59e-66
BARHL2_DBD_2 2.653e-66
BARHL2_DBD_3 3.738e-66
PROX1_DBD 4.823e-66
Uncx_DBD_1 5.082e-66
SOX21_DBD_3 5.272e-66
MYC_f1 MYC 5.895e-66
TFCP2_f1 TFCP2 6.454e-66
AP2A_f2 AP2A 7.194e-66
POU6F2_DBD_2 9.925e-66
CREB3L1_full_1 1.526e-65
MAFA_f1 MAFA 1.561e-65
PAX6_DBD 2.053e-65
PHOX2B_DBD 2.209e-65
MA0587.1 TCP16 2.218e-65
ETV1_DBD 2.895e-65
MA0551.1 HY5 4.781e-65
SOX2_full_2 4.832e-65
UNCX_DBD_1 6.197e-65
Bhlhb2_DBD_2 6.203e-65
POU2F2_DBD_1 6.612e-65
SOX2_full_3 7.238e-65
MA0135.1 Lhx3 8.62e-65
MA0138.2 REST 1.145e-64
MA0524.1 TFAP2C 1.172e-64
Sox1_DBD_4 1.261e-64
DBP_DBD 1.771e-64
MA0485.1 Hoxc9 2.066e-64
WT1_f1 WT1 2.79e-64
LHX2_DBD_2 3.242e-64
XBP1_DBD_2 3.627e-64
MA0373.1 RPN4 4.946e-64
MA0418.1 YAP6 5.29e-64
MA0084.1 SRY 5.745e-64
PHOX2B_full 7.3e-64
SRY_DBD_2 9.629e-64
Sox1_DBD_2 1.293e-63
EOMES_DBD_2 1.611e-63
BCL6B_DBD 1.662e-63
MA0069.1 Pax6 2.267e-63
ZBTB7C_full 2.296e-63
PURA_f1 PURA 2.549e-63
DLX2_DBD 3.785e-63
MA0096.1 bZIP910 6.006e-63
SMAD3_DBD 6.487e-63
MA0310.1 HAC1 9.299e-63
DLX3_do DLX3 1.463e-62
GSX2_DBD 1.496e-62
MA0153.1 HNF1B 1.796e-62
POU2F1_DBD_1 1.817e-62
INSM1_f1 INSM1 2.051e-62
PKNX1_si PKNX1 2.292e-62
GATA6_f2 GATA6 2.694e-62
LHX3_f1 LHX3 4.438e-62
CREB1_f1 CREB1 5.158e-62
TFCP2_full_1 5.377e-62
SPDEF_full_2 6.465e-62
TFAP2B_DBD_1 6.61e-62
MA0276.1 ASH1 6.626e-62
MA0164.1 Nr2e3 1e-61
BSX_DBD 1.403e-61
UNCX_DBD_2 1.48e-61
MA0036.2 GATA2 1.629e-61
SOX2_DBD_3 2.61e-61
MA0445.1 D 3.735e-61
POU3F1_DBD_1 4.224e-61
MA0583.1 RAV1 4.257e-61
HNF1B_f1 HNF1B 4.326e-61
CART1_DBD 4.859e-61
GRHL1_full 5.129e-61
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MA0588.1 TGA1 6.644e-61
MA0173.1 CG11617 7.65e-61
MYCN_si MYCN 9.311e-61
EMX2_DBD_2 1.384e-60
MA0112.2 ESR1 1.491e-60
HEY2_f1 HEY2 1.872e-60
REST_f1 REST 2.224e-60
MA0453.1 nub 4.558e-60
EN2_full 6.368e-60
PRRX1_full_2 6.711e-60
NKX6-2_DBD 8.167e-60
NR0B1_si NR0B1 8.749e-60
Lhx8_DBD_3 9.035e-60
Arx_DBD 1.513e-59
GRHL1_DBD_1 1.601e-59
TFAP2A_DBD_5 2.148e-59
PO2F1_f1 PO2F1 2.966e-59
IRF5_full_2 3.802e-59
GATA1_si GATA1 4.887e-59
HNF1A_full 5.676e-59
ESX1_DBD 6.341e-59
E2F6_f1 E2F6 8.399e-59
MA0008.1 HAT5 8.705e-59
ESR1_do ESR1 8.725e-59
ISX_DBD_2 1.147e-58
PRRX1_full_1 1.147e-58
PRRX2_full 1.147e-58
Vsx1_DBD 1.147e-58
ISX_DBD_1 1.485e-58
ZN423_f1 ZN423 1.634e-58
MA0180.1 Vsx2 1.669e-58
SP1_f1 SP1 2.704e-58
SPZ1_f1 SPZ1 2.77e-58
MA0014.2 PAX5 2.836e-58
DLX1_DBD 2.911e-58
GATA2_si GATA2 2.92e-58
TFAP2C_DBD_1 3.557e-58
EGR4_f1 EGR4 3.661e-58
EMX1_DBD_2 5.973e-58
DLX6_DBD 6.809e-58
BARX2_si BARX2 1.199e-57
NRL_DBD 1.295e-57
SRBP2_f1 SRBP2 1.325e-57
EN2_DBD 1.643e-57
TEF_DBD 1.718e-57
POU1F1_DBD_2 2.412e-57
MA0155.1 INSM1 2.636e-57
CREB3_full_2 2.823e-57
DLX3_DBD 3.308e-57
DLX4_DBD 3.308e-57
GLIS3_DBD 5.416e-57
TFAP2A_DBD_1 6.435e-57
Zfp652_DBD 1.116e-56
MA0542.1 ELT-3 1.664e-56
MAFK_full_1 2.106e-56
MA0286.1 CST6 2.472e-56
MA0054.1 myb.Ph3 3.522e-56
SOX21_DBD_2 3.921e-56
ATF6A_si ATF6A 4.181e-56
MSX1_DBD_2 4.509e-56
MSX2_DBD_2 4.509e-56
ISX_full 4.558e-56
LHX9_DBD_1 4.558e-56
RAXL1_DBD 4.558e-56
SHOX2_DBD 4.558e-56
SHOX_DBD 4.558e-56
Shox2_DBD 4.558e-56
HMX1_DBD 4.835e-56
MA0028.1 ELK1 6.402e-56
MA0594.1 Hoxa9 7.399e-56
MSX1_full 7.947e-56
Msx3_DBD_2 7.947e-56
Mafb_DBD_3 9.036e-56
PAX8_f1 PAX8 1.031e-55
MIXL1_full 1.335e-55
NKX6-2_full 1.52e-55
HMX2_DBD 1.533e-55

GNS motifs Table 7.10
Motif name TF name Adjusted p-value
MA0431.1 YML081W 1.712e-55
MA0229.1 inv 2.599e-55
MA0078.1 Sox17 4.733e-55
Tcfap2a_DBD_1 6.012e-55
NKX6-1_full 6.411e-55
Nkx6-1_DBD 6.411e-55
Mafb_DBD_1 9.326e-55
PRRX1_DBD 1.016e-54
MA0351.1 DOT6 1.736e-54
ZN589_f1 ZN589 1.975e-54
Lhx8_DBD_1 2.107e-54
VSX2_si VSX2 2.294e-54
MTF1_DBD 3.675e-54
HEY2_full 3.681e-54
MA0139.1 CTCF 3.908e-54
ARX_DBD 4.609e-54
ISL2_DBD 5.26e-54
GATA4_f1 GATA4 7.252e-54
LBX2_DBD_2 9.149e-54
FLI1_f1 FLI1 1.173e-53
EGR1_full 1.612e-53
GLIS1_DBD 1.629e-53
PAX5_DBD 1.901e-53
HOMEZ_DBD 2.046e-53
MA0125.1 Nobox 2.178e-53
Alx4_DBD 2.403e-53
MA0469.1 E2F3 2.532e-53
MA0575.1 AtMYB77 2.589e-53
MEOX2_DBD_2 4.464e-53
HXD4_f1 HXD4 9.578e-53
HNF1B_full_2 1.337e-52
LHX9_DBD_2 1.427e-52
ONECUT1_full 2.627e-52
MA0382.1 SKO1 3.308e-52
NOBOX_si NOBOX 5.835e-52
HMX3_DBD 7.985e-52
SP1_f2 SP1 8.307e-52
CREB3L1_DBD_3 8.832e-52
MA0363.1 REB1 1.041e-51
ZN333_f1 ZN333 1.447e-51
PLAL1_si PLAL1 1.868e-51
PAX2_DBD 3.009e-51
MA0421.1 YDR026C 3.315e-51
HXB8_do HXB8 3.486e-51
KLF15_f1 KLF15 3.944e-51
Gbx1_DBD 5.386e-51
Creb3l2_DBD_2 5.686e-51
PROP1_full 5.73e-51
DLX5_FL 5.933e-51
SNAI1_f1 SNAI1 5.939e-51
PO4F2_si PO4F2 6.206e-51
PDX1_DBD_1 8.528e-51
HESX1_f1 HESX1 1.206e-50
MA0447.1 gt 1.477e-50
CREB3L1_DBD_2 1.571e-50
ERG_DBD_2 1.739e-50
POU5F1P1_DBD_1 2.405e-50
PAX1_DBD 2.564e-50
MA0570.1 ABF1 2.746e-50
MA0496.1 MAFK 3.002e-50
MA0434.1 YPR013C 3.89e-50
POU6F2_DBD_1 4.176e-50
GBX2_full 4.49e-50
Gbx2_DBD 4.579e-50
E2F7_f1 E2F7 4.791e-50
MA0412.1 UME6 5.26e-50
ETV5_DBD 5.505e-50
VSX1_full 7.689e-50
Pou2f2_DBD_2 8.156e-50
MA0441.1 ZMS1 1.569e-49
AP2B_f1 AP2B 1.591e-49
Dlx2_DBD 3.963e-49
MYBL1_DBD_4 4.64e-49
MA0158.1 HOXA5 6.966e-49
MA0415.1 YAP1 7.118e-49
MA0334.1 MET32 7.996e-49
POU3F2_DBD_2 8.076e-49
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GNS motifs Table 7.10
Motif name TF name Adjusted p-value
GRHL1_DBD_2 1.004e-48
TFAP2C_full_1 1.139e-48
CXXC1_si CXXC1 2.226e-48
HES1_f1 HES1 2.351e-48
MA0285.1 CRZ1 3.117e-48
HESX1_DBD_2 3.505e-48
ZN350_f1 ZN350 3.792e-48
ALX4_DBD 5.58e-48
ITF2_f1 ITF2 6.919e-48
E2F1_DBD_3 7.526e-48
GBX1_DBD 8.316e-48
PLAG1_si PLAG1 1.037e-47
POU2F3_DBD_1 1.143e-47
MA0450.1 hkb 1.491e-47
Dbp_DBD 2.324e-47
EN1_full_1 2.502e-47
COE1_f2 COE1 3.688e-47
LMX1B_DBD 4.44e-47
DRGX_DBD 5.499e-47
EN1_DBD_1 1.145e-46
PRRX1_f1 PRRX1 1.178e-46
SP3_f1 SP3 1.218e-46
NKX6-1_DBD 1.914e-46
MA0166.1 Antp 2.129e-46
MA0186.1 Dfd 2.129e-46
MA0203.1 Scr 2.129e-46
MA0215.1 btn 2.129e-46
MA0225.1 ftz 2.129e-46
GBX2_DBD_2 2.852e-46
MAF_f1 MAF 3.506e-46
MAZ_f1 MAZ 5.593e-46
E4F1_f1 E4F1 6.656e-46
MA0129.1 TGA1A 7.829e-46
AP2C_f1 AP2C 1.011e-45
CUX1_f1 CUX1 1.027e-45
ETS1_full_2 1.269e-45
HNF1B_full_1 1.865e-45
TFDP1_f1 TFDP1 2.71e-45
HESX1_DBD_1 3.738e-45
MA0435.1 YPR015C 4.165e-45
MA0425.1 YGR067C 4.303e-45
ESX1_full 6.734e-45
PAX5_f1 PAX5 1.074e-44
Prrx2_DBD 1.302e-44
MA0172.1 CG11294 1.359e-44
MA0178.1 CG32105 1.359e-44
MA0181.1 Vsx1 1.359e-44
MA0191.1 HGTX 1.359e-44
MA0194.1 Lim1 1.359e-44
MA0206.1 abd-A 1.359e-44
MA0208.1 al 1.359e-44
MA0230.1 lab 1.359e-44
MA0236.1 otp 1.359e-44
MA0240.1 repo 1.359e-44
MA0251.1 unpg 1.359e-44
MA0257.1 zen2 1.359e-44
MA0448.1 H2.0 1.359e-44
MA0553.1 SMZ 2.549e-44
Alx1_DBD_2 2.872e-44
POU3F4_DBD_1 3.821e-44
MEOX2_DBD_1 7.113e-44
XBP1_f1 XBP1 9.052e-44
GLIS3_f1 GLIS3 1.581e-43
HXA5_si HXA5 1.678e-43
GBX2_DBD_1 3.158e-43
ALX3_full_2 9.577e-43
E2F1_f2 E2F1 1.248e-42
ETS1_DBD_2 1.259e-42
MSX2_f1 MSX2 1.565e-42
ZBTB7A_DBD 1.582e-42
HEY2_DBD 2.312e-42
TBX21_DBD_3 3.235e-42
VSX2_DBD 3.755e-42
VAX1_DBD 4.233e-42
LHX6_full_2 5.01e-42
MA0124.1 NKX3-1 7.203e-42
MYBL2_DBD_2 7.266e-42

GNS motifs Table 7.10
Motif name TF name Adjusted p-value
GATA5_DBD 1.104e-41
SP2_si SP2 1.226e-41
PAX2_f1 PAX2 1.403e-41
ERG_full_2 1.567e-41
SOX9_f1 SOX9 1.581e-41
MA0146.2 Zfx 1.621e-41
MA0214.1 bsh 1.649e-41
MA0248.1 tup 1.649e-41
ALX3_DBD 1.855e-41
BARX1_DBD_2 2.192e-41
AP2D_f1 AP2D 2.902e-41
GATA4_DBD 3.189e-41
SOX10_si SOX10 3.812e-41
VAX2_DBD 6.142e-41
MA0549.1 BES1 7.99e-41
TFAP2C_full_2 1.152e-40
MAFF_DBD 1.63e-40
MA0495.1 MAFF 1.99e-40
E2F4_do E2F4 2.037e-40
Dlx1_DBD 3.156e-40
MAFG_full 3.618e-40
EBF1_full 4.065e-40
MA0318.1 HMRA2 5.693e-40
CTCF_f2 CTCF 6.173e-40
VENTX_DBD_2 1.043e-39
BARHL2_full_1 1.817e-39
GATA3_full 2.34e-39
MA0338.1 MIG2 2.668e-39
SOX13_f1 SOX13 2.949e-39
LMX1B_full 7.446e-39
MA0437.1 YPR196W 7.47e-39
HXB7_si HXB7 8.276e-39
RAX_DBD 1.08e-38
ZN148_si ZN148 1.141e-38
MA0349.1 OPI1 1.406e-38
PRRX2_f1 PRRX2 1.661e-38
MA0168.1 B-H1 1.661e-38
MA0169.1 B-H2 1.661e-38
MA0170.1 C15 1.661e-38
MA0171.1 CG11085 1.661e-38
MA0175.1 CG13424 1.661e-38
MA0176.1 CG15696 1.661e-38
MA0179.1 CG32532 1.661e-38
MA0192.1 Hmx 1.661e-38
MA0196.1 NK7.1 1.661e-38
MA0226.1 hbn 1.661e-38
MA0245.1 slou 1.661e-38
MA0250.1 unc-4 1.661e-38
MA0444.1 CG34031 1.661e-38
MA0224.1 exex 2.234e-38
MA0339.1 MIG3 2.762e-38
HEY1_DBD 2.947e-38
PDX1_DBD_2 4.963e-38
MA0362.1 RDS2 7.49e-38
MAFK_DBD_2 7.928e-38
MAFK_full_2 8.232e-38
HOXB3_DBD 1.024e-37
ZFX_f1 ZFX 1.283e-37
MAFB_f1 MAFB 1.439e-37
GATA3_DBD 3.457e-37
LHX2_DBD_1 6.46e-37
MA0024.2 E2F1 7.195e-37
ZBT7B_si ZBT7B 7.456e-37
MA0384.1 SNT2 9.682e-37
FLI1_full_2 1.002e-36
CUX2_DBD_1 1.059e-36
BARHL2_DBD_1 1.683e-36
MA0275.1 ASG1 1.951e-36
MA0118.1 Macho-1 2.399e-36
CENPB_full 2.654e-36
Hlf_DBD 2.878e-36
HOXB5_DBD 7.431e-36
SP4_f1 SP4 1.106e-35
POU6F2_full 1.442e-35
MA0433.1 YOX1 1.598e-35
GSX1_DBD 1.604e-35
MEOX1_full 3.216e-35
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GNS motifs Table 7.10
Motif name TF name Adjusted p-value
MA0243.1 sd 3.708e-35
CUX1_DBD_2 1.506e-34
ARNT_f1 ARNT 1.772e-34
VENTX_DBD_1 2.16e-34
PAX2_si PAX2 3.18e-34
MYBL1_DBD_1 8.257e-34
MA0579.1 CDC5 8.494e-34
LMX1A_DBD 1.986e-33
Lhx4_DBD 1.986e-33
AHR_si AHR 2.199e-33
MA0187.1 Dll 2.834e-33
EVX1_DBD 3.229e-33
E2F1_DBD_1 4.346e-33
MA0428.1 YKL222C 6.653e-33
MA0211.1 bap 6.987e-33
TFAP2B_DBD_3 7.848e-33
FLI1_DBD_2 9.755e-33
MA0279.1 CAD1 1.17e-32
MAFG_si MAFG 1.517e-32
NF2L1_f1 NF2L1 1.517e-32
ELK1_full_2 1.804e-32
Barhl1_DBD_1 4.16e-32
MA0438.1 YRM1 1.526e-31
HOXA2_DBD 1.578e-31
Uncx_DBD_2 1.919e-31
HSFY2_DBD_1 1.994e-31
MA0131.1 HINFP 2.706e-31
MA0312.1 HAP1 7.097e-31
RUNX3_si RUNX3 7.137e-31
NOTO_DBD 7.943e-31
E2F1_DBD_2 1.483e-30
MA0167.1 Awh 1.665e-30
MA0177.1 CG18599 1.665e-30
MA0184.1 CG9876 1.665e-30
MA0195.1 Lim3 1.665e-30
MA0198.1 OdsH 1.665e-30
MA0200.1 Pph13 1.665e-30
MA0202.1 Rx 1.665e-30
MA0209.1 ap 1.665e-30
MA0228.1 ind 1.665e-30
MA0241.1 ro 1.665e-30
MA0457.1 PHDP 1.665e-30
PDX1_do PDX1 2.136e-30
RHOXF1_DBD_1 2.268e-30
VSX1_DBD 2.517e-30
HINFP_f1 HINFP 2.996e-30
KLF6_si KLF6 4.24e-30
MA0506.1 NRF1 5.434e-30
MA0259.1 HIF1A::ARNT 5.688e-30
MA0077.1 SOX9 5.699e-30
TFAP2C_DBD_3 7.802e-30
MA0185.1 Deaf1 1.083e-29
MA0034.1 Gamyb 1.981e-29
MA0400.1 SUT2 2.134e-29
Hoxd3_DBD 3.176e-29
Lhx8_DBD_2 4.067e-29
CTCF_full 6.086e-29
EMX2_DBD_1 7.372e-29
MA0117.1 Mafb 8.416e-29
MA0565.1 FUS3 9.924e-29
Meox2_DBD 1.297e-28
Tcfap2a_DBD_3 1.371e-28
RFX2_f1 RFX2 2.196e-28
MA0067.1 Pax2 2.571e-28
MA0309.1 GZF3 5.032e-28
OTX1_f1 OTX1 6.65e-28
HOXB2_DBD 1.395e-27
En2_DBD 1.747e-27
HMBOX1_DBD 2.977e-27
MA0510.1 RFX5 3.331e-27
HOXA1_DBD 6.701e-27
MA0219.1 ems 8.383e-27
MA0221.1 eve 8.383e-27
MA0238.1 pb 8.383e-27
MA0256.1 zen 8.383e-27
EVX2_DBD 1.752e-26
PAX7_DBD 2.409e-26

GNS motifs Table 7.10
Motif name TF name Adjusted p-value
MA0337.1 MIG1 2.835e-26
HSFY2_DBD_3 3.788e-26
CUX1_DBD_1 4.87e-26
MA0590.1 LFY 7.368e-26
MA0449.1 h 8.068e-26
SOX9_DBD 8.108e-26
RHOXF1_full_1 1.409e-25
EMX1_DBD_1 3.55e-25
ZBT7A_f1 ZBT7A 9.774e-25
Mafb_DBD_2 1.162e-24
TFAP2A_DBD_6 2.267e-24
MA0367.1 RGT1 5.678e-24
MA0467.1 Crx 7.813e-24
PITX3_DBD 1.694e-23
MA0332.1 MET28 1.823e-23
MA0237.2 pan 2.261e-23
MA0544.1 GEI-11 2.369e-23
MA0439.1 YRR1 2.423e-23
MA0300.1 GAT1 3.91e-23
CUX2_DBD_2 6.866e-23
DPRX_DBD_2 8.214e-23
HSFY2_DBD_2 1.685e-22
Hoxa2_DBD 7.074e-22
MA0414.1 XBP1 7.903e-22
MYBL2_DBD_4 9.847e-22
MA0213.1 brk 1.176e-21
RFX2_DBD_2 1.264e-21
SOX5_f1 SOX5 2.292e-21
RFX1_f1 RFX1 3.042e-21
MA0416.1 YAP3 4.377e-21
MA0273.1 ARO80 4.462e-21
TFAP2A_DBD_3 5.5e-21
PITX1_full_1 6.281e-21
MA0577.1 AtSPL3 8.032e-21
HIF1A_si HIF1A 9.705e-21
MA0364.1 REI1 2.226e-20
MA0430.1 YLR278C 2.845e-20
MA0411.1 UPC2 3.054e-20
CUX1_DBD_3 4.016e-20
MA0509.1 Rfx1 4.197e-20
MA0586.1 SPL14 5.17e-20
MA0529.1 BEAF-32 5.41e-20
MA0308.1 GSM1 7.458e-20
PAX4_DBD 1.311e-19
MYBL2_DBD_1 2.237e-19
ZBED1_DBD 3.462e-19
ISL1_f1 ISL1 4.921e-19
PAX4_full 5.411e-19
NRF1_full 5.884e-19
MA0123.1 abi4 2.383e-18
GMEB2_DBD_2 2.743e-18
MA0391.1 STB4 3.424e-18
MA0422.1 YDR520C 4.759e-18
NRF1_f1 NRF1 4.894e-18
MA0282.1 CEP3 7.731e-18
MA0348.1 OAF1 1.325e-17
GLIS2_DBD 3.077e-17
MA0365.1 RFX1 3.429e-17
PAX7_full 5.606e-17
RFX3_f1 RFX3 9.902e-17
MYBL2_DBD_3 1.318e-16
GMEB2_DBD_1 2.308e-16
RUNX3_DBD_3 5.64e-16
MA0265.1 ABF1 1.227e-15
MA0292.1 ECM22 1.386e-15
PAX3_DBD 1.402e-15
NF2L2_si NF2L2 2.234e-15
MA0358.1 PUT3 2.541e-15
MA0290.1 DAL81 7.778e-15
MA0432.1 YNR063W 4.731e-14
MA0295.1 FHL1 9.102e-14
RFX3_DBD_2 1.759e-13
MA0354.1 PDR8 2.108e-13
OTX2_DBD_1 2.887e-13
OTX2_DBD_2 4.364e-13
Otx1_DBD_2 4.364e-13
LHX6_full_1 5.917e-13
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Motif name TF name Adjusted p-value
MA0567.1 ERF1 1.387e-12
RFX4_DBD_2 1.506e-12
CRX_si CRX 1.768e-12
HINFP1_full_1 1.9e-12
Otx1_DBD_1 1.958e-12
FOS_si FOS 2.813e-12
OTX1_DBD_1 4.257e-12
MA0420.1 YBR239C 5.042e-12
MYBL1_DBD_2 5.349e-12
MYBL1_DBD_3 6.196e-12
MECP2_f1 MECP2 8.995e-12
TEAD1_f1 TEAD1 1.865e-11
MA0557.1 FHY3 2.208e-11
MA0424.1 YER184C 5.545e-11
MA0600.1 RFX2 9.527e-11
GMEB2_DBD_4 2.133e-10
MA0392.1 STB5 2.577e-10
MA0283.1 CHA4 3.888e-10
RFX4_DBD_1 1.004e-09
MA0299.1 GAL4 1.68e-09
Rfx2_DBD_2 1.986e-09
DPRX_DBD_1 1.998e-09
E2F2_f1 E2F2 2.496e-09
GSC2_DBD 2.827e-09
HINFP1_full_2 4.663e-09
TEAD1_full_2 7.406e-09
MA0271.1 ARG80 1.846e-08
OTX1_DBD_2 2.68e-08

GNS motifs Table 7.10
Motif name TF name Adjusted p-value
RUNX2_DBD_2 2.696e-08
DMBX1_DBD 4.441e-08
MA0325.1 LYS14 1.99e-07
TEAD3_DBD_1 2.875e-07
MA0395.1 STP2 8.448e-07
E2F5_do E2F5 4.558e-06
GMEB2_DBD_3 4.7e-06
MA0289.1 DAL80 1.155e-05
RUNX2_f1 RUNX2 1.735e-05
MA0380.1 SIP4 2.171e-05
MA0201.1 Ptx1 7.578e-05
GSC_full 7.687e-05
MA0511.1 RUNX2 0.0002088
MA0456.1 opa 0.0003549
MA0397.1 STP4 0.0008826
MA0344.1 NHP10 0.0009088
MA0527.1 ZBTB33 0.001335
MA0541.1 EFL-1 0.001693
MBD2_si MBD2 0.001863
MA0405.1 TEA1 0.001947
MA0396.1 STP3 0.003194
MA0280.1 CAT8 0.003372
ZIC3_full 0.005761
MA0410.1 UGA3 0.009072
PEBB_f1 PEBB 0.0208
MA0360.1 RDR1 0.03791
MA0470.1 E2F4 0.04407

Table 7.10 Table of motifs enriched in GNS differentially accessible loci compared to back-
ground loci through the MEME suite tool FIMO [83].

NS motifs Table 7.11
Motif name TF name Adjusted p-value
MA0490.1 JUNB 1.263e-193
MA0477.1 FOSL1 1.295e-186
MA0491.1 JUND 1.096e-185
MA0476.1 FOS 5.823e-173
MA0489.1 JUN 4.586e-139
JUN_f1 JUN 5.438e-120
MA0099.2 JUN::FOS 8.183e-120
JDP2_full_1 4.604e-112
JDP2_DBD_1 4.127e-95
FOSL2_f1 FOSL2 4.171e-82
JUND_f1 JUND 9.569e-76
FOSB_f1 FOSB 1.889e-71
MA0303.1 GCN4 2.605e-70
Jdp2_DBD_1 4.172e-69
BATF_si BATF 3.661e-64

NS motifs Table 7.11
Motif name TF name Adjusted p-value
MA0462.1 BATF::JUN 7.531e-46
NFE2_DBD 2.141e-42
JUNB_f1 JUNB 5.226e-31
MA0478.1 FOSL2 2.207e-28
TEAD3_DBD_2 6.669e-23
RUNX2_DBD_3 1.474e-22
TEAD4_DBD 1.235e-21
MA0272.1 ARG81 2.791e-20
RUNX3_DBD_2 8.094e-19
MA0406.1 TEC1 1.251e-10
RUNX3_full 6.227e-09
TEAD1_full_1 7.023e-08
FOSL1_f2 FOSL1 1.206e-05
RUNX1_f1 RUNX1 0.0006121
MA0242.1 run::Bgb 0.04261

Table 7.11 Table of motifs enriched in NS differentially accessible loci compared to back-
ground loci through the MEME suite tool FIMO [83].
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Proneural motifs Table 7.12
Motif name TF name Adjusted p-value
E2F2_DBD_3 6.319E-13
ALX3_full_1 2.229E-11
MEIS1_DBD 6.212E-11
Meis2_DBD_1 6.212E-11
Meis3_DBD_1 6.427E-11
Alx1_DBD_1 8.778E-11
CDX1_f1 CDX1 9.275E-10
MIXL1_full 9.635E-10
UNCX_DBD_2 8.938E-09
Tcf21_DBD 9.976E-09
MA0229.1 inv 1.534E-08
MA0386.1 TBP 2.672E-08
ISX_full 3.982E-08
LHX9_DBD_1 3.982E-08
RAXL1_DBD 3.982E-08
SHOX2_DBD 3.982E-08
SHOX_DBD 3.982E-08
Shox2_DBD 3.982E-08
Prrx2_DBD 4.627E-08
MA0180.1 Vsx2 9.477E-08
MA0033.1 FOXL1 4.069E-07
Foxj3_DBD_3 6.651E-07
VSX2_DBD 4.907E-06
ALX3_DBD 8.008E-06
VSX1_DBD 8.507E-06
LEF1_f1 LEF1 9.158E-06
MA0167.1 Awh 1.196E-05
MA0177.1 CG18599 1.196E-05
MA0184.1 CG9876 1.196E-05
MA0195.1 Lim3 1.196E-05
MA0198.1 OdsH 1.196E-05
MA0200.1 Pph13 1.196E-05
MA0202.1 Rx 1.196E-05
MA0209.1 ap 1.196E-05
MA0228.1 ind 1.196E-05
MA0241.1 ro 1.196E-05
MA0457.1 PHDP 1.196E-05
LBX2_DBD_2 1.554E-05
HESX1_DBD_1 1.569E-05
MA0474.1 Erg 2.090E-05
Pou2f2_DBD_1 2.124E-05
LMX1B_DBD 2.297E-05
FOXO1_DBD_1 2.525E-05
MA0183.1 CG7056 2.738E-05
CTCF_full 2.994E-05
HBP1_f1 HBP1 3.210E-05
POU2F1_DBD_2 3.268E-05
Uncx_DBD_2 3.502E-05
POU3F4_DBD_2 3.515E-05
MA0172.1 CG11294 3.691E-05
MA0178.1 CG32105 3.691E-05
MA0181.1 Vsx1 3.691E-05
MA0191.1 HGTX 3.691E-05
MA0194.1 Lim1 3.691E-05
MA0206.1 abd-A 3.691E-05
MA0208.1 al 3.691E-05
MA0230.1 lab 3.691E-05
MA0236.1 otp 3.691E-05
MA0240.1 repo 3.691E-05
MA0251.1 unpg 3.691E-05
MA0257.1 zen2 3.691E-05
MA0448.1 H2.0 3.691E-05
PRRX1_DBD 3.982E-05
POU3F2_DBD_1 4.351E-05
MA0157.1 FOXO3 4.723E-05
MA0297.1 FKH2 5.095E-05
FOXD2_DBD_2 5.095E-05
FOXD3_DBD_2 5.095E-05
FOXL1_full_1 5.095E-05
FOXP3_DBD 5.095E-05
Foxg1_DBD_3 5.095E-05
Foxk1_DBD_2 5.095E-05
ESX1_DBD 8.888E-05
SOX17_f2 SOX17 9.536E-05

Proneural motifs Table 7.12
Motif name TF name Adjusted p-value
MA0100.2 Myb 9.826E-05
MA0433.1 YOX1 1.008E-04
ISX_DBD_2 1.247E-04
PRRX1_full_1 1.247E-04
PRRX2_full 1.247E-04
Vsx1_DBD 1.247E-04
POU6F2_DBD_2 1.450E-04
MA0317.1 HCM1 2.093E-04
SOX10_full_1 2.203E-04
E2F3_DBD_2 2.215E-04
LHX2_DBD_2 2.351E-04
MNX1_DBD 3.082E-04
ETV2_DBD 3.702E-04
LMX1A_DBD 3.735E-04
Lhx4_DBD 3.735E-04
E2F1_DBD_4 4.309E-04
SOX8_DBD_3 5.207E-04
MA0296.1 FKH1 5.543E-04
HXA5_si HXA5 6.229E-04
POU5F1P1_DBD_2 7.988E-04
MA0377.1 SFL1 1.010E-03
MA0408.1 TOS8 1.180E-03
TBP_f1 TBP 1.266E-03
MA0294.1 EDS1 1.277E-03
POU2F2_DBD_2 1.317E-03
FOXB1_full 1.624E-03
SOX9_full_4 2.012E-03
FOXQ1_f1 FOXQ1 2.209E-03
EN1_DBD_1 2.303E-03
Foxc1_DBD_2 2.517E-03
PROP1_DBD 2.593E-03
POU3F3_DBD_3 2.647E-03
PAX4_full 3.125E-03
ESX1_full 3.509E-03
MA0520.1 Stat6 3.742E-03
ETS1_DBD_1 4.137E-03
MA0593.1 FOXP2 4.582E-03
EN2_DBD 4.641E-03
POU3F1_DBD_2 4.950E-03
POU4F1_DBD 5.332E-03
FOXJ3_DBD_1 5.849E-03
POU2F3_DBD_2 5.861E-03
POU3F3_DBD_1 6.086E-03
SOX8_full_1 6.302E-03
Gbx1_DBD 6.307E-03
EMX2_DBD_1 6.927E-03
FOXP2_si FOXP2 8.672E-03
Ascl2_DBD 9.495E-03
HOXA1_DBD 1.140E-02
ISX_DBD_1 1.164E-02
POU3F3_DBD_2 1.241E-02
LHX6_full_1 1.242E-02
MSX2_DBD_1 1.277E-02
NFATC1_full_3 1.327E-02
MSX1_DBD_2 1.342E-02
MSX2_DBD_2 1.342E-02
FOXJ2_DBD_2 1.347E-02
LMX1B_full 1.440E-02
MA0125.1 Nobox 1.462E-02
ETS1_si ETS1 1.495E-02
RAX_DBD 1.612E-02
DLX3_DBD 1.651E-02
DLX4_DBD 1.651E-02
MA0136.1 ELF5 1.674E-02
Lhx8_DBD_2 2.001E-02
PAX4_DBD 2.533E-02
NANOG_f1 NANOG 2.808E-02
MA0480.1 Foxo1 2.880E-02
POU2F2_DBD_1 2.908E-02
Arx_DBD 3.054E-02
MA0345.1 NHP6A 3.187E-02
Sox10_DBD_1 3.398E-02
GCR_si GCR 4.091E-02
VSX2_si VSX2 4.145E-02
VAX1_DBD 4.687E-02

Table 7.12 Table of motifs enriched in proneural differentially accessible loci compared to
background loci through the MEME suite tool FIMO [83].
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Mesenchymal motifs Table 7.13
Motif name TF name Adjusted p-value
BACH1_si BACH1 0.000E+00
BATF_si BATF 0.000E+00
FOSB_f1 FOSB 0.000E+00
FOSL1_f2 FOSL1 0.000E+00
FOSL2_f1 FOSL2 0.000E+00
JUNB_f1 JUNB 0.000E+00
JUND_f1 JUND 0.000E+00
JUN_f1 JUN 0.000E+00
MAFK_si MAFK 0.000E+00
NFE2_f2 NFE2 0.000E+00
SMRC1_f1 SMRC1 0.000E+00
NF2L2_si NF2L2 1.124E-266
SNAI2_f1 SNAI2 3.458E-247
ZEB1_do ZEB1 3.458E-247
SNAI1_f1 SNAI1 2.008E-199
FOS_si FOS 3.925E-170
ITF2_f1 ITF2 5.105E-152
RUNX1_f1 RUNX1 6.050E-89
TBX5_si TBX5 3.806E-88
AP2D_f1 AP2D 1.696E-78
RUNX2_f1 RUNX2 9.286E-70
OTX2_si OTX2 4.286E-70
TWST1_f1 TWST1 9.409E-68
PITX2_si PITX2 1.917E-63
RXRB_f1 RXRB 1.667E-59
SRBP1_f2 SRBP1 1.019E-57
ZIC3_f1 ZIC3 9.655E-57
THA_f1 THA 1.426E-56
TFE3_f1 TFE3 1.804E-56
USF2_f1 USF2 5.776E-55
PAX2_f1 PAX2 4.092E-53
RARA_f1 RARA 1.021E-52
MAFG_si MAFG 4.942E-52
NF2L1_f1 NF2L1 4.942E-52
THB_f1 THB 4.248E-49
AP2A_f2 AP2A 5.477E-48
HESX1_f1 HESX1 9.665E-48
THB_do THB 1.569E-47
VDR_f1 VDR 1.724E-47
ZFX_f1 ZFX 5.068E-47
RARB_f1 RARB 1.251E-46
ESR1_do ESR1 6.873E-46
PAX5_si PAX5 1.591E-45
COT2_f1 COT2 3.474E-45
THA_f2 THA 1.502E-44
NR1I2_f2 NR1I2 8.209E-44
ESR2_do ESR2 1.729E-42
TBX2_f1 TBX2 2.122E-41
AP2B_f1 AP2B 1.325E-40
PPARA_f1 PPARA 2.929E-40
BMAL1_f1 BMAL1 5.442E-40
PAX2_si PAX2 4.163E-39
ATF1_si ATF1 1.684E-38
FOXC2_f1 FOXC2 2.731E-38
VDR_f2 VDR 5.752E-38
GLI1_f1 GLI1 3.176E-37
ESR2_si ESR2 1.011E-36
HEY2_f1 HEY2 1.949E-36
RARG_f1 RARG 2.020E-36
PEBB_f1 PEBB 2.628E-36
TLX1_f1 TLX1 3.173E-36
TBX3_f1 TBX3 8.071E-36
P53_f2 P53 1.845E-35
ATF6A_si ATF6A 2.018E-35
PAX8_f1 PAX8 2.082E-35
ARNT2_si ARNT2 7.592E-35
NFKB1_f1 NFKB1 1.818E-34
KLF1_f1 KLF1 7.955E-34
ZIC2_f1 ZIC2 9.474E-33
RUNX3_si RUNX3 1.143E-32
KLF4_f2 KLF4 1.743E-32
USF1_f1 USF1 6.881E-32
MTF1_f1 MTF1 4.603E-31
TLX1_f2 TLX1 3.762E-29
TEAD1_f1 TEAD1 1.095E-28
ENOA_si ENOA 3.971E-28
MITF_f1 MITF 1.249E-27
TF65_f2 TF65 1.284E-27
SP4_f1 SP4 4.219E-27
PAX5_f1 PAX5 1.570E-24
NKX21_f1 NKX21 1.695E-24
ZIC1_f1 ZIC1 1.812E-24

Mesenchymall motifs Table 7.13
Motif name TF name Adjusted p-value
COT2_f2 COT2 2.889E-24
NR4A3_f1 NR4A3 3.472E-24
SP3_f1 SP3 5.087E-24
ZN219_f1 ZN219 6.771E-24
MYC_f1 MYC 2.408E-23
CXXC1_si CXXC1 2.629E-23
BPTF_si BPTF 3.028E-23
BHE41_f1 BHE41 3.597E-23
ZN143_si ZN143 5.086E-23
NKX25_f1 NKX25 6.021E-23
SRBP2_f1 SRBP2 1.269E-22
NR1I3_si NR1I3 3.084E-22
RREB1_si RREB1 5.434E-22
RARG_do RARG 9.117E-22
ZEP1_f1 ZEP1 1.697E-21
NR1I3_f2 NR1I3 2.032E-21
KLF3_f1 KLF3 3.011E-21
SP1_f2 SP1 3.365E-21
NR2C1_si NR2C1 4.383E-21
AP2C_f1 AP2C 6.068E-21
PPARA_f2 PPARA 1.723E-20
HES1_f1 HES1 4.325E-20
ATF2+ATF4_f1 ATF2+ATF4 4.793E-20
CREB1_f1 CREB1 5.242E-20
RXRA_f1 RXRA 5.356E-20
ATF3_f1 ATF3 1.478E-19
SP1_f1 SP1 1.737E-19
HIC1_si HIC1 3.056E-19
RARA_f2 RARA 3.619E-19
ERR3_f1 ERR3 1.164E-18
HINFP_f1 HINFP 1.632E-18
MAFA_f1 MAFA 2.061E-18
MECP2_f1 MECP2 4.827E-18
HMGA1_f1 HMGA1 7.827E-18
GLI3_si GLI3 1.146E-17
COE1_f2 COE1 1.391E-17
IKZF1_f1 IKZF1 2.447E-17
TGIF1_f1 TGIF1 3.805E-17
KLF15_f1 KLF15 4.378E-17
MBD2_si MBD2 9.341E-17
PLAL1_si PLAL1 2.752E-16
ZBTB6_si ZBTB6 5.002E-16
PURA_f1 PURA 1.188E-15
MAFB_f1 MAFB 2.457E-15
FUBP1_f1 FUBP1 2.598E-15
ERR2_f1 ERR2 4.164E-15
RXRG_f1 RXRG 5.504E-15
COT1_f1 COT1 5.656E-15
DDIT3_f1 DDIT3 5.782E-15
ZBTB4_si ZBTB4 1.067E-14
YBOX1_f2 YBOX1 1.250E-14
MLXPL_f1 MLXPL 1.274E-14
ZN423_f1 ZN423 1.350E-14
PPARG_f1 PPARG 4.878E-14
XBP1_f1 XBP1 5.873E-14
NRF1_f1 NRF1 9.087E-14
MAX_f1 MAX 9.854E-14
NR6A1_do NR6A1 9.878E-14
ZN589_f1 ZN589 1.897E-13
NFIA+NFIB+NFIC_f2 NFIA+NFIB+NFIC 3.255E-13
ZBT7B_si ZBT7B 4.387E-13
SOX5_f1 SOX5 5.624E-13
BHE40_f2 BHE40 6.793E-13
SP2_si SP2 8.241E-13
REL_do REL 8.389E-13
E2F2_f1 E2F2 1.018E-12
GLIS3_f1 GLIS3 2.479E-12
OTX1_f1 OTX1 3.058E-12
CEBPD_f1 CEBPD 5.242E-12
COT1_si COT1 6.351E-12
RORA_f1 RORA 6.447E-12
P73_si P73 7.118E-12
NR2E3_f1 NR2E3 1.654E-11
E2F6_f1 E2F6 2.562E-11
ERR1_f1 ERR1 2.758E-11
CEBPB_f1 CEBPB 4.613E-11
STF1_f1 STF1 5.259E-11
RORG_f1 RORG 7.065E-11
MAZ_f1 MAZ 7.106E-11
KLF8_f1 KLF8 1.860E-10
WT1_f1 WT1 2.399E-10
REST_f1 REST 2.898E-10
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Mesenchymal motifs Table 7.13
Motif name TF name Adjusted p-value
ZBT7A_f1 ZBT7A 3.250E-10
PPARG_si PPARG 3.590E-10
CEBPG_si CEBPG 4.601E-10
HIF1A_si HIF1A 5.847E-10
RELB_si RELB 6.911E-10
EGR4_f1 EGR4 7.900E-10
ZEP2_si ZEP2 1.048E-09
TFCP2_f1 TFCP2 1.345E-09
NFIA+NFIB+NFIC_si NFIA+NFIB+NFIC 6.887E-09
HXD13_f1 HXD13 7.011E-09
HTF4_f1 HTF4 8.936E-09
AHR_si AHR 1.136E-08
FOXJ3_si FOXJ3 2.170E-08
NR1D1_f1 NR1D1 2.911E-08
SPZ1_f1 SPZ1 3.132E-08
TFEB_f1 TFEB 4.352E-08
HNF4G_f1 HNF4G 5.244E-08
PPARD_f1 PPARD 6.021E-08
ZN350_f1 ZN350 7.304E-08
NR5A2_f1 NR5A2 7.616E-08
SOX9_f1 SOX9 8.544E-08
NR2C2_f1 NR2C2 1.048E-07
NR1H4_f1 NR1H4 1.166E-07
HAND1_si HAND1 1.407E-07
NFKB2_f1 NFKB2 1.551E-07
SRY_f1 SRY 1.593E-07
MYBB_f1 MYBB 2.592E-07
IRF3_f1 IRF3 3.547E-07
CEBPA_do CEBPA 5.076E-07
CREM_f1 CREM 7.876E-07
MCR_f1 MCR 1.420E-06
MAF_f1 MAF 1.772E-06
ZBTB4!METH_f1 ZBTB4!METH 1.807E-06
HSF2_si HSF2 2.267E-06
PAX6_f1 PAX6 4.204E-06
MYCN_si MYCN 5.525E-06
NFYC_f1 NFYC 8.642E-06
BRAC_si BRAC 1.398E-05
INSM1_f1 INSM1 1.468E-05

Mesenchymal motifs Table 7.13
Motif name TF name Adjusted p-value
TFE2_f2 TFE2 2.353E-05
ZN148_si ZN148 3.732E-05
IRF2_f1 IRF2 3.892E-05
PLAG1_f1 PLAG1 4.216E-05
P63_si P63 6.064E-05
SOX2_f1 SOX2 6.299E-05
NFAT5_f1 NFAT5 8.117E-05
GFI1_f1 GFI1 9.153E-05
E2F3_si E2F3 1.028E-04
NR1I2_si NR1I2 1.034E-04
NR1H2_f1 NR1H2 1.490E-04
MEF2C_f1 MEF2C 1.491E-04
ARNT_f1 ARNT 1.532E-04
KLF6_si KLF6 1.674E-04
GCM1_f1 GCM1 2.986E-04
GLI2_f1 GLI2 3.075E-04
EPAS1_si EPAS1 4.525E-04
PO6F1_f1 PO6F1 5.016E-04
SOX13_f1 SOX13 7.101E-04
HNF4A_f1 HNF4A 8.687E-04
ELK3_f1 ELK3 1.801E-03
HXA7_f1 HXA7 1.979E-03
MEF2D_f1 MEF2D 2.473E-03
STAT3_si STAT3 2.961E-03
HEN1_si HEN1 3.474E-03
GFI1B_f1 GFI1B 5.281E-03
SMAD2_si SMAD2 5.580E-03
IRF4_si IRF4 6.686E-03
STAT2_f1 STAT2 7.967E-03
TYY1_f2 TYY1 8.177E-03
E2F4_do E2F4 1.171E-02
AIRE_f2 AIRE 1.319E-02
RFX2_f1 RFX2 1.383E-02
IRF1_si IRF1 1.832E-02
NR4A1_f1 NR4A1 1.975E-02
HXA1_f1 HXA1 2.462E-02
CRX_si CRX 2.846E-02
CEBPE_f1 CEBPE 3.089E-02

Table 7.13 Table of motifs enriched in mesenchymal differentially accessible loci compared
to background loci through the MEME suite tool FIMO [83].
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Motif name Alt name ALL GNS NS Pn Mes GNS vs. NS
ZNF238_full 264.24 419.88 329.12 307.24 289.69 90.76
ZNF238_DBD 246.28 391.39 314.70 290.12 273.73 76.69
MA0528 ZNF263 232.09 349.22 276.51 215.31 159.59 72.71
MA0091 TAL1::TCF3 370.71 591.98 521.18 470.25 406.90 70.80
ZN238_f1 ZN238 253.21 390.76 330.03 284.41 261.48 60.73
PITX2_si PITX2 211.54 275.82 226.51 193.45 269.93 49.30
Atoh1_DBD 197.46 313.38 274.81 279.63 228.36 38.57
MA0554 SOC1 292.11 395.11 358.73 330.39 355.73 36.38
NEUROG2_full 252.04 394.30 361.74 331.74 278.34 32.56
MA0466 CEBPB 281.19 419.99 388.74 346.69 362.81 31.25
MA0052 MEF2A 207.29 306.08 275.07 276.15 258.48 31.01
TAL1_f1 TAL1 215.91 327.64 299.11 246.18 230.17 28.53
MA0497 MEF2C 256.43 377.07 348.54 345.59 321.97 28.53
OLIG1_DBD 145.34 233.62 207.31 215.65 179.73 26.32
MA0149 EWSR1-FLI1 369.74 526.33 500.54 421.29 353.70 25.79
BHLHA15_DBD 155.83 243.18 218.11 233.59 185.81 25.07
MA0050 IRF1 196.76 318.58 295.15 245.74 236.91 23.43
Srebf1_DBD 262.16 352.11 328.73 261.79 284.69 23.38
NEUROG2_DBD 178.76 279.10 257.69 256.67 211.18 21.40
MA0095 YY1 226.89 319.12 298.33 253.97 226.54 20.79
OLIG2_full 136.63 216.34 199.25 208.30 171.01 17.09
MEF2C_f1 MEF2C 339.96 506.65 490.70 491.17 426.90 15.96
MA0543 EOR-1 266.62 384.49 368.58 319.27 244.48 15.91
MEF2A_DBD 362.63 539.23 524.06 527.54 455.25 15.17
BHLHE22_DBD 134.48 209.61 194.63 206.73 165.04 14.98
MEF2D_DBD 331.49 493.10 478.37 473.99 413.29 14.73
MEF2A_f1 MEF2A 336.93 505.15 490.96 496.42 424.91 14.19
IKZF1_f1 IKZF1 367.25 481.65 467.92 362.21 435.18 13.73
Rarg_DBD_1 229.46 308.30 295.63 241.66 275.24 12.67
Tcf21_DBD 217.71 337.85 325.37 271.62 222.39 12.47
MEF2D_f1 MEF2D 328.89 488.30 476.06 473.93 416.12 12.23
NEUROD2_full 143.96 218.61 206.96 198.47 163.68 11.65
TAL1_f2 TAL1 190.89 284.44 273.42 226.52 207.41 11.02
MEF2B_full 292.22 432.10 421.49 406.27 365.22 10.61
OLIG3_DBD 155.61 243.18 233.04 234.78 196.31 10.13
CEBPG_full 99.02 152.57 144.11 121.11 126.53 8.45
OLIG2_DBD 152.35 237.34 229.82 236.32 195.37 7.52
BHLHE23_DBD 121.65 184.77 177.86 179.85 147.41 6.90
FOXC1_DBD_1 199.26 287.96 281.43 273.00 250.31 6.53
Nr2f6_DBD_1 253.54 329.68 323.15 251.14 308.15 6.52
MA0102 220.18 341.66 335.17 299.92 285.36 6.49
TFE2_f2 TFE2 274.55 392.54 386.87 295.74 286.89 5.67
IRF4_si IRF4 314.15 465.55 460.17 388.93 381.07 5.38
IRF8_full 196.00 303.98 299.98 229.66 231.11 4.00
CEBPG_DBD 80.42 123.57 119.77 98.84 102.07 3.80
RARG_DBD_1 211.19 274.91 271.24 214.68 251.08 3.67
IRF4_full 165.45 258.31 254.91 196.84 196.00 3.40
CEBPD_DBD 86.62 130.79 128.39 102.93 111.56 2.40
Cebpb_DBD 80.86 123.94 121.68 102.58 104.54 2.26
MA0165 Abd-B 187.32 297.16 295.02 300.96 242.88 2.14

Table 7.14 Table of motif frequencies for motifs enriched in GNS accessible loci. Values
indicate the number of motifs per accessible megabase alongside the relative change in the
specified condition (rightmost column).
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Motif name Alt name ALL GNS NS Pn Mes GNS vs. NS
MA0478 FOSL2 345.33 331.62 1079.95 206.70 899.99 -748.33
MA0099 JUN::FOS 362.34 375.90 1018.45 264.71 858.13 -642.55
MA0491 JUND 281.78 263.63 900.91 167.28 752.82 -637.28
MA0477 FOSL1 285.26 261.34 898.08 167.82 745.42 -636.74
MA0490 JUNB 272.62 253.03 874.60 159.78 723.85 -621.57
MA0489 JUN 282.18 270.53 879.44 176.36 736.66 -608.90
SMRC1_f1 SMRC1 328.91 327.56 923.08 222.85 766.02 -595.51
MA0476 FOS 270.76 262.37 845.86 170.42 722.80 -583.49
MA0303 GCN4 241.67 225.73 788.85 141.09 648.73 -563.12
JUNB_f1 JUNB 236.54 226.70 722.52 148.16 593.16 -495.82
FOSL2_f1 FOSL2 219.26 203.38 687.72 129.78 567.57 -484.34
JUND_f1 JUND 219.01 206.37 684.20 131.07 569.46 -477.83
FOSL1_f2 FOSL1 280.46 284.84 751.53 196.90 609.78 -466.69
TEAD4_DBD 343.93 408.58 873.91 406.65 481.29 -465.33
JDP2_DBD_1 206.41 201.98 661.68 134.81 540.03 -459.70
NFE2_DBD 209.38 204.05 656.02 129.50 550.19 -451.96
JDP2_full_1 199.93 195.53 645.96 127.96 529.14 -450.43
JUN_f1 JUN 205.93 194.99 644.00 124.85 546.91 -449.00
Jdp2_DBD_1 192.52 183.20 631.19 117.72 522.34 -447.99
TEAD1_full_1 332.40 395.82 824.34 394.84 460.62 -428.52
TEAD3_DBD_2 291.35 337.29 765.33 336.39 406.03 -428.04
RUNX1_f1 RUNX1 376.39 462.34 872.47 437.52 511.97 -410.13
BATF_si BATF 211.95 215.59 623.18 146.24 537.69 -407.59
MA0501 NFE2::MAF 375.07 458.63 845.55 370.03 664.23 -386.93
FOSB_f1 FOSB 212.66 221.88 590.69 154.03 480.27 -368.82
MA0462 BATF::JUN 208.19 218.31 582.07 157.11 509.91 -363.75
MAFK_si MAFK 357.09 417.72 775.57 335.41 567.23 -357.85
MA0406 TEC1 313.51 386.84 742.77 377.88 398.45 -355.93
RUNX3_full 234.44 280.78 574.40 257.14 321.38 -293.62
BACH1_si BACH1 316.17 391.00 670.22 315.94 483.80 -279.22
TEAD3_DBD_1 257.66 322.75 599.71 324.11 362.22 -276.95
RUNX3_DBD_2 213.44 256.47 532.24 232.11 291.43 -275.77
TEAD1_full_2 269.23 351.59 616.65 360.86 368.33 -265.05
MA0591 Bach1::Mafk 240.12 268.16 522.18 200.20 376.92 -254.02
MAFG_full 279.24 348.65 597.01 316.85 372.07 -248.36
NFE2_f2 NFE2 243.13 276.98 523.53 212.35 402.92 -246.55
RUNX2_DBD_3 186.32 223.60 464.74 195.71 254.22 -241.14
MA0495 355.09 471.46 705.97 452.76 478.81 -234.51
MA0242 run::Bgb 203.61 249.39 477.24 219.58 273.84 -227.85
MA0150 Nfe2l2 210.80 247.10 466.44 193.67 365.43 -219.34
MA0419 YAP7 204.18 259.83 477.94 223.19 392.28 -218.10
MA0514 Sox3 351.89 500.42 715.25 479.05 433.81 -214.83
SOX9_f1 SOX9 307.90 436.17 648.09 429.64 422.02 -211.92
MA0496 MAFK 360.88 491.06 693.73 475.28 475.70 -202.67
TF7L2_f1 TF7L2 375.36 521.27 716.21 500.91 438.11 -194.94
NF2L2_si NF2L2 231.73 272.41 467.22 216.85 350.53 -194.81
SOX2_f1 SOX2 355.32 501.98 691.82 506.03 459.82 -189.83
MA0467 Crx 246.03 311.02 491.65 307.74 284.52 -180.63
MAFF_DBD 193.55 236.08 415.22 206.64 260.75 -179.14
STAT6_do STAT6 342.95 474.41 646.96 469.84 400.20 -172.55

Table 7.15 Table of motif frequencies for motifs enriched in NS accessible loci. Values
indicate the number of motifs per accessible megabase alongside the relative change in the
specified condition (rightmost column).
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Motif name Alt name ALL GNS NS Pn Mes Pn vs. Mes
MA0386 TBP 342.66 490.23 543.26 624.22 424.01 200.21
MA0015 Cf2_II 368.29 518.18 570.09 650.73 458.74 191.99
MA0398 SUM1 351.82 533.14 548.84 600.41 434.90 165.51
FOXB1_DBD_2 353.97 522.32 588.86 618.56 456.15 162.41
ARI3A_do ARI3A 336.89 503.82 534.73 568.94 420.72 148.21
MA0346 NHP6B 248.19 363.58 390.83 446.22 301.14 145.09
POU3F3_DBD_3 305.40 469.74 518.74 528.96 388.75 140.20
POU2F1_DBD_2 288.51 441.16 505.37 490.29 361.63 128.66
MA0390 STB3 347.39 525.58 589.47 559.64 436.57 123.07
POU2F3_DBD_2 284.08 439.24 508.07 485.67 363.13 122.54
MA0345 NHP6A 204.81 289.80 328.20 374.46 254.88 119.57
FOXB1_DBD_3 318.30 480.11 500.23 522.86 403.86 119.00
POU2F2_DBD_2 277.87 426.13 491.04 467.52 348.57 118.95
POU5F1P1_DBD_2 280.21 433.09 505.85 476.00 357.40 118.60
POU3F1_DBD_2 321.73 487.58 561.29 531.09 413.81 117.28
POU3F3_DBD_1 274.56 417.84 510.82 462.12 346.16 115.95
Pou2f2_DBD_1 271.08 412.22 497.49 451.56 335.97 115.59
POU4F1_DBD 264.40 403.40 466.22 453.98 339.22 114.76
SOX10_si SOX10 318.63 478.96 590.91 495.03 381.38 113.65
POU3F3_DBD_2 314.18 473.05 533.77 517.68 404.28 113.40
MA0593 FOXP2 363.91 561.30 604.67 547.86 437.10 110.77
POU3F2_DBD_1 254.70 389.71 463.35 436.30 325.81 110.48
FOXD2_DBD_1 335.45 501.47 567.22 551.10 442.30 108.80
CPEB1_full 371.17 561.03 598.83 572.05 463.76 108.28
NKX31_si NKX31 270.56 399.48 423.41 452.44 344.98 107.47
FOXC1_DBD_3 347.82 528.43 551.93 555.02 448.09 106.93
POU4F3_DBD 250.63 380.24 447.19 424.83 318.52 106.32
MA0507 POU2F2 342.53 501.83 644.30 540.42 434.37 106.05
PROP1_DBD 213.40 320.38 379.16 371.63 266.65 104.98
POU3F1_DBD_1 285.75 428.78 539.78 466.42 362.81 103.61
MA0453 nub 266.94 401.50 515.17 437.05 333.46 103.59
PIT1_f1 PIT1 261.38 399.05 454.77 439.06 335.66 103.41
PO3F2_si PO3F2 255.80 390.21 444.88 436.71 333.70 103.00
MA0135 245.02 362.06 430.68 410.26 309.34 100.92
FOXC1_DBD_2 280.05 424.82 470.44 465.13 366.45 98.69
PO2F1_f1 PO2F1 311.42 459.63 610.99 484.01 385.61 98.40
MA0013 br_Z4 279.88 419.44 470.49 451.53 353.67 97.86
MA0296 FKH1 284.57 447.90 469.92 449.21 351.78 97.42
POU2F1_DBD_1 260.10 391.53 488.91 420.88 325.85 95.03
POU3F2_DBD_2 273.08 411.11 526.97 440.35 345.78 94.57
PO2F2_si PO2F2 290.89 427.93 543.92 459.13 365.85 93.28
FOXQ1_f1 FOXQ1 280.06 429.15 449.41 444.81 351.99 92.82
POU3F4_DBD_2 227.10 345.66 415.96 375.24 282.67 92.57
ONEC2_si ONEC2 327.06 483.94 525.28 513.06 420.58 92.48
FOXB1_full 246.34 380.89 403.16 382.12 289.86 92.26
MA0388 SPT23 314.97 474.47 527.45 465.92 374.05 91.86
ARX_DBD 194.90 287.25 359.26 335.26 244.31 90.95
Foxc1_DBD_2 254.14 401.76 409.39 408.53 317.68 90.85
HOXC13_DBD_1 280.32 430.99 448.93 442.20 351.71 90.49
Arx_DBD 196.69 290.00 364.05 337.52 247.42 90.10

Table 7.16 Table of motif frequencies for motifs enriched in proneural accessible loci. Val-
ues indicate the number of motifs per accessible megabase alongside the relative change in
the specified condition (rightmost column).
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Motif name Alt name ALL GNS NS Pn Mes Pn vs. Mes
MA0478 FOSL2 345.33 331.62 1079.95 206.70 899.99 -693.29
MA0099 JUN::FOS 362.34 375.90 1018.45 264.71 858.13 -593.42
MA0491 JUND 281.78 263.63 900.91 167.28 752.82 -585.54
MA0477 FOSL1 285.26 261.34 898.08 167.82 745.42 -577.60
MA0490 JUNB 272.62 253.03 874.60 159.78 723.85 -564.07
MA0489 JUN 282.18 270.53 879.44 176.36 736.66 -560.30
MA0476 FOS 270.76 262.37 845.86 170.42 722.80 -552.38
SMRC1_f1 SMRC1 328.91 327.56 923.08 222.85 766.02 -543.17
MA0303 GCN4 241.67 225.73 788.85 141.09 648.73 -507.64
JUNB_f1 JUNB 236.54 226.70 722.52 148.16 593.16 -445.01
JUND_f1 JUND 219.01 206.37 684.20 131.07 569.46 -438.39
FOSL2_f1 FOSL2 219.26 203.38 687.72 129.78 567.57 -437.79
JUN_f1 JUN 205.93 194.99 644.00 124.85 546.91 -422.06
NFE2_DBD 209.38 204.05 656.02 129.50 550.19 -420.69
FOSL1_f2 FOSL1 280.46 284.84 751.53 196.90 609.78 -412.87
JDP2_DBD_1 206.41 201.98 661.68 134.81 540.03 -405.23
Jdp2_DBD_1 192.52 183.20 631.19 117.72 522.34 -404.62
JDP2_full_1 199.93 195.53 645.96 127.96 529.14 -401.18
BATF_si BATF 211.95 215.59 623.18 146.24 537.69 -391.46
MA0462 BATF::JUN 208.19 218.31 582.07 157.11 509.91 -352.80
FOSB_f1 FOSB 212.66 221.88 590.69 154.03 480.27 -326.25
MA0501 NFE2::MAF 375.07 458.63 845.55 370.03 664.23 -294.20
MAFK_si MAFK 357.09 417.72 775.57 335.41 567.23 -231.81
NFE2_f2 NFE2 243.13 276.98 523.53 212.35 402.92 -190.57
MA0591 Bach1::Mafk 240.12 268.16 522.18 200.20 376.92 -176.72
MA0150 Nfe2l2 210.80 247.10 466.44 193.67 365.43 -171.77
MA0419 YAP7 204.18 259.83 477.94 223.19 392.28 -169.09
BACH1_si BACH1 316.17 391.00 670.22 315.94 483.80 -167.86
NF2L2_si NF2L2 231.73 272.41 467.22 216.85 350.53 -133.68
MA0272 ARG81 149.67 175.57 304.56 134.78 240.33 -105.55
PITX2_si PITX2 211.54 275.82 226.51 193.45 269.93 -76.48
TEAD4_DBD 343.93 408.58 873.91 406.65 481.29 -74.64
OTX2_si OTX2 379.42 497.81 531.81 401.03 475.49 -74.46
RUNX1_f1 RUNX1 376.39 462.34 872.47 437.52 511.97 -74.44
IKZF1_f1 IKZF1 367.25 481.65 467.92 362.21 435.18 -72.97
TEAD3_DBD_2 291.35 337.29 765.33 336.39 406.03 -69.64
TEAD1_full_1 332.40 395.82 824.34 394.84 460.62 -65.78
RUNX3_full 234.44 280.78 574.40 257.14 321.38 -64.24
FOS_si FOS 310.39 391.12 554.54 317.07 378.80 -61.73
RUNX3_DBD_2 213.44 256.47 532.24 232.11 291.43 -59.32
RUNX2_DBD_3 186.32 223.60 464.74 195.71 254.22 -58.51
Nr2f6_DBD_1 253.54 329.68 323.15 251.14 308.15 -57.01
MAFG_full 279.24 348.65 597.01 316.85 372.07 -55.21
MA0242 run::Bgb 203.61 249.39 477.24 219.58 273.84 -54.26
MAFF_DBD 193.55 236.08 415.22 206.64 260.75 -54.11
MAFG_si MAFG 169.07 232.00 338.22 203.97 255.65 -51.68
NF2L1_f1 NF2L1 169.07 232.00 338.22 203.97 255.65 -51.68
RARA_f1 RARA 338.15 438.75 468.18 337.08 385.54 -48.46
TEAD3_DBD_1 257.66 322.75 599.71 324.11 362.22 -38.11
RARG_DBD_1 211.19 274.91 271.24 214.68 251.08 -36.40

Table 7.17 Table of motif frequencies for motifs enriched in mesenchymal accessible loci.
Values indicate the number of motifs per accessible megabase alongside the relative change
in the specified condition (rightmost column).
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