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Transcriptional and Post-transcriptional Regulation of Gene Expression:
Computational Analysis of Microarray Studies in Fungal Species

Summary

DNA microarrays remain a powerful tool for identifying changes in gene expression
between different environmental conditions or developmental stages. Coordinated
regulation of gene expression is typically studied by identifying groups of genes
with correlated changes in mRNA abundance across different experimental condi-
tions. Recent computational methods attempt to reconstruct networks of gene regu-
lation from global expression patterns. In time series studies, the temporal changes
in mRNA abundance typically measured by DNA microarrays are the result of a
balance between transcription and mRNA degradation. There is a growing body of
evidence that a global gene expression response can be regulated at both the tran-
scriptional level and at a post-transcriptional level through the regulation of mRNA
stability.

This thesis presents two related computational studies of the genome-wide regu-
lation of gene expression based on the analysis of microarray datasets. The first
study concerns the dynamics of a global gene expression response. The regulation of
mRNA abundance by both transcriptional and post-transcriptional control implies
a range of possible strategies for shaping gene expression in response to a stimulus.
Strategies for shaping gene expression are investigated, and I examine the strength
of evidence for regulated mRNA stability from microarray time series. In particular,
I investigate the role of regulated mRNA stability in the gene expression response
to oxidative stress in the fission yeast Schizosaccharomyces pombe. A dynamic model
of mRNA abundance is applied to simultaneous time series of mRNA abundance
(DNA microarray) and transcription rate (RNA polymerase II ChIP-chip) datasets.
Candidate genes are identified for which the gene expression response appears to
be driven by a change in mRNA stability rather than by transcriptional control. The
dynamic gene expression response of stress-induced and -repressed genes and stress
response regulators is described.

The second study is concerned with patterns of near-steady-state gene expression
levels in the recently sequenced fungal crop pathogen Fusarium graminearum. I de-
rive gene expression patterns from all available genome-wide expression datasets,
covering various life cycle stages and growth conditions. Expression analysis is
combined with recently predicted transcription-associated proteins to identify genes
coexpressed with putative DNA-binding transcription factors. The distribution of
coexpressed genes on the genome is investigated: localized regions of the F. gramin-
earum genome are found to be enriched for coexpressed genes, and functional an-
notation is provided for these localized regions based on sequence homology to
annotated protein families.
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Chapter 1

Introduction

This thesis describes three studies in which DNA microarray datasets have been

analysed, resulting in insights into the regulation of transcriptional and

post-transcriptional control of gene expression on the scale of whole genomes.

This chapter introduces some general aspects of the biology of gene expression and

describes established technologies for the measurement of changes in gene expres-

sion on a genome scale. The microarray platforms and associated preprocessing

methods which had been used to generate the datasets used in this work are de-

scribed, followed by an overview of gene annotation used in subsequent chap-

ters. Subsequent chapters contain additional background information relevant to

the studies presented in each chapter. Finally, an overview of this thesis is presented.

1.1 Regulation of gene expression

This section briefly introduces key aspects of transcriptional and post-transcriptional

regulation in eukaryotic cells which are referred to throughout this thesis. Refer-

ences are given to review articles on aspects of gene expression and regulation.

The diversity of cell phenotypes which are produced from identical genomes is pri-

marily due to differences in gene expression, whether between different cell types

in a multicellular organism, or as a result of diverse gene expression responses be-

1



1.1. REGULATION OF GENE EXPRESSION

tween different physiological conditions or developmental stages. The complement

of proteins present in the cell is the product of a complex set of mechanisms by

which proteins are produced from genes encoded in DNA. Gene expression occurs

when DNA is transcribed into RNA which is then translated into protein. The rate

of production of functional proteins in the cell is regulated at many stages of gene

expression, primarily at the level of transcription but also at post-transcriptional lev-

els. It is convenient to describe gene expression as a series of sequential steps, from

transcription to post-translational protein modifications; however, many transcrip-

tional and post-transcriptional mechanisms of gene expression are interdependent

and simultaneous [1] and the extent of this interdependence is not fully understood.

1.1.1 Transcriptional regulation of gene expression

Initiation of transcription requires the assembly of the pre-initiation complex at the

transcription start site. RNA polymerase is recruited and moves along the DNA

producing an RNA transcript (elongation). Transcription is terminated and the RNA

transcript is post-transcriptionally modified. RNA polymerase II transcribes the ma-

jority of eukaryotic protein-coding genes. A rate-limiting step for transcription is

the recruitment of RNA polymerase II to the core promotor [2]. RNA polymerase

II stalling, in which the polymerase pauses on the gene during transcript elonga-

tion, has been observed in vivo in mammalian cells [3] and on Drosophila heat-shock

genes [4]. The aggregation of RNA polymerase II close to the transcription start

site appears to be a widespread mechanism for stress response regulation and re-

covery. RNA polymerase II has been found to be located upstream of hundreds of

genes which are subsequently rapidly induced upon exit from S. cerevisiae stationary

phase [5], and more recently upstream of genes related to development in Drosophila

[6] and human stem cells [6].

2



1.1. REGULATION OF GENE EXPRESSION

1.1.1.1 Transcription factors

In this thesis, the term transcription factor is used to refer to the specific transcrip-

tional activators and repressors that activate or repress the transcription of target

genes via specific binding to promotors regions. Feedback loops involving a hand-

ful of transcription factors can control complex gene expression responses and de-

velopmental processes. Classical examples of combinatorial transcriptional control

by a small number of transcription factors include the development of polarity and

segmentation in the Drosophila embryo [7], and sea urchin embryogenesis [8]. On

a genome-wide scale, initial genome-wide networks of transcriptional control have

been constructed for S. cerevisiae [9, 10]. These early network models of transcrip-

tional regulation suggest that transcriptional control is rich in feedback events and

combinatorial control (reviewed in [11, 12]).

1.1.1.2 Chromatin structure and chromatin remodelling

Transcriptionally active chromosomal regions have been correlated with chromatin

structure and associated chromatin modifications. Transcriptional activation and re-

pression by specific transcription factors, and transcription initiation involving the

general transcription factors, requires that proteins are bound to specific regions of

DNA. Nuclear DNA in eukaryotic cells exists as highly structured chromatin, of

which the basic structure is the nucleosome consisting of DNA wrapped around a

central core of eight histone proteins. Chromatin structure is dynamically altered

by the presence of histone variants and by several covalent modifications of histone

tails, including acetylation, methylation and phosphorylation of specific residues

[13, 14]. Histone tail modifications act dynamically and in combination to alter the

local chromatin structure, either opening up regions of the chromatin and there-

fore permitting a higher rate of binding by transcriptional activators, or condensing

chromatin into a transcriptionally inactive state. For transcription to be initiated,

regulatory and general transcription factors must bind to DNA in promotor regions

3



1.1. REGULATION OF GENE EXPRESSION

and around the transcription start site. Regions of open chromatin are more likely

to be available for binding and therefore to be more transcriptionally active than

regions of densely compacted chromatin. Histone modifications and nucleosome

positioning have been correlated with transcriptionally active and inactive chromo-

somal regions, for example in S. cerevisiae [15, 16, 17], human and mouse cell lines

[18, 19], and during human heart cell development [20]. Such correlations are con-

sistent both with chromatin modifications causing transcriptional activation, and

with existing transcriptionally active regions being marked as such and promot-

ing transcription of an already active region. In multicellular organisms, regions of

chromatin are condensed to the point of being transcriptionally silent [21]. Chro-

matin modifications and associated DNA methylation can be inherited across cell

divisions, contributing to the maintainance of differentiated cell lines in multicellu-

lar organisms and the differential expression of genes between different cell types

and disease states [22, 23].

1.1.1.3 Spacial arrangement of transcriptionally active chromosomal regions

Recent studies using chromosome conformation capture (3C, 4C, 5C) technology in-

dicate that the location of chromosomal regions in the nucleus is highly predictable

and is reproduced across successive cell cycles [24, 25]; reviewed in [26]. Given the

apparent importance of relative chromosomal positions in the nucleus, a resulting

hypothesis is that the arrangement of transcribed regions on the chromosome may

be constrained by the regulation of transcription.

1.1.2 Co-transcriptional and post-transcriptional regulation of gene
expression

Concurrently with transcription, nascent pre-mRNA transcripts are modified by the

addition of a 5’ m7G cap structure, and following transcript termination the 3’ end

of the transcript is polyadenylated. The 5’ cap structure and 3’ poly-A tail are impor-

tant binding targets for proteins involved in mRNA stability, translation initiation,
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and nuclear export. Pre-mRNA contains introns which are removed by the spliceo-

some complex at consensus sequences at exon-intron boundaries to produce mature

mRNA. Alternative splicing contributes significantly to the diversity of proteins in

higher eukaryotes. Functional mature mRNA is exported from the nucleus where

it is translated in association with ribosomes. mRNA transcript stability is regu-

lated by RNA-binding proteins and small RNA molecules. Families of RNA-binding

proteins, such as the AU-rich element (ARE)-binding proteins, bind specifically to

mRNA sequence motifs or mRNA structure motifs. RNA-binding protein sequence

motifs are often but not always located in the 3’ untranslated region (UTR). MicroR-

NAs (miRNAs) and small interfering RNAs (siRNAs) are two classes of small RNAs

which have recently been implicated in the regulation of mRNA stability and trans-

lation [27]. Post-transcriptional regulation of gene expression is reviewed in [28]

with emphasis on the regulation of translation and mRNA stability.

1.2 DNA microarray platforms

The microarray datasets used in the studies described in this thesis had been pro-

duced using two DNA microarray platforms: cDNA microarrays (for both expres-

sion analysis and ChIP-chip assays) and Affymetrix GeneChip oligonucleotide ar-

rays. There are several other established microarray platforms for expression analy-

sis, including exon arrays [29], high resolution tiling arrays [30], and Illumina bead

arrays [31]. All microarray datasets must be preprocessed in order to correct for

systematic technical effects observed in raw probe intensities. Depending on the

platform and array diagnostics, preprocessing may include background correction,

within-array normalization or between-array normalization.

1.2.1 cDNA microarrays

Two-channel cDNA microarrays are used in expression studies to directly compare

the abundance of mRNA transcripts in two different cell populations [32]. cDNA
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probes correspond to selected regions of the genome – typically regions within

known or predicted open reading frames for expression studies. Probes are spotted

onto the array surface so that a specific mRNA transcript preferentially hybridizes

to a set of replicate spots. mRNA is purified from each sample and reverse tran-

scribed into the more stable DNA complementary to the mRNA transcripts1. Each

sample is tagged with a different fluorescent dye, usually Cy3 and Cy5, and the

reverse transcribed DNA fragments compete for binding to the probes which are

fixed on the microarray surface. Hybridized arrays are scanned to produce an ar-

ray image corresponding to each of the two channels. Arrays are scanned at two

wavelengths corresponding to the excitation wavelengths of the two dyes, and the

intensity of emitted light at two emission wavelengths is captured for each pixel.

An intensity is reported for every spot for each of the two channels by summarizing

the pixel intensities within each spot. The median of pixel intensities is typically

used to summarize the spot intensity. A quality score may be assigned to each spot

for each channel, allowing low quality spots to be flagged: a spot may be flagged

as low quality if the spot intensity is too close to the background intensity, the stan-

dard deviation of pixel intensities within the spot is too high, or the detected spot

has an unexpected shape in the array image. After normalization of all summarized

intensity values, a normalized ratio or fold-change between the channel intensities is

typically reported for each spot as a measure of the ratio of mRNA abundance in the

two samples.

It is not possible to quantitatively compare two different mRNA species using hy-

bridization methods. Each mRNA species has a different reverse transcription effi-

ciency, leading to reverse transcription bias in which the relative amounts of each

cDNA are not the same as the relative amounts of mRNA in the sample. Labelling

efficiency and hybridization efficiency also vary between different transcripts due

to variations in GC content, presence of various levels of truncated cDNA due to

1Detailed protocols for Schizosaccharomyces pombe RNA extraction, mRNA purification, reverse
transcription, fluorescent labelling and hybridization are described by Bähler and colleagues [33],
for example.
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reverse transcription bias, and differences in the stability of the RNA secondary

structure [34].

1.2.1.1 Normalization of cDNA microarray intensity values

In order to compare the hybridization of an mRNA species between two differ-

ent cDNA channels, the raw summarized intensity values must be normalized to

control for any systematic technical effects observed in the reported intensity val-

ues. This includes correcting for spatial artifacts on the microarray slide, correct-

ing for imbalances in the measured intensities of the two dyes, or removing signal

intensity-dependent bias in intensity ratio values [35, 36]. There are several estab-

lished statistical methods for the normalization of cDNA microarray data includ-

ing lowess (locally weighted scatterplot smoothing) whole-array or print-tip nor-

malization which corrects for intensity-dependent bias in ratio intensities [37], and

variance-stabilizing normalizations such as VSN [36]. The choice of normalization

procedure is guided by the microarray platform and array design, the experimental

design, and the biological assumptions behind a particular experiment.

The S. pombe cDNA microarray datasets on which Chapter 4 is based were normal-

ized using a local median-of-ratios method. This normalization procedure was de-

signed and implemented by Bähler and colleagues for use with the S. pombe cDNA

microarrays which have been designed, produced and hybridized by the Fission

Yeast Genomics Group, Sanger Institute [33]. The dominant technical effect on these

arrays is spatial variation of raw intensity values, as illustrated in Figures 1.1 and

1.2. To correct for spatial variation on the array, a sliding window is moved across

the array and the intensity ratio of the centre spot is adjusted by a normalization fac-

tor calculated such that the median of ratio intensity values in the window is equal

to one. An underlying assumption made in applying this method is that there is a

balance of up- and down-regulation of mRNA abundance between the two channels

or that the majority of genes are not differentially expressed between the two sam-

ples, so that the median of spot intensity ratios is expected to be equal to one within
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any spatial window on the array. In experiments for which this assumption is not

valid an alternative normalization should be used, such as normalization based on

external bacterial controls [33, 38].

The S. cerevisiae cDNA microarray datasets [5] used in Chapter 2 had been normal-

ized using external RNA controls which were added across a range of concentra-

tions. Spacial normalization had been applied to each array by fitting loess curves

to external control spots within each print-tip region of the array and applying the

resulting normalization functions to all spots [38]. External control normalization

had been used in this case in order to capture global changes in mRNA abundance

[5].

1.2.2 Affymetrix GeneChip oligonucleotide arrays

Affymetrix GeneChip arrays are another widely used platform for gene expression

analysis [39]. Chapter 5 is based on an analysis of several Affymetrix GeneChip ex-

periments. The array design consists of probesets which are designed to be comple-

mentary to a region of each mRNA transcript, usually at the 3’ end of the transcript

due to degradation of mRNA from the 5’ end. Each probeset consists of a set of 11-

20 perfect match (PM) probes which are typically 25 nucleotides long, together with

an equal number of mismatch (MM) probes which are identical to the PM probes

except for a single nucleotide substitution in the centre of the probe.

1.2.2.1 Normalization and probeset detection for Affymetrix GeneChip oligonu-
cleotide arrays

There are a number of established preprocessing methods for Affymetrix GeneChip

arrays. GeneChip probe intensities must be background corrected and normalized

within or between arrays, and then summarized to produce an intensity measure-

ment for each probeset. All between-array and within-array normalization proce-

dures involve a trade-off between noise reduction and the introduction of bias. In
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Figure 1.1: MA-plots of S. pombe cDNA microarray datasets show that there is no
apparent intensity-dependent bias in the ratio of channel intensities. (A) Left: cells
grown at 25C (Cy5) compared to cells grown at 30C (Cy3). Right: a self-self hybridi-
sation. Grey spots are those with intensities close to background and are discarded
before spatial normalization. (B) As in (A) after spatial normalization. This figure is
from Figure 2 in Lyne et al. 2003 [33]

Figure 1.2: Correction of spatial artifacts by local median-of-ratios spatial normal-
ization. (A) Distribution of signal ratios along the Y- (left) and X-axis (right) of the
microarray before normalization. The data are from array shown in Figure 1.1 (left
side). The groups of spots separated by small gaps reflect the 12 x 4 sub-grids of
the array, each printed with a different spotting pin. (B) Distribution of signal ratios
as in (A) after local median-of-ratios normalization of the data. This figure is from
Figure 3 in Lyne et al. 2003 [33]
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Chapter 5, several Affymetrix GeneChip datasets are preprocessed and analysed

and the selection of appropriate normalization probeset detection methods for this

study is discussed.

The Affymetrix MAS 5.0 [40] normalization and probeset detection algorithms make

use of the signal intensities from mismatch probes to correct for the contribution of

non-specific binding to background intensity levels. The dChip [41] normalization

and summarization algorithm similarly uses mismatch probe to correct for non-

specific binding but also models probe-specific hybridization affinity. The RMA

(log scale robust multi-array analysis) summarization method [42] discards infor-

mation from mismatch probes. The RMA expression measure for probeset-based

arrays is calculated from raw probe intensities in three steps: background correc-

tion, normalization within and/or between arrays, and probeset summarization.

RMA summarization has been shown to outperform the MAS 5.0 summarization

method, particularly for low intensity probesets [42]. and is currently the preferred

standard method for differential expression calls. RMA refers only to the probeset

summarization method and this can be combined with any background correction

and normalization procedures before the probeset summarization step.

Quantile normalization between arrays [43] assumes that the relative abundance

of each hybridizing RNA species on each array, and therefore the distribution of

intensities on each array, are approximately equal. A virtual reference array is con-

structed by pooling all probe intensities from all arrays. For each array, each probe

intensity is mapped to the intensity corresponding to the same quantile on the ref-

erence array. Variance-stabilizing normalizations [36, 44] aim to reduce the depen-

dence of the intensity variation on the mean of channel intensities. If the signal in-

tensities on different arrays are not expected to follow a similar distribution, it may

be appropriate to fit a normalization function on a subset of array probes which is

then applied to the whole array [36, 38].

A recent method calculates a probeset detection ’barcode’ [45] by pooling hundreds
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of publicly available hybridizations of a given microarray platform in order to esti-

mate the undetected intensity distribution for each probeset on each platform. This

method estimates the probeset- and platform-specific intensity distributions of un-

detected probesets and has been shown to perform better than MAS 5.0 for the de-

tection of low intensity signals, but this method relies on the availability of a large

number of hybridisations to estimate the undetected distribution and an associated

’detected’ intensity threshold.

1.2.3 ChIP-chip datasets

In addition to differential expression studies, microarrays (cDNA, oligonucleotide,

and high resolution tiling arrays) have been used to detect DNA-binding proteins in

promoter regions [46], to locate RNA polymerase II [6, 47] and nucleosome positions

[48] , and to identify chromosomal regions containing histone or chromatin mod-

ifications [20]. ChIP-chip assays consist of chromatin immunoprecipitation (ChIP)

against the DNA-binding protein or modification of interest, followed by hybridiza-

tion of IP-enriched DNA fragments and a genomic DNA control sample. An RNA

polymerase II ChIP-chip assay was used to estimate changes in transcription rate

in S. pombe in Chapter 4. A detailed protocol for the assay can be found in Lack-

ner et al. [47] and is briefly described here. Cells are crosslinked in formaldehyde,

then chromatin is extracted and sonicated into random fragments, and immuno-

precipitation is performed using an antibody specific to the protein or modification

of interest. To target RNA polymerase II, for example, an antibody specific to the

carboxyl-terminal domain of RNA polymerase II is used. Crosslinking is reversed

and the enriched DNA is purified, fluorescently labelled, and hybridized to an ar-

ray. For the S. pombe RNA polymerase II assays, the sample was hybridized to a

two-channel cDNA array and a control sample of genomic input DNA was fluores-

cently labelled and hybridized to the same array. Local normalization was used as

described for the RNA (expression) hybridizations.
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1.2.4 High-density microarray platforms and high-throughput se-
quencing technologies

Although not the focus of this thesis, it is important to note that recent advances

in microarray technology and ultra high-throughput sequencing technology have

resulted in platforms which can be used to map the transcriptome at a higher reso-

lution than cDNA or GeneChip oligonucleotide arrays, and which can detect tran-

scripts originating from any region of the genome. High-density tiling arrays con-

tain a set of probes mapping to a higher proportion of the genome than the more

established cDNA microarrays and Affymetrix (GeneChip) oligonucleotide arrays.

Tiling arrays consist of short probes which target the whole genome at a high res-

olution and can therefore be used to detect all transcribed regions of the genome

or to map ChIP targets to the genome at a high nucleotide resolution [30]. For ex-

ample, the Saccharomyces cerevisiae Affymetrix tiling array used by Steinmetz and

colleagues consists of 25-mer probes tiled at eight nucleotide intervals [49], and has

been used to show that more than 95% of the S. cerevisiae genome is transcribed.

The S. pombe Affymetrix tiling array contains 25-mer probes at 20-nucleotide inter-

vals on both strands and has been used by Bähler and colleagues [50], and others, to

define the S. pombe transcriptome under various conditions. Tiling arrays provide

an unbiased survey of the entire transcriptome, in that the probes are not designed

to match specifically to previously identified protein-coding sequences or other spe-

cific regions of the genome.

Ultra high-throughput cDNA sequencing (RNA-Seq) is also becoming established

as a sensitive method for detecting all transcribed genomic regions. RNA-seq has a

high dynamic range of transcript detection and in particular is capable of detecting

transcripts that are expressed at a low level and are not detected by arrays [50];

reviewed in [51]. There remain significant challenges in identifying the genomic

origin of transcripts and quantifying the expression levels of transcribed genomic

regions using tiling arrays and high-throughput sequencing [49, 30], but there is no

doubt that information gained from new high-throughput technologies about the
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transcriptome and its regulation will increasingly be used to complement datasets

from the more established microarray platforms.

1.3 Functional annotation: Gene Ontology and enrich-
ment analysis

The Gene Ontology (GO) project [52] provides three ontologies which are used for

the systematic description of gene products: biological function, cellular compo-

nent, and molecular function. Each ontology forms a rooted directed acyclic graph

in which each node is associated with a GO identifier (or GO term). A gene anno-

tated with any given GO term is also annotated with all ancestral GO terms, allow-

ing for desciptions of the gene preduct at varying levels of specialization. Generic

and species-specific versions of the Gene Ontology are continuously updated based

on experimental or electronically derived evidence [52].

1.3.1 GO annotation of S. pombe

GO annotation for S. pombe genes [53] is available from the GeneDB S. pombe genome

database [54]. As of October 2009, 5178 S. pombe genes have been annotated with GO

terms from the three ontologies2. In this thesis, hypergeometric tests for overrepre-

sentation of S. pombe GO terms were performed using Gene List Analyser 1.0 [55].

Independent hypergeometric tests were performed for each GO term [56] and no

distinction was made between reported annotation from different sources of evi-

dence. Gene List Analyser 1.0 was also used to perform the tests for overrepresen-

tation of genes in other S. pombe gene lists of interest which are reported in Chapter

4. Reported p-values (p ≤ 0.05) have been corrected for the testing of multiple GO

categories using the false discovery rate (FDR) multiple testing correction [57].

2S. pombe GO annotation may be browsed using AmiGO [52] at the following url:
http://www.genedb.org/genedb/pombe
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1.3.2 GO annotation of F. graminearum

There is currently no published species-specific GO annotation for the recently se-

quenced Fusarium graminearum genome considered in Chapter 5. GO annotation

was therefore assigned to predicted F. graminearum genes using an existing map-

ping of GO annotation to protein families. A curated mapping of GO annotation

to protein domains or protein families is available from the Interpro database [58].

Predicted F. graminearum proteins were mapped to Interpro protein families using

hidden Markov model (HMM) searches (HMMER [59]) of existing PFAM HMM

protein domain models [60]. GO annotation was transferred from an Interpro pro-

tein domain or protein family to a predicted F. graminearum gene if a match to the

associated HMM was detected. GO annotation of predicted F. graminearum genes

was performed by Richard Coulson3. Using this method, 5024 genes (36% of pre-

dicted genes) were annotated by one or more GO terms. In an attempt to improve

the coverage of GO annotation, the protein sequences of predicted F. graminearum

genes were compared directly to eukaryotic proteins contained in UniProt [61]. Pro-

tein sequences were compared pair-wise using Blastp [62] and clusters of proteins

with similar protein sequences were detected using Markov clustering [63]. GO an-

notation was transferred to a F. graminearum gene if a high degree of similarity to

a previously annotated gene was detected; see Chapter 5 (Methods, page 115) for

further details.

1.4 Thesis Aims

A long-term goal is to use post-genomic datasets to understand how the cell inte-

grates diverse signals in order to coordinate a transcriptional, post-transcriptional,

and metabolic response, whether in response to environmental changes or during

a transition between developmental stages or phases of the life cycle. With the in-

creasing availability of genome-scale datasets, it is possible to model the cell at var-

3Microarray Informatics Group, EMBL-EBI
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ious levels of complexity, from the regulation of transcription [64], to the regulation

of proteins and protein-protein interactions [65], to dynamic models of metabolic

and biosynthetic pathways [66].

This thesis focuses on one aspect of the regulation of a cell’s internal environment:

the genome-wide regulation of mRNA abundance, either in response to environ-

mental changes or during the transition between life cycle phases. The primary

datasets used in this thesis are gene expression microarray datasets which capture

changes in mRNA abundance between conditions on a whole-genome scale. As a

first approximation coexpressed genes may be assumed to be coregulated [67]. As

described in Chapter 2, a number of regulatory models have been developed in or-

der to explain observed mRNA abundance profiles as the result of coregulation by

DNA-binding transcription factors. Regulatory effects which are unobserved but

potentially shared by genes with similar gene expression profiles, such as DNA-

binding transcription factors activated by post-transcriptional modifications, may

be modelled as hidden variables, revealing potential shared regulatory effects be-

tween coexpressed genes (e.g. [68, 69]).

The abundance of an mRNA species is the result of a balance between transcrip-

tion rate – the rate of production of mRNA transcripts – and mRNA degradation.

Recent models of transcriptional regulation have accounted for mRNA degradation

by assuming that each mRNA species is degraded at a constant, gene-specific, rate

[70, 71]. However, the contribution of regulated mRNA stability to the regulation

of gene expression levels on a genome-wide scale is not well understood. In order

to investigate the contribution of mRNA degradation to changes in mRNA levels,

a time course of changes in transcription rate was considered here alongside a time

course of mRNA abundance. This transcription rate time course had been gener-

ated using a recently developed RNA polymerase II ChIP-chip assay in S. pombe,

and has permitted the first genome-wide analysis of the contribution of regulated

mRNA stability to a dynamic gene expression response in S. pombe.
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In contrast to high time-resolution dynamic studies of changes in mRNA levels in

response to a stimulus, comparisons of mRNA levels between different steady state

conditions can reveal differences in transcriptional programs between different con-

ditions. Groups of coexpressed genes may share transcription regulatory properties,

for example coregulation by DNA-binding transcription factors (which may be de-

tected as co-occuring motifs in promotor regions) or coregulation of local chromatin

structure. This thesis concludes with a study of differential expression between

steady state conditions in Fusarium graminearum, providing a first inter-experiment

map of differentially expressed genes and coexpressed predicted transcriptional reg-

ulators in this crop pathogen.

1.4.1 Thesis overview

This thesis continues with the following chapters:

Chapter 2 presents a case study on the reconstruction of transcription regulatory net-

works during stationary phase exit and entry in Saccharomyces cerevisiae. A high res-

olution microarray time series is used to derive hypotheses about the transcriptional

control of gene expression during stationary phase exit and re-entry. This study mo-

tivated the subsequent investigation into the shaping of a dynamic gene expression

response by the regulation of both transcription rate and mRNA turnover, which is

the subject of Chapters 3 and 4.

Chapter 3 considers how changes in mRNA abundance can be controlled by both

dynamic transcription rates and regulated mRNA turnover, and presents a frame-

work for the detection of regulated mRNA stability using microarray time series

experiments.

In Chapter 4, I investigate the contribution of mRNA stability and transcriptional

control to shaping a gene expression response to oxidative stress in Schizosaccha-

romyces pombe. The models developed in Chapter 3 are applied, along with other

methods, to identify genes which are candidates for regulated mRNA stability in
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response to environmental stress. The dynamic transcriptional response is also in-

vestigated.

Finally, Chapter 5 describes an integrative transcriptomics study of gene expression

in Fusarium graminearum using multiple gene expression datasets and genome an-

notation, and presents new observations and hypotheses about the transcriptional

regulation of gene expression during the F. graminearum life cycle and crop infection.
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Chapter 2

Inferring transcription regulatory
control from a microarray timecourse:
a case study in Saccharomyces
cerevisiae

This chapter presents a case study on the reconstruction of the control of transcrip-

tion regulation by DNA-binding transcription factors during stationary phase exit

and entry. The study considers a timecourse of exit from stationary phase and subse-

quent re-entry into stationary phase from exponential growth in the budding yeast

Saccharomyces cerevisiae. Hypotheses about the transcriptional regulation of gene ex-

pression are presented, based on the analysis of a timecourse dataset and generated

under two specified models of transcriptional control.

2.1 Introduction

The budding yeast S. cerevisiae is the most well-studied single cell eukaryotic model

organism on a genome-wide scale. Many of the housekeeping functions in S. cere-

visiae are conserved in higher eukaryotes, but complexities such as alternative splic-

ing and families of small regulatory RNAs which are present in higher eukaryotes

are not as important in the transcriptional control of S. cerevisiae. The relative sim-

plicity of S. cerevisiae compared to vertebrate and mammalian cells means that we
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can attempt to reconstruct aspects of transcriptional regulation using simple cis-

regulatory models of transcription. In this chapter I assume that observed changes

in mRNA level can be explained by a linear combination of active forms of DNA-

binding transcription factors which are present with unobserved concentrations or

activity profiles in the cell population. By applying two previously described linear

models of transcriptional regulation, the unobserved activity profiles of transcrip-

tion factors and their effects on target genes are inferred.

2.1.1 Transcription regulation during stationary phase exit and re-
entry in S. cerevisiae

When starved of nutrients a population of S. cerevisiae cells enters stationary phase

composed of quiescent cells, an inactive state in which the cell can survive adverse

conditions. S. cerevisiae quiescence may be used as a model for mammalian G0 cells

[72], the cellular state in which mammalian cells spend most of their lifetime. Sta-

tionary phase cultures produced by different nutrient-limiting conditions are associ-

ated with different transcriptional programs [73], and changes in mRNA abundance

during distinct phases of stationary phase exit or entry have been observed on a

genome-wide scale in various nutrient-limited conditions [74, 75, 73]. Radonjic and

coworkers [5] performed a nine-day study of exit from stationary phase and subse-

quent re-entry into stationary phase. The initial and final quiescent cell states in that

study were induced using glucose-limited conditions: an initial, glucose-limited sta-

tionary phase culture was resuspended in fresh medium (2% glucose) and grown for

nine days until a second glucose-limited stationary phase was reached. The result-

ing dataset is the first available high-resolution genome-wide timecourse measuring

changes in mRNA abundance in S. cerevisiae during stationary phase exit and sub-

sequent re-entry. The authors identified clusters of genes with coherent changes in

mRNA abundance during the 9-day study [5]. A rapid transcriptional response was

observed upon redilution of quiescent cells with fresh medium. This response in-

cludes 16 transcription regulators which are rapidly and transiently induced at the
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level of mRNA abundance upon exit from stationary phase, upregulated ≥ 4-fold

within 3 mins of dilution with fresh medium [5]. A further 20 clusters of genes were

defined by the authors as having similar mRNA abundance profiles during distinct

time periods during stationary phase exit, growth phases and subsequent re-entry

into stationary phase (see Figure 3 in [5]). The clusters contain DNA-binding tran-

scriptional regulators: the upregulation of mRNA abundance of transcriptional reg-

ulators suggests there may be a functional role for such regulators at respective time-

points, whereas the downregulation of transcriptional regulators may indicate no

concurrent functional role or may be a result of active repression via a network of

transcriptional activators or repressors [9]. Further, RNA polymerase II was shown

to be present upstream of hundreds of genes before the initial rapid transcriptional

upregulation [5], suggesting that rapid transcriptional upregulation may not be rate-

limited by the recruiment of RNA polymerase II as suggested by current models [2].

2.1.2 Transcription factor activity profiles

The mRNA level of a transcription factor may not be an adequate indicator of changes

in transcriptional regulatory activity via binding to the promoter regions of target

genes. Transcription factors are activated by post-translational modification or lig-

and binding, and it is the activated form of a transcription factor which controls the

transcription rate of a target gene [12]. I assume here that the transcription factor

expression profile is not informative about the regulatory activity of a transcription

factor, and instead treat the transcription factor activity – the quantitative effect of

a transcription factor on the mRNA level of each target gene – as a hidden variable

of interest. Given a gene expression timecourse, the task is now to describe the ob-

served gene expression profile of each gene as a function of the hidden regulatory

effects of transcription factors.
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2.1.3 Study aims

The aim of this study is to attempt to explain the observed timecourse of gene ex-

pression levels during S. cerevisiae stationary phase exit and entry [5] as regulated

gene expression profiles mediated by unobserved populations of active transcrip-

tion factors with specific binding to target genes. In order to incorporate prior

knowledge about potential transcription factor control of specific target genes, a

transcription factor-target gene connectivity matrix was retrieved from previously

analysed ChIP-chip datasets [76]. The connectivity matrix represents a consensus

map of in vivo transcription factor-promoter binding specificity in S. cerevisiae across

diverse conditions. Two previously described linear models of gene expression

are applied, incorporating prior knowledge of potential transcription factor bind-

ing events. The observed gene expression profiles are interpreted as the result of

transcriptional control by populations of active transcription factors with specific

binding to target genes.

2.2 Datasets

2.2.1 Stationary phase exit and entry: a gene expression timecourse

I considered a nine-day microarray timecourse of S. cerevisiae glucose starvation sta-

tionary phase culture including exit from and entry to quiescence [5]. The time-

course contains 34 timepoints and is therefore potentially rich in transcription reg-

ulatory events related to stationary phase exit and subsequent re-entry (Figure 2.1).

For this case study a processed external control normalized dataset was retrieved

from ArrayExpress [77], accession number E-UMCU-12.

The arrays are two-channel cDNA arrays, as described in [38]. Genes are repre-

sented by duplicate spots on the array. Raw intensity data had been preprocessed

using customized lowess print-tip normalization procedures as described in [5, 38].

An external control normalization procedure had been used in order to capture the
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Figure 2.1: Gene expression profiles during stationary phase exit and re-entry. Ex-
pression profiles are shown as log2 ratio values compared to the mid-log reference
timepoint (t = 6.5hrs, vertical line). A: Mean of all gene expression profiles versus
time. Points indicate sampled timepoints. B: Mean of all gene expression profiles
versus timepoint index. Corresponding times (hours) are shown in square brackets.
The horizontal bar shows phases of the timecourse: lag phase, exponential phase
(EP), diauxic shift (DS), post-diauxic shift (PD), stationary phase (SP). C: Represen-
tative clusters of genes with similar gene expression profiles. Shown are genes with
≥ 4-fold expression change, clustered by k-means clustering (k = 8). Colours indi-
cate cluster membership. The dataset contains groups of genes with distinct patterns
of gene expression during different phases of the timecourse [5].
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global reduction in mRNA levels expected at stationary phase compared with expo-

nential growth phase. The external control normalization was based on an invariant

set of nine control RNAs spiked into all total RNA samples at known concentrations

and spanning three orders of magnitude [38], and lowess lines had been fitted to

external control spots within each print-tip subgrid on the array. Following normal-

ization to external controls, the data had been processed further:

1. spot signals lower than 50 were replaced with 50;

2. signals were scaled using factors representing total RNA per cell at each time-

point

3. the resulting expression profile of each gene were smoothed using the cubic

spline R function smooth.spline with spar=0.4;

The resulting 6357 × 34 (genes × timepoints) matrix of processed log2-scale expres-

sion profiles was used as the expression dataset in this study.

2.2.2 Transcription factor binding network

A binary (0-1) regulatory network was used to define the specificity of transcription

factor binding to promoter regions of target genes. The network defines potential

in vivo transcription factor binding events of the promoter regions of target genes.

A draft S. cerevisiae transcription regulatory network structure had been defined by

Harbison et al. [10] using ChIP-chip assays to detect in vivo binding (directly or in-

directly) of 203 proteins to promoter regions in different environmental conditions.

MacIsaac et al. [76] reanalysed the S. cerevisiae ChIP-chip data to produce a regu-

latory map of conserved sequence motifs representing transcription factor binding

specificity. Each transcription factor-promoter interaction in the regulatory map is

associated with a significance level (P) and a conservation score (C), the number of

sensu strictu yeast in which this binding specificity is conserved. Here, I took the

network defined at a significance level of P < 0.001 and a conservation score of
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C = 2 [76] as an a priori binary network structure of potential transcription factor-

promoter specific binding interactions in S. cerevisiae. This defines a connectivity

matrix X, where

xg f = 1, if transcription factor f binds to the promoter of gene g,

xg f = 0, otherwise. (2.1)

All rows and columns of X contain at least one non-zero element, so that all genes

g indexed in X are bound by at least one transcription factor, and all indexed tran-

scription factors f have binding specificity to at least one gene. Genes in X but not

represented on the gene expression array were removed from X. This defined a con-

nectivity matrix X of 117 transcription factors and 1909 genes. The matrix is sparse,

with 1.7% of all elements being non-zero.

2.3 Methods

2.3.1 Transcription factor activity and hidden factor analysis

To explore hidden transcription factor activites and the effect on target genes dur-

ing S. cerevisiae stationary phase exit and entry, I applied two previously described

models [69, 68] of genome-scale regulation of gene expression. Both models aim to

decompose a genes × experiments matrix of gene expression levels into two parts, a

time-invariant weighted connectivity matrix describing the regulatory effect of each

transcription factor on target genes, and a matrix describing the active levels of each

transcription factor over experiments. The models differ in the formulation of the

model and in the method of inference, and the two methods are complementary

for exploratory analyses of genome-wide gene expression regulation during yeast

stationary phase exit and entry.
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2.3.1.1 Bayesian sparse hidden components analysis

First, I considered a sparse hidden components model proposed by Sabatti and

James [69] and originally applied to the regulation of gene expression in Escherichia

coli. Given a G× T matrix Y of log-scale gene expression measurements, where G is

the number of genes and T is the number of experiments, the expression profile yg

of gene g is modelled as

ygt = ∑
f

ag f p f t + γgt (2.2)

where ag f is the regulatory strength of transcription factor f on gene g, p f t may be

interpreted as the concentration of the active form of the transcription factor f , and

γgt is an error term with γgt ∼ N (0, σ2
g). To apply this model to yeast stationary

phase exit and entry timecourse, the T experiments in the model were taken to be

the 34 timepoints in the timecourse.

The model is in general overparameterized, and is therefore solved using a Bayesian

inference method. The model also infers an a posteriori connectivity matrix Z where

zg f = 1, if transcription factor f binds to the promoter of gene g,

zg f = 0, otherwise. (2.3)

. Firstly, I used the connectivity matrix X, described above (Datasets, page 23), to

define the prior distribution on the learned network structure Z. Following Sabatti

and James [69], I set the prior distribution on Z to

Pr(zg f = 1) = 0.5, if xg f = 1,

Pr(zg f = 1) = 0, otherwise. (2.4)

This prior is only mildly informative for the a posteriori structure of the connectivity

matrix. Secondly, the posterior mean and variance of agt, p f t, γgt | Z is estimated,

for given prior distributions. The prior distributions for agt, p f t, γgt are independent
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Gaussian distributions,

ag f = 0 if zg f = 0, ag f ∼ N (0, σ2
a = 10000) otherwise;

p f t ∼ N (0, σ2
p = 1), γgt ∼ N (0, σ2

g) (2.5)

where the error variance σg is modelled as an inverse gamma distribution with pa-

rameters α = 0.7, β = 0.3.

Parameter inference was performed using a Markov Chain Monte Carlo method

designed and implemented in R [78] by Sabatti and James [69]. The method outputs

estimates for the mean and standard deviation of the posterior distribution of p f t,

the active transcription factor concentrations, and ag f , the regulatory strength of

transcription factor f on gene g. The sign of ag f and p f t is interchangable, so in

addition the output is summarized as two quantities, (i) pav f t, the average effect

of transcription factor f over all the genes it regulates, and (ii) aveg f , the average

regulatory strength of transcription factor f on gene i over all experiments:

pav f t =
∑g ag f p f t

∑g I(ag f 6= 0)
, aveg f =

∑t ag f p f t

T
(2.6)

where ∑g I(ag f 6= 0) is the number of genes regulated with a non-zero control

strength by transcription factor f , and T is the number of timepoints (T = 34). Quan-

tities pav f t, aveg f are estimated as the a posteriori mean with an associated standard

deviation.

2.3.1.2 Probabilistic dynamic model of transcription factor activity

Second, I adopted a dynamic linear model of gene expression proposed by San-

guinetti and co-workers [68] and tested by the authors on S. cerevisiae cell cycle

mRNA and metabolic datasets. The model was applied here in order to estimate

the regulatory effect of transcription factors on target genes during stationary phase

exit and entry.

The expression level of each gene over time is modelled as a linear combination of
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the regulatory effects of each binding transcription factor. An binary connectivity

matrix X of transcription factor-promoter interactions is assumed to be known a

priori (see Datasets, page 23) given by:

xg f = 1, if transcription factor f binds to the promoter of gene g,

xg f = 0, otherwise. (2.7)

Given a G × T matrix Y of log-scale gene expression measurements, where G is the

number of genes and T is the number of timepoints, the expression profile yg of gene

g is modelled as

yg(t) = ∑
f

xg f bg f c f (t) + µg + εgt (2.8)

where t ∈ 1...T, xg f is the binary connectivity (0 or 1) of transcription factor f to gene

g, µg is the baseline expression level for gene g (in the absence of transcription factor

binding), and εgt is a gene-specific, time-specific error term. The weight bg f of tran-

scription factor f on the expression of gene g may be interpreted as the regulatory

strength of transcription factor f acting on gene g. In this model, bg f is constant in

time. The time-varying part of the model, c f (t), is a property of transcription factor

f and may be interpreted as the time-varying concentration of an active form of the

transcription factor.

This model is again overparameterized but can be solved using an approximate

Bayesian inference approach, described in detail in [68]. In this approach the poste-

rior probabilities of transcription factor concentrations c f (t) and regulatory strengths

bg f are inferred given a prior distribution for each parameter in the model. San-

guinetti et al. [68, 79] placed two constraints on the prior distribution of cg(t): (i)

the prior distribution is stationary in time, and (ii) the distribution of cg(t) depends

only1 on cg(t− 1). Thus c f (t) is modelled as

c f (t) = γ f c f (t− 1) + η f t. (2.9)

where γ f ∈ [0, 1] captures the time correlation between adjacent timepoints and η f t

1This is the Markov property, used here to capture correlations between adjacent timepoints.
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is the process noise, with prior distributions taken to be

η f t ∼ N (0, 1− γ2
f ), cg(1) ∼ N (0, 1). (2.10)

The priors on the regulatory strengths bg f , the baseline expression levels µg and the

error term ε f t are taken to be Gaussian,

bg f ∼ N (0, α2), µg ∼ N (0, 1), ε ∼ N (0, σ2). (2.11)

Parameter inference was performed using a variational Expectation-Maximization

inference method [80], designed and implemented by Sanguinetti and co-workers,

in the MATLAB toolbox ChipVar [68]. The method generates estimates for the

mean2 of the posterior distribution of c f (t), the active transcription factor concen-

trations; and bg f , the regulatory strength of transcription factor f on gene g.

2.4 Results

2.4.1 Bayesian sparse hidden components analysis

Using hidden components analysis, 96 of the 117 transcription factors in the prior

connectivity matrix (X) were found to have non-zero control strength on one or

more target genes (abs(ag f ) > 0). The average control strength (pav f (t)) of each

transcription factor ( f ) on its a posteriori target genes is summarized as a cluster

diagram (Figure 2.2; Table 2.1).

For the transcription factors with variable average control strength (pg(t)) over the

timecourse, it is interesting to look at the average control strength over time for each

transcription factor acting on each inferred target gene. In particular, it is possible to

identify genes which are controlled by combinations of transcription factors during

2The current software implementation, ChipVar v0.11, does not report estimates for the variance
of the posterior distribution of c f (t), bg f . Analysis is therefore restricted here to estimates of the size
(posterior mean) of c f (t), bg f , and the statistical significance of control of transcription factor on each
target gene is not estimated.
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the timecourse under this model. Table 2.2 lists commonly identified pairs of tran-

scription factors which control multiple (≥ 5) target genes with non-zero control

strength aveg f . There are 18 such transcription factor pairs (involving 25 transcrip-

tion factors) identified a posteriori for the gene expression timecourse, compared to

163 such pairs (involving 68 transcription factors) in the original connectivity matrix

X.

2.4.2 Probabilistic dynamic model of transcription factor activity

The time-varying concentration of the active form of each transcription factor in

the connectivity matrix X were inferred under the probabilistic dynamic model of

gene expression. Time-independent regulatory control strengths of each transcrip-

tion factor on each potential target gene was also inferred. The inferred active con-

centrations of the 117 transcription factors in connectivity matrix X are shown as

a cluster diagram (Figure 2.3; Table 2.3)3. Note that due to the model formulation

(Eqn. 2.8) there is a sign ambiguity for the active concentration, c(t) and associ-

ated regulatory strengths. Comparing Tables 2.1 and 2.3 it can be seen that there is

consistency between:

(i) pav f (t), the average effect of transcription factor f on each target gene, in-

ferred by sparse hidden components analysis.

(ii) c f (t), the concentration of the active form of transcription factor f , inferred

under the probabilistic dynamic model; and

For example, OPI1 and SIP4 are inferred to have a differentially active role during

stationary phase exit and from post-dauxic phase into stationary phase, compared

to the mid-log reference timepoint. Under both models, DAL81 is inferred to have an

active control in stationary phase exit compared to mid-log phase, but an opposite

regulatory effect during dauxic shift.

3The regulatory strengths bg f of transcription factor f on gene g were not analysed further due to
the absence of variance estimates for the posterior distributions of bg f .
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Figure 2.2: Transcription factors are clustered according to average control strength (pav f (t)) of each transcription factor f on its target
genes, inferred using Bayesian sparse hidden components analysis. Only the 96 transcription factors with non-zero a posteriori control
strengths on one or more target genes are shown. Black lines depict cluster means. Grey lines depict pav f (t) for transcription factors f .
The mid-log reference timepoint is indicated by a vertical line. Clustering was performed using k-means clustering with k = 12, using
the R package kmeans. Transcription factor names are listed in Table 2.1.
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Table 2.1: Table of transcription factors with similar average control strength
(pav f (t)) inferred using Bayesian sparse hidden components analysis (see Figure
2.2)

Cluster 1 ACE2, ARG80, CAD1, CIN5, DIG1, FKH2, GAT1, HAC1, IME1,
MATA1, MCM1, NDD1, PHO2, SPT2, SPT23, STB2, STP1, TYE7,
ZAP1

Cluster 2 ADR1, CHA4, DAL82, FKH1, GCN4, GTS1, MBP1, NRG1, PDR3,
RCS1, RDS1, STE12, SUM1, YAP7

Cluster 3 HAP2, HAP5, MET32, PHO4, PUT3, RTG3, SFP1, SKN7, SKO1,
SNT2, SUT1, THI2, UME6, YOX1

Cluster 4 FHL1, GCR2, INO2, LEU3, RLM1, YDR520C
Cluster 5 ROX1, STB5, XBP1, YAP1
Cluster 6 DAL81, MIG1
Cluster 7 MSN4, SOK2
Cluster 8 ABF1, ARR1, BAS1, CST6, GZF3, HAP4, MAC1, MET31, PHD1,

REB1, RPN4, STB1, TEC1, YAP5
Cluster 9 DAL80, GAL4, HAP3, MOT3, MSN2, STB4, YAP6
Cluster 10 AFT2, CBF1, GLN3, HAP1, INO4, RFX1, SWI6
Cluster 11 HSF1, RAP1, RME1, SWI4, SWI5
Cluster 12 OPI1, SIP4

Table 2.2: Table of transcription factors pairs that control 5 or more target genes
(control strength aveg f > 0), inferred using Bayesian sparce hidden components
analysis.

≥ 6 genes 5 genes
SKN7 / SWI4 STE12 / SWI4
SWI6 / SWI4 PHD1 / SWI4
TYE7 / CBF1 RAP1 / UME6

MSN4 / MSN2 SKN7 / CBF1
SUT1 / SKN7 STE12 / SWI6
CIN5 / SKN7 STE12 / SKN7
PHD1 / SKN7 NRG1 / SKN7
FHL1 / RAP1 SWI6 / STE12
DIG1 / STE12
MBP1 / SWI6
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Figure 2.3: Transcription factors are clustered according to active transcription factor concentration c(t), inferred using a probabilistic
dynamic model [68]. Black lines depict cluster means. Grey lines depict c(t) for each transcription factor. The mid-log reference
timepoint is indicated by a vertical line. Clustering was performed using k-means clustering with k = 12, using the R package kmeans.
Transcription factor names are listed in Table 2.3.
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Table 2.3: Table of transcription factors with similar active concentrations over time
(c f (t)) inferred using a probabilistic dynamic model (see Figure 2.3)

Cluster 1 ABF1 SWI4 CBF1 RAP1 CIN5 STB1 SWI5 FKH1 RME1 TYE7
BAS1 YAP5 IME1

Cluster 2 GCR2, UME6, HAP5, YDR520C
Cluster 3 LEU3, FHL1
Cluster 4 DAL81
Cluster 5 PUT3, MSN2, RPH1, STP4, MIG1
Cluster 6 RPN4, STE12, INO4, PHD1, REB1, MBP1, GCN4, HAP1
Cluster 7 HAP3, SPT2, GZF3, PDR3, SKN7, MOT3, SNT2, DAL80, PHO4,

GLN3, GAL4, HAP4, GTS1
Cluster 8 ARG80, MAC1, ADR1, CHA4, SPT23, DAL82, YAP1, AFT2,

HAC1, MSN4, TEC1, HAP2, MET31, RDS1
Cluster 9 YHP1, AZF1, YML081W, PDR1, MET4, GAT3, SKO1, IXR1,

ROX1, SFP1, ASH1, SMP1, MET32, UGA3, GCR1, XBP1, YAP3,
YRR1, RIM101, ARO80

Cluster 10 RLM1, MATA1, STB2, CAD1, INO2, ARG81
Cluster 11 YOX1, STB5, GAL80, OPI1, RFX1, SIP4, RGT1, RLR1
Cluster 12 PHO2, ACE2, ZAP1, SOK2, FKH2, SUM1, GAT1, ARR1, RCS1,

SUT1, YAP6, NDD1, MCM1, CST6, HSF1, RTG3, THI2, DIG1,
SWI6, STB4, YAP7, NRG1, STP1
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2.5 Discussion

The active transcription factor concentrations c(t) inferred using the probabilistic

dynamic model are qualitatively similar to the average control strengths (ag f ) in-

ferred using the hidden components analysis. This suggests that the decomposition

of the gene expression matrix into a time-varying part (c f (t) or pav f t) and a gene-

specific part (bg f or ag f ) is robust to differences in model formulation and method

of inference: the gene expression matrix can be expressed as a linear combination

of transcription factor activities, weighted by gene-specific control strengths, consis-

tently by two different methods.

The Bayesian sparse hidden components model as implemented does not assume

that the experiments form a timecourse, and therefore treats the active concentra-

tions of a transcription factor (pgt) at sequential timepoints as a priori independent.

As noted by Sabatti and James [69], this can in principle be modified to allow for

covariance of pgt, pgs between timepoints by selecting an alternative prior4 but adds

computational complexity.

The two models considered here exploit the sparsity of the prior connectivity map,

X, to explain the observed gene expression profiles as a linear model of transcrip-

tional control by transcription factors with binding specificity to target genes. The

connectivity matrix X does not necessarily represent direct DNA-binding by the

relevant transcription factor. The ChIP-chip datasets from which the connectivity

matrix was generated includes transcription factors which are not directly DNA-

binding. An example of indirect connectivity of a transcription factor to a pro-

moter binding site is the Gal80-Gal4 complex noted by MacIsaac and co-workers

[76]. Gal80 inhibits the regulatory control of Gal4 on its target genes by binding

to Gal4, but Gal80 does not itself have a DNA-binding domain. The connectivity

matrix is therefore not a direct indication of DNA-binding specificity, but indicates

that a given transcription factor is associated with specific promoter motifs. Simi-

4for example, pg ∼ N (0, Γ) where Γ represents covariance between pgt, pgs.
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larly, the models applied here do not necessarily imply that the stated transcription

factors have a direct effect on inferred controlled target genes by binding to the

promoter region of the target genes. Rather, the models are used to explain the ex-

pression levels of target genes in terms of motifs which had previously been found

in associated promoter regions, and these motifs in turn are associated with direct

or indirect DNA-binding in vivo by transcription factors based on ChIP-chip assays.

The original ChIP-chip experiments by Harbison and co-workers were performed in

a number of different experimental conditions [10]. The authors of that study found

that there was variation in binding specificity between different conditions [10], and

it is likely that further binding specificities would be found under a different set of

conditions [81]. The a priori connectivity matrix, X, may therefore be missing tran-

scription factor-gene interactions that are important during any of the intermediate

phases included in the timecourse covering stationary phase exit or entry by glucose

limited conditions. The set of 207 transcription factors studied by Harbison and col-

leagues [10] represented known and predicted transcriptional regulators and is not

an exhaustive list of all possible transcriptional regulators. The transcription factor

GIS1, for example, was recently confirmed to be a key transcriptional regulator in

nutrient-limited conditions [82] but is not one of the 207 transcription factors in the

ChIP-chip dataset [10]. Furthermore, only 1909 of the 6357 genes contained in the

gene expression dataset were considered to be potential targets of one or more of the

207 transcription factors. More than half of all genes were therefore not included in

the two models considered here because no potential transcription factor-gene spe-

cific binding had been predicted a priori for these genes in the connectivity matrix,

X.

The problem of quantifying on a genome-wide scale the regulatory control of target

genes by transcription factors across a limited number of experiments or timepoints

has been studied extensively in recent years. The models applied in this study [69,

68] are two examples amongst a number of related models and associated inference

methods which use linear models to explain observed mRNA levels.
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Detailed kinetic models of changes in mRNA abundance during a timecourse study

have been applied to small networks involving a handful of genes [83, 70]. Barenco

and coworkers [70] modelled mRNA abundance as a function of transcription rate,

mRNA degradation rate and hidden transcription factor activity, limited to the con-

struction of small networks of transcriptional regulation using a gene expression

timecourse dataset. Nachman and coworkers [83] proposed a dynamic Bayesian

network model of mRNA abundance as a function of transcription factor protein

concentrations.

On a whole-genome scale, the use of such kinetic models is hampered by the result-

ing complexity of detailed kinetic models, the lack of kinetic data on the genomic

scale, and the problem of estimating parameters in an overdetermined system. Thus

a number of simpler models of transcriptional control have been proposed on the

genomic scale. Segal and coworkers [84] proposed fitting a module network – a sim-

plified Bayesian network model of genome-wide mRNA abundance which assumes

that there are groups of similarly regulated genes – in order to reduce the number

of regulatory relationships that must be inferred from a genome-wide dataset. The

model seeks to explain gene expression in terms of dependencies on the gene ex-

pression profile of given transcriptional regulators. The ARACNE algorithm [85]

uses mutual information between expression profiles to define a network of depen-

dency and putative transcriptional control. In contrast, the two models applied in

this chapter [69, 68] do not take into account the mRNA abundance of transcrip-

tion factors. Instead, these models assume that gene expression profiles can be ex-

pressed as a linear combination of an unobserved property of transcription factors,

which may be interpreted as the concentration of an active form of the transcription

factor. A number of similar linear models of gene expression have been proposed

which use prior knowledge of transcription factor binding specificity or binding

motifs shared between coexpressed genes [86, 71, 87]. Each model of transcrip-

tional control of gene expression exploits a subset of prior knowledge in an effort

to uncover insights about transcriptional regulation. A model which includes both
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the changes in mRNA abundance of transcription factors and the unobserved post-

transcriptional activation of transcription factors, acting on common sets of genes,

may in future prove to be a more enlightening model of genome-wide regulation of

gene expression.

This chapter has considered only observed changes in mRNA abundance over time,

and has sought to explain genome-wide changes in mRNA abundance as a linear

combination of the effects of DNA-binding transcription factors. Under current

models, activation or repression of transcription by transcription factors alters the

rate of transcription of a given mRNA species, and the modulation of the transcrip-

tion rate in turn affects the mRNA abundance. Observed mRNA abundance is the

result of a balance between the rate of transcription and the rate of mRNA degra-

dation. To understand how an observed timecourse of mRNA abundance may be

controlled by modulating the transcription rate via transcription factor-DNA inter-

actions, it is necessary to consider the observed changes in mRNA abundance as the

result of both a transcription rate and an mRNA degradation rate, either of which

may potentially vary with time. The next chapter is concerned with dynamic mod-

els of mRNA abundance, taking into account the potential effect of regulated mRNA

degradation rates.
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Chapter 3

Detecting regulated mRNA stability
using microarray measurements:
models and applications

This chapter describes an approach for identifying changes in mRNA stability in re-

sponse to an environmental stress, using simultaneous microarray timecourse mea-

surements of changes in mRNA abundance and transcription rate. This approach

is used in Chapter 4 to identify genes which are candidates for regulated mRNA

stability in response to an oxidative stress in Schizosaccharomyces pombe.

Given two simultaneous timecourses of changes in transcription rate and mRNA

abundance in response to stress, are they consistent with constant mRNA stabil-

ity, or is there evidence of post-transcriptional control of mRNA levels? This chap-

ter presents a model-based approach towards understanding transcriptional and

post-transcriptional contributions to shaping a gene expression response. A simple

model of mRNA kinetics is adapted so that it becomes applicable to two simulta-

neous microarray time courses measuring changes in mRNA abundance and tran-

scription rate.
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3.1 Introduction

It has recently become feasible to produce microarray timecourse datasets of changes

in transcription rate using run-on assays [88] or, as considered in the subsequent

study, recently designed RNA polymerase II ChIP-chip experiments. High time res-

olution datasets can capture changes in both mRNA levels and transcription rates

during a global gene expression response. This presents the possibility of directly

modelling the observed mRNA dynamics, without recourse to transcriptional in-

activation which is disruptive to the cell and has compounding effects. Previous

studies have simulated an mRNA abundance timecourse for a given observed tran-

scription rate timecourse together with a sample of possible mRNA halflives [89, 90]

and unknown scaling values to account for unknown absolute values [91], and have

then compared the simulated changes in mRNA levels to observed timecourse mea-

surements. In another approach, first-order mRNA decay was fitted to sequential

time intervals [92, 89] but this did not yield biologically plausible results. Jiang and

colleagues [91] calculated a timecourse of changes in mRNA degradation rates for

five genes, and noted that the result was dependent on the unknown relative scal-

ings between measured mRNA abundance and transcription rates. There has not

yet been a systematic attempt to fit analytic solutions of mRNA degradation models

to observed timecourse data, whilst explicitly taking into account the unknown rel-

ative scaling of transcription rate and mRNA abundance measurements which are

a consequence of measuring relative values.

3.1.1 Chapter outline

First, this chapter describes the simple kinetic models used to study mRNA turnover

and the effect on mRNA abundance on a genome-wide scale. Previous genome-

wide studies of regulated mRNA stability are described. Second, a framework is

presented for identifying candidate genes for regulated mRNA stability using si-

multaneous microarray measurements of changes in transcription rate and mRNA
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abundance.

3.2 Previous work: genome-wide mRNA degradation
rates and mRNA abundance

Recent genome-wide studies of mRNA turnover aim to (i) rank the relative decay

rates of mRNA species within a population of mRNA in a fixed condition, or (ii)

identify changes in the decay rate of mRNA species in response to changes in en-

vironmental or physiological conditions. The relative ranking of mRNA stability

amongst a population of mRNA species can be estimated by stopping transcription

and estimating the subsequent rate of loss of transcripts using a timecourse of mi-

croarray measurements. Changes in mRNA stability may be detected by comparing

steady-state estimates of mRNA stability or, for a system which is not at steady-state,

a dynamic model of mRNA abundance may be fitted to simulteneous timecourses

of mRNA abundance and transcription rate measurements.

3.2.1 mRNA degradation as a first-order decay process

For each mRNA species, mRNA abundance E(t) is determined by the transcription

rate R(t) and the degradation rate D(t). Assuming that the growth rate of cells is

negligible, and that there is no time delay between transcription and contribution

to extracted mRNA abundance (e.g. negligible time delay between transcription

initiation and transcript termination) then mRNA abundance E(t) is simply related

to the transcription rate R(t) and the degradation rate D(t) by:

dE
dt

= R(t)− D(t) (3.1)

The assumption of negligible growth rate is valid for the oxidative stress response

described in Chapter 4 (in which cell growth is arrested throughout the stress re-

sponse) and the case of non-negligible growth rate is not considered. A number

of further simplifying assumptions are implied in Eqn 3.1. mRNA abundance E(t)
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is the abundance of mature polyadenylated mRNA extracted from the sample and

hybridizing specifically to a complementary probe on the array. mRNA present at

various stages of transcript processing or degradation is not explicitly modelled.

The transcription rate R(t) is here the rate at which hybridizing RNA is produced,

and the degradation rate D(t) is simply the overall rate at which hybridizing RNA

is lost from the cell. In particular, if the transcription rate is estimated as the rate

of production of nuclear pre-mRNA (for example using RNA polymerase II ChIP-

chip or nuclear run-on assays), the degradation rate D(t) may include loss or decay

of transcripts by any mechanism including intermediate steps from nuclear tran-

scription to mature polyadenylated transcripts. The kinetics of intermediate steps in

mRNA metabolism and specific degradation pathways are not explicitly modelled

(see Cao and Parker [93] for a 21-parameter model of the metabolism of a single

mRNA species).

The mRNA degradation rate in a given condition is typically modelled as a first-

order decay process [94, 95, 96, 97]; that is, the degradation rate D(t) is proportional

to mRNA abundance:

D(t) ≡ kE(t) (3.2)

where k is the decay rate constant. Assuming zero-order mRNA synthesis and first-

order mRNA decay, mRNA abundance E(t) and transcription rate R(t) satisfy

dE
dt

= R(t)− kE(t) (3.3)

The mRNA halflife τ1
2

is typically used to summarize mRNA stability and is related

to the decay rate constant k by τ1
2

= ln(2)/k. Assuming first-order degradation with

decay rate constant k, then given any time-varying transcription rate R(t), Eqn 3.3

may be solved for the mRNA abundance E(t):

E(t) =
∫ t

t0

R(t′)ek(t′−t)dt′ + E0e−kt (3.4)
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At steady state (ss), dE/dt = 0 so that Eqn. 3.3 becomes:

Ess =
Rss

k
(3.5)

The decay rate constant of an mRNA species can be estimated directly by blocking

transcription. mRNA abundance then follows an exponential decay, E(t) = E0e−kt,

from an initial mRNA level E0. Hargrove et al. [94] and recent genome-wide studies

[96, 98] have found that mRNA decay curves are exponential, indicating that first-

order decay is a reasonable model for mRNA decay kinetics. Recent studies have

reported genome-wide mRNA decay rates, or ranked mRNA decay rates within

a population of mRNA species, in several organisms and cell types by inhibiting

RNA polymerase II transcription and fitting an exponential decay to the subsequent

loss of mRNA. mRNA decay rates have been estimated in S. cerevisiae [96, 98, 99],

S. pombe [47], human cell lines [97], Arabidopsis [100], and Mus musculus embry-

onic stem cells. Decay rates have been variously associated with protein functional

classes (e.g. [97, 100]; transcription factors have short mRNA half-lives, whereas

biosynthesis genes have long mRNA halflives); membership of protein complexes

[96]; gene length and number of introns [47, 100, 101]; and the presence of mRNA

motifs, including AU-rich elements and PUF binding motifs which are known to

have functional significance for mRNA stability [100, 101].

3.2.2 Detecting changes in mRNA stability

3.2.2.1 Comparison of mRNA decay rates

Recent studies have compared mRNA halflife estimates using transcriptional in-

activation across conditions. There is evidence that the control of mRNA decay

rates contributes to the genome-wide regulation of gene expression in response to

environmental stress. Shalem and co-workers [98] compared mRNA halflives and

mRNA abundance profiles between two stress conditions (weak oxidative stress,

DNA damage) and exponentially growing cells in S. cerevisiae. Genes with rapid

transient accumulation (loss) of mRNA are reported to be destabilized (stabilized)
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compared to exponentially growing cells, consistent with rapid relaxation of mRNA

levels to pre-stress levels observed for transiently induced or repressed genes. In

contrast, the transcripts of persistently induced (repressed) genes tended to be sta-

bilized (destabilized) compared to exponentially growing cells. mRNA halflives

were estimated for one time period per stress response (oxidative stress: from 25

mins; DNA damage: from 40 mins after stress); an interesting question is whether

mRNA stabilization/destabilization occurs immediately upon induction of a stress

response or some time after stress induction, and whether changes in mRNA sta-

bility are localized in time or represent continual changes in stability. Molin et al.

[99] studied the timing of changes in mRNA decay rates during a transient stress

response (weak salt stress) by stopping transcription before stress induction and at

two timepoints (6, 30 mins) after stress induction. The authors find that for some –

but not all – genes which are highly and transiently induced (repressed), mRNA is

rapidly stabilized (destabilized) at the onset of stress but subsequently destabilized

(stabilized) close to the peak in mRNA levels. This indicates that, for some transient

stress-response genes, rapid accumulation (loss) of transcripts may be facilitated by

rapid early stabilization (destabilization) of mRNA, whereas the return to pre-stress

mRNA levels may be driven by mRNA stabilization (destabilization) close to peak

mRNA levels.

A limitation of using transcription inhibition experiments to study changes in mRNA

decay rates is the impact of the transcriptional inactivation on the cell. RNA poly-

merase II transcriptional inactivation is achieved by exposure to a transcription-

blocking drug such as 1,10-phenanthroline or using a temperature-sensitive RNA

Pol II mutant, and can itself induce a specific stress response [102]. In addition,

inhibiting transcription during a primary stress response results in compounded

responses: any post-transcriptional processes which are continuously modulated in

response to stress will continue to respond to the primary stressor during the period

of transcriptional inhibition.
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3.2.2.2 Comparison of mRNA abundance and transcription rates

An alternative approach to detecting regulated mRNA turnover, without inhibit-

ing transcription, is to measure changes in both mRNA abundance and transcrip-

tion rate and determine whether this is consistent with constant mRNA turnover,

or whether the data imply a role for post-transcriptional control of mRNA levels.

Changes in transcription rate can be measured on a genome-wide scale by combin-

ing nuclear run-on assays with microarray hybridization [88, 103] or using a recently

developed RNA polymerase II ChIP-chip assay (S. Marguerat, personal communi-

cation; see Chapter 4).

In steady-state conditions it is possible to identify genes with putative altered mRNA

decay rates by comparing fold-changes in transcription rates to fold-changes in

mRNA abundance. An observed discrepancy between the fold-change in transcrip-

tion rate and the fold-change in mRNA abundance from stressed to unstressed cells

indicates that the mRNA decay rate is modulated between different conditions (Eqn.

3.5) and suggests post-transcriptional control of the gene expression response to

stress.

Using this approach, genes with putative modulated mRNA decay rates in response

to stress have been identified in S. cerevisiae [90], human lung carcinoma cells [104]

and tobacco plant and Chlamydomonas plastids [105, 106]. However, this approach

is only applicable to the comparison of steady-state conditions (in which there is

no change in mRNA level, transcription rate, and any other kinetic parameters

which affect mRNA metabolism). Although this approach has been used to identify

changes in mRNA decay rate across a stress response timecourse under the assump-

tion of sequential steady states (e.g. [90]), in general a timepoint-by-timepoint com-

parison of sampled non-steady-state measurements ignores the dynamics of tran-

scription and degradation which shape the mRNA abundance response over time.

Given the mounting evidence that mRNA decay rates of a subset of stress-induced

and stress-repressed genes are modulated in response to stress, it is of interest to
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find at what time a change in decay rate takes place, whether immediately upon ex-

posure to stress or later in the stress response, and whether there is a rapid localized

change or a gradual, continual change in transcript decay rate.

3.2.2.3 Modelling timecourse datasets of mRNA abundance and transcription
rates

A special case of stress response timecourse datasets is the detection of changes

in either transcription rate or mRNA levels together with no detected change in the

other. Cheadle and colleagues [103] tracked the genome-wide transcription rate (us-

ing nuclear run-on arrays) and mRNA levels of human Jurkat T-cells for 60 minutes

after activation. Most genes fell into two groups: (i) a change in mRNA levels with

no detected change in transcription rate, and (ii) rapid transcriptional induction

with no detected increase in mRNA levels. The first group may be regulated post-

transcriptionally. The authors note that the second group may have been identified

due to differences in detection between changes in transcription rate and mRNA

levels. Such differences may be caused by restricted dynamic range of detected in-

tensity values, for example, which can result in loss of detection of small changes,

or underestimation of large changes due to intensity saturation.

More generally, continual changes in both transcription rate and mRNA abundance

may be observed. In an early study, Jiang et al. [91] measured the transcription

rate (nuclear run-on assay) and mRNA accumulation (Northern blot) in response to

stimulus for five genes induced in the human acute response (inflammation). Firstly,

the authors simulated mRNA levels using the observed transcription rate changes

and a sample of possible mRNA halflives, showing that three genes did not appear

to be consistent with a constant halflife. Secondly, they simulated the effect of an

immediate rapid fold-increase in mRNA stability, and noted that three of the five

genes were consistent with a rapid early change in mRNA stability. Finally, noting

that all measurements are relative to a reference value and that absolute values are

not known, an abundance ratio was defined which describes the relative scaling of
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mRNA levels and transcription rate measurements. An mRNA degradation rate

was estimated for each timestep, for a range of possible abundance ratio values.

While three of the genes support a gradual destabilization for a subset of possible

abundance ratio values, in all cases the mRNA degradation behaviour was found to

depend on the unknown abundance ratio.

Molina-Navarro and co-workers [92] performed a similar analysis of microarray-

based transcription rate (nuclear run-on) and mRNA abundance in response to ox-

idative stress in S. cerevisiae. Unknown absolute values were not accounted for,

however, as the analysis was based on externally normalized values which were

assumed to represent absolute values. A decay rate constant k was calculated for

each time interval by assuming a first-order decay process (Eqn 3.3) within each

time interval, and solving for the decay rate constant ki within each time interval

∆ti = ti+1 − ti ([92]; summarized here based on Eqn VIII in [89]):

p− ki (Ri+1 − kiEi+1) = [p− ki (Ri − kiEi)] e−ki∆ti (3.6)

where p ≡ (Ri+1 − Ri)/∆t is the observed change in transcription rate over the

time interval, and Ei, Ri the mRNA level and transcription rate measurements at

timepoint ti. Most genes were found to have non-constant k over the timecourse.

Estimates of ki are noisy due to the use of sequential timepoints to estimate the local

change in transcription rate. The solution permits and often finds negative values

of k, which is not biologically plausible when interpreted as an mRNA decay rate

constant. The authors find coherent transcription rate, mRNA level and resulting

k(t) behaviours amongst functionally related genes, indicating that there are distinct

patterns of transcriptional and possibly post-transcriptional control in response to

oxidative stress.

Together these studies indicate that the mRNA stability of some genes is regulated

in response to stress, and that this is true across a range of organisms and stress

conditions. There is also evidence that coherent patterns of transcriptional response

and mRNA abundance are associated with protein functional classes [92, 90, 104],
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suggesting that the gene expression response to stress is specifically regulated and

associated with protein function. Where the transcription rate and mRNA abun-

dance both vary in response to stress, the interpretation of transcriptional and post-

transcriptional contributions to mRNA abundance is complicated by unknown ab-

solute values.

Theoretical strategies for regulating mRNA levels by combining the regulation of

transcription rate and mRNA stability have been described previously, focusing

on instantaneous changes in transcription rate and mRNA stability from an initial

steady state [94, 91, 98, 89]. Perez-Ortin [89] showed that the speed of approach and

relative magnitude of a new steady state in mRNA abundance can be tuned by in-

stantaneously modulating both the transcription rate and mRNA stability from an

initial steady state. Shalem and colleagues [98] observed that transient upregulation

of mRNA levels is consistent with a rapid transcriptional response (and accompany-

ing rapid approach to a peak in mRNA abundance) followed by mRNA destabiliza-

tion, allowing rapid return to the initial mRNA level. Both cases assume a simple

exponential approach behaviour in mRNA levels which results from instantaneous

changes in transcription rate and/or mRNA stability from an initial steady state and

assuming first-order mRNA degradation. Solving Eqn. 3.4 for simultaneous instan-

taneous changes in both stability (kI → kF) and transcription rate (RI → RF) from

initial steady-state at time t = 0, the mRNA abundance E(t) follows:

E(t) =
RF

kF
+

(
RI

kI
− RF

kF

)
e−kFt (3.7)

More generally, both transcription rate and mRNA abundance change over time.

Previous studies have compared observed mRNA levels to simulated timecourses

for a given mRNA halflife and have estimated changes in mRNA degradation for

consecutive time intervals. However, there has not been a systematic attempt to fit

analytic solutions for changes mRNA abundance to an observed timecourse, given

a model of mRNA degradation and observed changes in transcription rate, and ex-

plicitly modelling the unknown absolute values.
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The rest of this chapter presents a model-based approach to address the following

questions: given a timecourse of genome-wide changes in mRNA abundance and

changes in transcription rate, are the data consistent with constant mRNA stabil-

ity? Alternatively, is there evidence for post-transcriptional control of mRNA abun-

dance? In particular, the examples considered here are relevant to transient and

persistent stress response behaviours.

3.3 Fitting an mRNA kinetic model to microarray data

3.3.1 First-order mRNA degradation

I assume here that a time course of transcription rate and mRNA abundance is mea-

sured. Observed values are fold-changes in transcription rate and mRNA abun-

dance relative to a reference value. There is therefore an unknown scaling be-

tween measurements of relative transcription rate and relative mRNA abundance,

and there may also be a baseline shift in measured changes in transcription rate or

mRNA abundance. I therefore assume that, in the absence of noise, the normal-

ized ratio measurements from the arrays, y(t), f (t), are related to absolute mRNA

abundance E(t) and transcription rate R(t) as follows:

mRNA abundance y(t) = αyE(t) + βy (3.8)

transcription rate f (t) = α f R(t) + β f (3.9)

where the scaling (α) and shifting (β) constants are allowed to differ for each gene.

Substituting into Eqn 3.3, the kinetic equation relating mRNA abundance measure-

ments y(t) and transcription rate measurements f (t) given first-order decay be-

comes:
dy
dt

+ ky(t) = A′ f (t) + B′ (3.10)

where constants A′, B′ may differ for each gene. The solution for mRNA abundance
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under first-order degradation with decay rate constant k becomes:

y(t) = A
∫

f (t′)ek(t′−t)dt′ + B + Ce−kt (3.11)

where A, B, C are gene-specific constants. Figure 3.1A illustrates a first-order model

of mRNA degradation.

3.3.2 First-order mRNA degradation: interpretation of parameters

The inclusion of constants A′, B′ in the first-order decay model (Eqn. 3.10) reflects

a limitation of using microarray measurements to investigate mRNA kinetics and

therefore working with relative, not absolute, changes in transcription rate and

mRNA abundance. (This is also the case for low-throughput assays [91].) An ex-

pression profile may be explained by more than one set of parameters A, B, C (Eqn.

3.11) so that it is impossible to distinguish between modes of response, whether

transcriptional, post-transcriptional, or a combination. To illustrate, consider the

simple case that both the mRNA abundance and the transcription rate follow an

approximately exponential decay. This may be explained by either (i) a dominating

transcription rate combined with a constant short halflife (large A, large k)1, or (ii) a

dominating decay rate (small A).

If the mRNA abundance response follows an exponential approach behaviour and

the transcription rate has any other behaviour, this can always be explained by

a dominating first-order decay process (so that A is small). In this example it is

not possible to distinguish between (i) degradation dominating the kinetics, so that

abundance is unaffected by the relatively small absolute changes in transcription

rate; and (ii) transcription rate (i.e. the production of new transcripts) contributing

to changes in RNA abundance over time. By including unknown constants A, B, C

in the model solution (Eqn. 3.4) and searching over those parameters for good fits to

the observed mRNA abundance profile, we may search over all possible unknown

relative scalings A′ and relative shifts B′. Where there are a wide range of parameter

1Note that large/small is determined by the scaling of the governing equation (Eqn. 3.11).
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Figure 3.1: Models of mRNA degradation D(t). (A) Exponential decay; (B) Expo-
nential decay in two regimes. Both (A) and (B) are compatible with a rapid change
in decay rate at the start of the stress response. Alternative models of mRNA degra-
dation may be considered subject to the constraints of the dataset (time resolution
and noise) and parameter identifiability; for example (C), D(t) = k(t)E(t) where
k(t) follows a generalized logistic model.
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sets which can describe a given mRNA abundance profile, the observed timecourse

is not sufficient to specify the model precisely; however, it is possible to test an al-

ternative model against a model of constant first-order degradation by comparing

a measure of the global best fit between models. This is discussed in the following

sections.

3.3.3 Alternative models of mRNA degradation

mRNA stability may be regulated during a stress response. To describe changes in

mRNA degradation rate, an alternative model of mRNA degradation may be fitted

to the stress response timecourse: an alternative model may capture key aspects of

the mRNA degradation response that are missed by a first-order degradation model.

To illustrate, I describe here two alternative models of mRNA degradation during a

stress response.

Firstly, a straightforward extension of first-order degradation is to allow a single in-

stantaneous change in mRNA degradation at a (unknown) time tswitch after stress in-

duction (Figure 3.1B). This model is consistent with observations that mRNA degra-

dation may be modulated at discrete times after stress induction and may therefore

be involved in regulating a transient response [98, 99].

Solving dE
dt = R(t)− D(t) with

D(t) = k1E(t); t ≤ tswitch

k2E(t); t > tswitch,

the analytic solution for a single change in degradation rate at time tswitch is:

y = A
∫

f (t′)ek1(t′−t)dt′ + B + De−k1t for t < tswitch, (3.12)

y = A
∫

f (t′)ek2(t′−t)dt′ + B
k1

k2
+ Ge−k2t for t ≥ tswitch, (3.13)
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where G is chosen to satisfy continuity2 of y(t) at tswitch (≡ ts for brevity):

G = ek2ts

(
A

∫ ts

f (t′)ek1(t′−ts)dt′ + B + Dek1ts − A
∫

ts

f (t′)ek2(t′−ts)dt′ − B
k1

k2

)
(3.14)

The solution for an abrupt change in stability has six parameters (k1, k2, A, B, D, tswitch),

compared to the four parameters of the constant decay rate model (k, A, B, C in Eqn

3.11).

Secondly, consider the case that there is an increase or decrease in mRNA degrada-

tion rate but that this is not instantaneous. This model is a natural extension of an

instantaneous change in mRNA abundance, where the change in mRNA stability is

spread over time either due to the mechanism of mRNA stability regulation for a

mRNA species, or as a consequence of rapidly modulated mRNA stability within

a cell but observed in a cell population with an asynchronous population response.

Continuous growth (which may be localized in time and may be increasing of de-

creasing) may be modelled, for example, using a logistic growth function [107]. The

mRNA degradation rate D(t) may be modelled as D(t) ≡ k(t)E(t) where k(t) fol-

lows a logistic growth behaviour (Figure 3.1C):

k(t) = α +
γ(

1 + eβ(ν−t)
) (3.15)

Solving dy
dt + k(t)E(t) = A′ f (t) + B′ [cf. Eqn. 3.10] for mRNA abundance y(t):

y(t) = e−G(t)
[

D +
∫ t

t0

eG(t′) (
A f (t′) + B

)
dt′

]
(3.16)

where

G(t) = (α + γ)t +
γ

β

[
ln

(
1 + eβ(ν−t)

)]
, (3.17)

and there are up to seven parameters: constants α, β, γ, ν describe the mRNA degra-

dation rate model (k(t)) and constants A, B, D are a consequence of unknown abso-

lute values.
2Continuity at tswitch may not always be an appropriate constraint; for example, if the time resolu-

tion of the timecourse is low compared to the frequency of fluctuations in transcription rate close to
time tswitch. In the absence of a continuity constraint, the two time regimes may be fitted separately
resulting in a 7-parameter model.
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3.3.4 Comparison of mRNA degradation models

A standard method to compare the significance of support for two nested models

for a given dataset is to use the likelihood ratio test: twice the difference between

log-likelihood for the two models is tested against a χ2
k distribution, where k is the

difference between the degrees of freedom in the two models [108]. For non-nested

models, or models which are nested but with a parameter in the nested model fixed

at a boundary value of the containing model, the asymptotic distribution of the like-

lihood ratio will not in general be χ2
k (e.g. see [109] for discussion of significance for

specified nested models with parameters of the nested model fixed on the bound-

ary of the containing model). A straightforward alternative method for comparison

of support for any two models with different numbers of parameters (i.e. different

model complexity) is to compare an adjusted-R2 statistic, such that the goodness-

of-fit of a model is penalized for model complexity. In particular, an adjusted-R2

statistic is used in the subsequent chapter to compare two models, M1: constant

mRNA decay rate (Eqn. 3.4), and M2: an instantaneous change in mRNA decay rate

(Eqn. 3.14) during the timecourse; in this case, model M1 is nested in model M2

with tswitch ∈ {t0, tmax}.

3.4 Discussion

This chapter has described previous approaches to modelling mRNA abundance

as a function of transcription rate and mRNA degradation, and has presented a

simple model-based, analytical approach towards understanding the contribution

of transcriptional and post-transcriptional control of mRNA levels. As the number

of timepoints and the time resolution feasible in microarray experiments increases,

the application and limitations of a model-based approach has increasing relevance

for experimental design. The range of possible values of absolute mRNA abundance

and transcription rate – which are unknown in microarray studies – can affect the

interpretation of measured changes in mRNA abundance and transcription rate.
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The unknown scaling between mRNA abundance and transcription rate should

therefore not be ignored when modelling mRNA abundance and turnover using

microarray measurements. Additional (nuisance) parameters are introduced which

are necessary to account for the unknown scaling of relative transcription rates and

relative abundance resulting from the use of microarray measurements.

I have presented a model-based approach to address whether observed changes

in mRNA abundance can be explained by the observed transcription rate profile

assuming a constant first-order mRNA degradation model, or assuming alternative

models of mRNA degradation. It is clear that some classes of mRNA abundance

response are consistent with constant first-order degradation under many possible

parameter values, so that precise estimates of kinetic parameters cannot generally be

obtained using the approach described here. Nevertheless, some classes of mRNA

abundance response may be better explained by an alternative model of mRNA

degradation. In the general case of comparing non-nested models, an adjusted-R2

statistic is a simple and convenient criterion for identifying genes which are better

explained by an alternative degradation model and can be used to compare global

optimal goodness-of-fit for each considered model.

Cao and Parker [93] built a multicompartment model of the transcription and decay

of a single mRNA species, incorporating 21 kinetic parameters which are estimated

from measurements or adjusted to fit observations. While this approach can be used

to explain an observed timecourse of mRNA levels, kinetic data for intermediate

steps in mRNA metabolism is not yet available on a genome-wide scale.
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Chapter 4

Regulation of mRNA stability in
response to oxidative stress in
Schizosaccharomyces pombe

Current approaches to modelling gene regulation networks have focused on regu-

lated transcriptional control by DNA-binding transcription factors. However, there

are additional layers of transcriptional and post-transcriptional regulation that af-

fect gene expression As discussed in Chapter 3, there is a growing body of evidence

that the regulation of mRNA stability contributes to the dynamics of the gene ex-

pression response. The rate of loss or accumulation of mRNA changes in response

to environmental stress.

In this chapter, I investigate the contribution of transcription rate and mRNA degra-

dation to mRNA abundance in response to oxidative stress in the fission yeast Schizosac-

charomyces pombe. A kinetic model of mRNA abundance is defined and fitted to

simultaneous microarray timecourses measuring changes in transcription rate and

mRNA abundance. Genes are identified for which the observed mRNA abundance

response is better explained by a stabilization or destabilization event during the

stress response than by a constant mRNA degradation rate. Candidate genes are

identified for regulated mRNA stability at two stages in the early oxidative stress

response: a rapid change in mRNA stability at the onset of stress, and a delayed

change in mRNA stability some time after the induction of a stress response.
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4.1 Introduction

4.1.1 Oxidative stress response to hydrogen peroxide

This section introduces some of the transcriptional and post-transcriptional pro-

cesses involved in regulating gene expression in response to environmental stress.

In S. pombe, the magnitude of mRNA induction or repression, duration of the stress

response, and the contribution of distinct stress-response pathways are finely tuned

to specific stressors, and to stress severity or dosage [110]. Yeast cells must bal-

ance growth and proliferation with protection from environmental perturbations.

The response to an abrupt environmental stress includes repressing genes related to

growth and inducing stress-related genes. Most stress-induced and stress-repressed

genes eventually return to a steady-state in which mRNA abundance is close to

that of the unstressed cell, even in persistent stress conditions [74]. Bähler and co-

workers defined a core environmental stress response (CESR) involving hundreds

of genes in S. pombe [111]. The CESR is common to many stress conditions and is

conserved in S. cerevisiae. Stress-induced genes in the CESR include genes involved

in carbohydrate metabolism and energy generation whereas stress-repressed genes

in the CESR are related to growth, including ribosome biogenesis and translation.

Lopez-Maury and co-authors [112] have noted that hundreds of genes are induced

in response to many specific stressors but few of these genes appear to have specific

functional relevance to the stress; a widespread general stress response may protect

the cell from several potentially co-occuring environmental stresses or from a per-

turbation which has not previously been encountered by the organism, or may be

the result of evolutionary drift or widespread transcriptional regulation by a small

number of key regulators.

Stress responses in S. pombe are primarily regulated at the transcriptional level,

and the genome-wide stress response is most completely understood at the level

of changes in mRNA abundance (e.g. [113, 111, 110, 114]). The transcription fac-

tors Pap1, Prr1, Hsr1 and Atf1, and the mitogen-activated protein kinase Sty1, have

56
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been shown to be involved in the regulation of subsets of genes which are induced

or repressed at the level of mRNA abundance in response to oxidative stress.

Post-transcriptional processes involved in controlling the abundance of growth-related

and stress-related proteins during a stress response include the regulation of trans-

lation, subcellular localization of transcripts, and mRNA stability. Translation of

growth-related transcipts and most other transcripts is inhibited in reponse to stress

via phosphorylation of the eukaryotic translation initiation factor eIF2 [115, 116]. A

subset of stress-induced transcripts in S. cerevisiae, including the transcriptional ac-

tivator Gcn4, escape translational repression. Protection from translational repres-

sion has been associated with the presence of translation regulatory regions in the

5’ UTR [116]. Subcellular localization may also play a role in the rapid control of

mRNA degradation and translation in response to stress. In S. cerevisiae and other

eukaryotes, transcripts can rapidly be stored in P-body protein assemblies. Tran-

scripts which are not required for translation may be degraded as part of a P-body

assembly or may be stored and later released for translation [117]. For example,

translational repression has been associated with transcript stabilization in response

to stresses affecting the endoplasmic reticulum in human cell lines [118], suggesting

a complex interplay between post-transcriptional processes in response to stress.

An altered mRNA stability in response to stress has been reported for individual

genes. The mRNA of S. pombe transcription factor Atf1, a transcriptional regula-

tor of the core environmental stress response, has been shown to stabilize in ox-

idative stress conditions, contributing to the rapid accumulation of Atf1 transcripts

[119, 120]. Recent studies suggest that the control of mRNA stability on a genome-

wide scale contributes to the regulation of gene expression in response to stress, as

discussed in Chapter 3.

Post-transcriptional processing of eukaryotic mRNA, including nuclear export, trans-

lation, cytoplasmic location, and mRNA stability, is mediated by RNA-binding pro-

teins [121] and in higher eukaryotes by the binding of small regulatory RNAs. Tar-
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get specificity of RNA-binding proteins is determined by mRNA sequence and sec-

ondary structure. Small non-coding RNAs are thought to bind to mRNA by com-

plementary or near-complementary base pairing to the target region, although the

structure of target mRNA also affects miRNA binding affinity [122]. In higher eu-

karyotes, siRNAs and miRNAs play a role in the active degradation of mRNA tran-

scripts by binding to the target transcript [27]. While the siRNA pathway is active

in S. pombe (reviewed in [123]), the existence of miRNAs in S. pombe is unproven and

it is not known whether miRNAs are involved in regulating mRNA stability in S.

pombe. It is not yet clear whether the absence of a Drosha homologue in S. pombe

is indicative of the absence of an miRNA biogenesis pathway in S. pombe [124].

If regulated mRNA stability is mediated by RNA-binding proteins or small non-

coding RNAs, targeted mRNA transcripts may share sequence motifs or combined

sequence-structure signatures [125].

4.1.2 Study aims

The aim of this study was to identify candidate genes for regulated mRNA sta-

bility in response to oxidative stress by hydrogen peroxide, using simultaneous

timecourses of changes in transcription rate by RNA polymerase II and changes

in mRNA abundance:

Aim. Determine whether there is a group of genes with a change in mRNA stability

during an oxidative stress response.

Data. Timecourse of two simultaneous measurements: (i) change in RNA abun-

dance, measured by two-channel cDNA microarrays; and (ii) change in transcrip-

tion rate, estimated by RNA polymerase II (RNA Pol II) occupancy and measured

using RNA Pol II ChIP-chip on the same two-channel array design.

Approach. The kinetics of mRNA abundance were investigated during the first 120

minutes of an oxidative stress response in S. pombe. I investigated whether, amongst

all genes with a transcriptional or mRNA abundance response to oxidative stress,
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there are:

(i) genes consistent with constant mRNA stability throughout the stress response

(i.e. the response in mRNA abundance can be explained by observed changes

in the transcription rate);

(ii) genes with a change in mRNA stability at some time during the stress re-

sponse; and/or

(iii) genes with an immediate rapid change in mRNA stability at the point of stress

induction.

4.2 Datasets: transcription arrays and expression arrays

In collaboration with Samuel Marguerat and Jürg Bähler in the Fission Yeast Ge-

nomics Group at the Wellcome Trust Sanger Institute, we obtained simultaneous

timecourse measurements from RNA polymerase II ChIP-chip and mRNA abun-

dance. All wet-lab work was performed by Samuel Marguerat.

4.2.1 Experimental procedure

S. pombe cells growing at exponential phase were subjected to oxidative stress using

0.5mM hydrogen peroxide (H2O2). RNA and ChIP samples were harvested imme-

diately before stress induction and 11 further samples were harvested after stress

induction. Samples were taken at approximately t = 0, 5, 10, 15, 20, 25, 30, 40, 50,

60, 90, 120 minutes. RNA samples were hybridised on arrays with pooled RNA as

a reference. RNA Pol II ChIP samples were hybridised with the respective genomic

input DNA as the reference sample.
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4.2.2 Data preprocessing

The microarrays (arrays) used in this study were custom two-channel cDNA arrays

(see Chapter 1, page 7). Raw intensity datasets from each array were processed

using a normalization script designed for use with these arrays. Features are spot-

ted in duplicate or more on the arrays. Each array was normalized separately. As

described in Lyne et al. (2003) [33], signal variation on these arrays tends not to be re-

lated to signal intensity, but tends to show marked spatial effects. The within-array

normalization used to preprocess raw intensity data from these arrays is therefore

designed to correct for spatial intensity variation. Local normalization of ratio val-

ues is carried out within a sliding window on the array. A scaling factor is calculated

for each window such that the median channel intensity ratio amongst spots within

each sliding window on the array is 1, and used to correct the channel intensity

ratio of the central spot. Quality flags are set for each spot on each array; in this

study, spots flagged other that ”P” (pass) were considered to be low quality and

were discarded. mRNA abundance and RNA Pol II profiles for each gene were cal-

culated as the mean of ratio values from replicate spots, after discarding spots with

missing data (quality flag not ”P”) on one or more of the arrays. Any features for

which fewer than two spot replicates had complete data for all timepoints (quality

flag ”P” on all arrays) were considered to have incomplete data and were discarded

from further analysis. To display relative changes along the timecourse and to per-

form cluster analysis, each profile (mRNA abundance or RNA Pol II occupancy)

was divided by the profile value at the first timepoint (t = 0). To fit the mRNA

degradation models, all expression and transcription profiles were brought onto a

similar scale by dividing each profile value by the mean of that profile. (Note that

this rescaling is absorbed by constants A′, B′ which will be introduced to take ac-

count of an unknown scaling between measured changes in mRNA abundance and

in transcription rate).
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4.2.3 RNA polymerase II occupancy and transcription rate

The timecourse of RNA polymerase II ChIP-chip arrays measures changes in RNA

polymerase II occupancy during the first 0 - 120 minutes of the stress response. RNA

polymerase II transcribes eukaryotic protein-coding genes. Other polymerase en-

zymes transcribe ribosomal genes, transfer RNA, and mitochondrial genes. Follow-

ing the recruitment of RNA polymerase II to the promoter and initiation of tran-

scription, the polymerase traverses the gene resulting in elongation of the nascent

transcript. An increase (decrease) in the transcription rate is typically mediated by

an increase (decrease) in transcription initiation and a corresponding increase (de-

crease) in RNA polymerase II density along a transcribed gene. Regulation of the

rate of transcript elongation has been observed in vivo, including RNA polymerase

stalling, transient reversal of the direction of travel, and differential regulation of the

rate of transcriptional elongation between exons.

We assumed that the transcription rate is predominantly regulated by transcrip-

tion initiation. We assumed that measured fold-changes in RNA polymerase II oc-

cupancy using a timecourse of RNA polymerase ChIP-chip arrays correspond to

fold-changes of a similar magnitude in the rate of transcript production. Under

this assumption, the measured fold-changes should be taken as estimates of fold-

change in the rate of transcript production by RNA polymerase II (‘transcription

rate’). The microarray probes had been designed to match to the 3’ end of the tran-

script. Stalled transcription resulting in shortened transcripts is therefore assumed

to have negligible impact on detected transcripts1. In addition, the effect of stochas-

tic RNA polymerase stalling within an individual cell is assumed to have negligible

effect on transcripts taken from a population of cells.

The terms ‘RNA polymerase II (RNA Pol II) occupancy’ and ‘transcription rate’ are

used interchangably throughout the rest of this chapter.

1mRNA is transcribed starting with 5’ end of the nascent transcript
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4.3 Methods

4.3.1 Overview of methods

This study models the observed mRNA abundance over time assuming specified

models of mRNA degradation. Each model was fitted to observed changes in tran-

scription rate and mRNA abundance, independently for each gene with complete

data on the array. Genes were assigned to one of the specified models using a

goodness-of-fit criterion. The genes within each model group were then clustered by

mRNA abundance profile or by concatenated transcription rate and mRNA abun-

dance profiles. Cluster analysis identified groups of genes with similar transcription

rate and mRNA abundance behaviours within some of the model groups, and was

used in place of a fold-change cutoff to identify groups of genes with high amplitude

responses which are candidates for response to stress in mRNA abundance and/or

transcription rate. Gene clusters were analysed for Gene Ontology term enrichment

(see page 13), and putative stabilized and destabilized gene clusters were tested

for overrepresentation of sequence motifs which may indicate specific binding of

mRNA by RNA-binding proteins or small non-coding RNAs.

4.3.2 Modelling mRNA degradation during the stress response

Using a timecourse of transcription rate and mRNA abundance it is possible to in-

vestigate whether the dataset supports a model of first-order mRNA degradation

at a constant decay rate throughout the timecourse, and whether there are groups

of genes which are better explained by an alternative model of mRNA degradation

(for details see Chapter 3, Section 3). First, it is necessary to define the models of

mRNA degradation to be compared. Two phases of mRNA stability regulation are

of interest: (i) Is there a rapid change in the stability of some mRNA species, either

stabilization or destabilization of mRNA, at the start of the stress response? (ii) Is

mRNA stability regulated at a later time in the stress response, as the cell adapts to
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oxidative stress?

The gene expression response generally peaks in mRNA abundance towards the

end of the timecourse and the cells do not recover to a pre-stress state in either tran-

scription rate or mRNA abundance (Figure 4.1). Genes which are highly induced

or repressed during this timecourse show a marked gain/loss of mRNA within 60

mins and maintain an elevated or reduced level of abundance up to 120 minutes.

There is no evidence that the cells enter a final recovery phase in the 120 minutes

of this timecourse, during which we would expect to see a decrease in the mRNA

abundance of all highly-induced stress response genes. Figure 4.1 also indicates that

there are several groups of genes which peak in mRNA accumulation or mRNA loss

at different times, indicating that this dataset captures several gene expression be-

haviours during the early stress response. I therefore focused on identifying the

strongest candidates for regulated mRNA stability in these early stages of the stress

response, before the cells enter a final recovery phase which would return the cells

to a pre-stress state.

In Chapter 3, three examples of mRNA degradation models were presented (Figure

3.1, page 50). In the present study, degradation of mRNA during the stress response

was considered under two of those models:

(i) exponential decay, characterized by a steady decay rate constant, k, through-

out the stress response (Figure 3.1A); and

(ii) piecewise exponential decay, characterized by a single instantaneous change

in the decay rate constant (k1 → k2) at a specific (unknown) time after stress

induction (Figure 3.1B).

Both models are consistent with an additional rapid change in mRNA stability at

the point of stress induction (or within the first few minutes of the stress response,

due to the time resolution of the dataset).

For each gene, we would tentatively select the model of a change in degradation rate

63



4.3. METHODS

Figure 4.1: Heatmap showing the relative changes in RNA polymerase II occupancy
and mRNA expression levels compared to the first timepoint for the 50% most vari-
able genes. The heatmap shows that the cells do not recover to pre-stress mRNA
levels during this timecourse: genes highly induced (repressed) in response to the
stress tend to maintain a high (low) level of mRNA abundance at 120 mins. Shown
are the 50% of genes with the highest standard deviation across transcription and
expression profiles (1940 genes amongst the 3881 features with complete data). Plot-
ted values are log2 channel intensity ratios relative to time t=0 (immediately before
stress induction).
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if adjusted-R2 is larger for that model than for first-order degradation at a constant

rate throughout the timecourse. Additional criteria were imposed, however, in or-

der to identify only a conservative set of genes as candidates for regulated stability

during the stress response: the detected change in degradation rate must be large

enough; the time of the change in stability must be supported by datapoints, so must

not be at the extremes of the timecourse; and genes which are already explained by

a good fit to a constant degradation rate are not considered for improvement by a

change in stability. Therefore a change in the first-order degradation rate was se-

lected over the constant first-order degradation model only if:

• adjR2 is larger for a change in degradation rate than for the constant decay

rate;

• there is a good fit to the change in degradation rate (adjR2 > 0.6);

• adjR2 < 0.9 for the constant degradation rate, so that a good fit to unregulated

stability is always selected;

• the change in degradation rate at time tswitch, from kinitial to k f inal, is greater

than a threshold value;

• tswitch, the time of the change from kinitial to k f inal, is between 12 mins and 60

mins so that there are at least three measured timepoints in each regime.

Thresholds were chosen for the smallest permissible detected change in degradation

rates ( kinitial
k f inal

< 1.4 is discarded), and for defining a good fit to a constant degradation

rate, above which we do not allow the fit to be improved by a change of stability

(adjR2 > 0.9). These thresholds were chosen following visual inspection of all model

fits. Examples of model fits for two genes are shown in Figures 4.2 and 4.3.
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Figure 4.2: mRNA abundance for gene SPC428.15 is better explained by step-
function decay (adjR2 = 0.997) (bottom) than by a constant decay rate (adjR2 = 0.89)
(top). Transcription rate is shown on the left, mRNA abundance on the right of each
plot. Fitted expression profiles yi are shown in green. For step-function decay, tswitch
is shown as vertical red line. A. constant decay with A = 0; B. constant decay with
A ≥ 0; C. step-function decay with A = 0; D. step-function decay with A ≥ 0. adjR2

= 0.895, 0.498, 0.996, 0.997, respectively.
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Figure 4.3: Constant decay rate is a good fit for gene cdc18 (adjR2 = 0.97) so the
step-function model (adjR2 = 0.97) is not selected over the constant decay model. A.
constant decay with A = 0; B. constant decay with A ≥ 0; C. step-function decay
with A = 0; D. step-function decay with A ≥ 0.
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4.3.3 Model fitting

For a given model of decay rate k(t), the model solution for y(t) was fitted to the

12 measured values of y(t), f (t), independently for each gene. Parameters were

sought to minimise ∑t12
i=t1

(yi − ŷi)
2, where yi, ŷi are observed and fitted values of

y(t), respectively. Integration was performed with an adaptive quadrature method

implemented in the R function integrate [78, 126] using linear interpolation of f (t)

implemented in the R function approx [78]. Minimization was performed using

Powell’s UObyQA optimization method implemented in the R package powell [78,

127]. The maximum number of iterations for each model fit was set to maxit= 10000

[127].

Goodness-of-fit

For each model fit, the goodness-of-fit was assessed using an adjusted R2 statistic

which penalizes models with more parameters:

adjusted R2 = 1−
(

1− R2
) (n− 1)

(n− p− 1)
(4.1)

where

R2 = 1− SSerr

SStotal
= 1− ∑(yi − ŷi)2

∑(yi − ȳi)2 ; (4.2)

n = 12, the number of timepoints; and p + 1 = #params, the number of parameters

in the model.

Initial values

The initial values used to fit the constant first-order decay model are { A = 1, B = 1,

C = 1, k = 1
30 min−1 }. Randomly selected initial values were also tested for a subset

of array features and resulted in similar reported optimal values, suggesting that

this optimization procedure together with the stated initial values are likely to find

global optima for this dataset.

The initial values used to fit the piecewise constant decay model are { A = 1, B = 1,
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k1 = 1
30 min−1, k2 = 1

30 min−1 , D = 1 }. Tests with randomly selected initial values

for tswitch showed that the reported optimal values were sensitive to the initial value

of tswitch, indicating that the optimization procedure terminates in local optima. Val-

ues for the parameter tswitch were therefore searched by setting tswitch to a series of

initial values at 5 min intervals (t = 0, 5, ..., 120mins) and selecting the optimum

over all initial conditions.

Parameter constraints

Parameters in all models were constrained as follows:

• A ≥ 0 : the transcription rate term must be non-negative

• k, k1, k2 ≥ 0 : the decay rate constant must be non-negative

• B, C, D unconstrained

Exact sampling times were used to fit the models, with timepoints t = 0, 6.78, 11.72,

16.67, 21.67, 26.75, 31.67, 41.85, 51.95, 61.95, 93.00, 111.78 mins corresponding to the

time after H2O2 treatment at which each sample extract was frozen.

Fitting exponential solutions of mRNA abundance

Exponential approach or decay (E(t) = a + be−kt) is a possible solution for mRNA

abundance regardless of the transcription rate profile. Therefore, both the constant

decay rate model and the piecewise constant decay rate model were fitted for two

cases: (i) with A ≥ 0, and (ii) with A = 0. This ensured that where an expres-

sion profile could be explained solely by exponential approach to a new steady

state (or piecewise exponential approach in the case of the piecewise constant de-

cay model), this fit was found explicitly. An adjusted-R2 value was calculated to

measure goodness-of-fit for both the A = 0 model fit and the A ≥ 0 model fit (us-

ing the appropriate degrees of freedom). The best fit for each of the constant decay

model and the piecewise constant decay model was chosen as the optimal fit out

of the A = 0 and A ≥ 0 model fits. When performing model selection between the
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constant decay rate model and the piecewise constant decay rate model, if the piece-

wise constant model was rejected based on the optimal (A = 0 or A ≥ 0) fit due to

the additional criteria for selection, then the other (A ≥ 0 or A = 0) fit was tested.

The model of piecewise constant decay rate was rejected only if both the (A = 0)

and (A ≥ 0) model fits were rejected.

4.3.4 Array features with complete data and model fits

Array features were reported using custom gene IDs. Custom gene IDs were mapped

to S. pombe systematic gene IDs using a custom mapping provided by Samuel Mar-

guerat2.

Of the 5434 features represented on the array, 3881 features had complete data (qual-

ity flag ”P”) for at least two spot replicates at all timepoints, in both the expression

and RNA polymerase II ChIP-chip timecourses. The degradation models were fit-

ted only to the 3881 features with complete data. No other filtering was performed

at this stage: the degradation models were fitted for all features with complete data,

regardless of the magnitude of the response in either mRNA abundance or RNA Pol

II occupancy. For 214 features, the model fitting failed to return an optimal set of

parameter values for at least one of the models, using the stated initial conditions

and maximum iteration number.

Model fits for all considered models were returned for the remaining 3667 array fea-

tures using the optimization method and initial values described above. Of these,

340 features reported adjusted R2 < 0.6 for all models and were therefore considered

not to be explained by either of the two degradation models based on a parameter

search using the stated initial conditions. 3327 array features reported a good fit

(adjR2 > 0.6) for at least one of the degradation models, of which 69 features were

discarded because the custom probe identifier on the array did not map to a system-

atic gene ID. The remaining 3258 array features were considered to be genes which

2Fission Yeast Genomics Group, Wellcome Trust Sanger Institute / UCL
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have good fit (adjR2 > 0.6) to at least one of the models. These 3258 genes were

used in the model selection and the cluster analysis.

4.3.5 Clustering timecourse data using Bayesian hierarchical clus-
tering

Clustering of the timecourse data was performed using SplineCluster (Heard et al.

[128, 129]), a model-based Bayesian agglomerative clustering algorithm suitable for

identifying homogeneous clusters of genes within a nonuniformly sampled time-

course. A detailed description is given in reference [129]. Briefly, genes are parti-

tioned into C groups. For gene g in group k (k ∈ 1...C), the timecourse data ygt at

time t ∈ (t1, ..., tT) is modelled as

ygt = Xgbk + εgt ; Var(εgt) = σ2
k (4.3)

The vector of coefficients bk and the error variance εk are specific to group Ck. Ran-

dom errors εgt are assumed to form an independent identically distributed Gaus-

sian sequence. The design matrix Xg contains the basis function representation of

the timecourse dataset. Linear spline basis functions were used, giving a continuous

piecewise linear model for yg(t). Prior precision for the b coefficients (1/σ2
k ) was set

to 10−7 for this dataset.

4.3.6 Sequence searches for short word occurence bias and RNA
sequence/structure motifs

RNA-binding proteins mediate diverse post-transcriptional processes in eukaryotic

cells, including mRNA degradation involving ARE-binding proteins. In Arabidopsis,

Mus musculus and Drosophila, miRNA seed regions ≈4-7 base pairs in length bind

to target mRNA with perfect or near-perfect complementary base pairing. Selected

gene lists were searched for occurence bias of short words which may indicate tar-

geted binding by small regulatory RNAs, using the software Sylamer [130].
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mRNA transcript sequences

Spliced transcript sequences were obtained for all S. pombe genes which have an an-

notated protein coding sequence (CDS) in GeneDB3. The chromosomal location and

strand origin of exons were obtained from GeneDB and spliced transcript sequences

were reconstructed from the corresponding S. pombe genome sequence. Annotated

UTR lengths are available for 397 genes (5’ UTR) / 759 genes (3’ UTR) and a re-

cent study reported condition-specific UTR length estimates for the majority of S.

pombe genes using high-resolution tiling array hybridizations and RNA-Seq cDNA

sequencing [50]. Reported UTR length distributions are shown in Figure 4.4. I con-

sidered three definitions of UTR length in order to obtain full-length spliced tran-

script sequences: (i) annotated UTR lengths (GeneDB), (ii) per-gene median of UTR

length estimates from all condition-specific hybridization and RNA-Seq measure-

ments, (iii) 500 base pairs 3’ and 5’ of the protein coding sequence.

Short word occurence bias: Sylamer

A short word enrichment tool, Sylamer [130], was used to search for enrichment

and depletion of 6-mers amongst spliced transcripts of selected gene lists. Sylamer

searches for biases in short word occurence amongst incremental subsets of a gene

list compared to a given sequence background. For fixed word lengh k, cumulative

raw hypergeometric p-values are reported for each k-mer and displayed as p-value

landscapes. Composition bias in the sequence background was corrected using a

Markov correction (for specified m < 6) to estimate the expected frequency of 6-

mers given observed occurences of all m-mers. Sylamer p-value landscapes were

generated for all possible 6-mers amongst selected subsets of the S. pombe genome

(m = 4, incremental step size = 1). The sequence background was taken to be all

S. pombe genes with a GeneDB annotated protein coding sequence. Selected gene

lists were tested for 6-mer occurence bias compared with the three sequence back-

3S. pombe chromosomal sequences and exon coordinates were downloaded from GeneDB
(http://www.genedb.org/genedb/pombe/index.jsp) on 29 April 2009. GeneDB annotated UTR
lengths were taken from Wilhelm et al. (2008) [50]
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grounds corresponding to the three UTR length definitions.
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Length of 5' UTR and 3' UTR (based on Wilhelm et al. 2008)

Short name Brief description
seq RNA-Seq high throughput cDNA sequencing
hyb High-density tiling array hybridization
YE / MM Exponential growth (yeast extract / minimal medium)
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Figure 4.4: Boxplots of 5’ and 3’ UTR length distributions in S. pombe, detected un-
der different conditions and platforms as reported by Wilhelm et al. (2008) [50]. The
number of genes for which UTR annotation is reported is shown above each condi-
tion. Shown in green are the length distributions of previously annotated 5’ and 3’
UTRs. 74
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4.4 Results

Table 4.1 summarizes the groups of genes identified as a result of data selection and

model selection. The following sections describe the results of model fitting, cluster

analysis, and sequence analysis.

4.4.1 Genome-wide fits of first-order mRNA degradation

Firstly, to what extent does a first-order degradation model explain the observed

mRNA expression profiles during the first 120 minutes of the stress response? In

this model the mRNA stability is assumed to be constant during the stress response

timecourse, but note that this does not exclude a rapid change in mRNA stability to

a new constant degradation rate at the onset of stress. Figure 4.5 displays fitted R2

measurements for the first-order mRNA degradation model (Eqn. 3.4; goodness-of-

fit to (A ≥ 0) is shown). For most genes, an assumption of constant decay rate is a

good fit to the observed mRNA abundance profile given the observed transcription

rate profile. This is not the case for a random assignment of observed transcription

rate profiles to observed mRNA abundance profiles (top right panel of Figure 4.5).

The same model fits are shown following one random permutation of transcription

rate profiles which breaks the association between transcription rate profiles and

mRNA abundance profiles. There is a higher density mass in the range R2 < 0.6 in

the random permutation of transcription rate-mRNA abundance association than

in true association. The density peak close to R2 = 1 in the permuted case includes

mRNA abundance profiles which are good fits to purely exponential behaviour, and

which are therefore unaffected by permuting the transcription profile assignments.

Randomizing the association between transcription rate profiles and mRNA abun-

dance profiles causes a loss of fit to a first-order mRNA degradation model. This

observation confirms that a first-order degradation is a useful initial model for mod-

elling the observed mRNA abundance and transcription rate profiles in this dataset.

The first-order degradation model is able to explain mRNA abundance behaviour in
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Table 4.1: Tables summarizing the results of data selection (A) and model selection
(B). Model selection was used to identify genes with a putative stabilization event,
putative destabilization event, and constant mRNA decay rate during the observed
timecourse. Cluster analysis was subsequently applied to each group, in order to
identify genes with similar mRNA abundance or transcription rate profiles within
each group.

A. Data selection:
5434 features represented on the array

1553 features with incomplete data
3881 features with complete data

214 features with incomplete model fit results
3667 features with complete model fit results

340 features adjR2 < 0.6 for all models
3327 features adjR2 > 0.6 for at least one model

69 features do not map to a systematic gene ID
3258 genes with systematic identifiers

↪→ Model selection and cluster analysis

B. Model selection and cluster analysis:
3258 genes considered for model selection

873 genes better fit by single instantaneous change in mRNA decay rate
than by constant decay rate throughout timecourse

433 genes with putative destabilization event
↪→ Cluster analysis

440 genes with putative stabilization event
↪→ Cluster analysis

2385 genes with good fit to constant mRNA decay, not better fit by sin-
gle instantaneous change in mRNA decay rate

↪→ Cluster analysis
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Figure 4.5: Goodness-of-fit (R2) of a first-order mRNA degradation model (Eqn. 3.4;
A ≥ 0) to observed expression and transcription rate profiles. Top: array features
with complete data; bottom: the 50% of array features with the highest fold change
in expression values. Right hand side: transcription profiles are randomly assigned
to expression profiles. R2 values which are less than 0 are placed in the first bin.
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this dataset that is lost after randomization of transcription rate-mRNA abundance

associations.

4.4.2 Evidence of putative regulated mRNA stability 12-60 mins
after stress induction

There are a number of genes for which a piecewise constant mRNA stability ap-

pears to be a better fit than a constant mRNA stability throughout the response, as

shown in Figure 4.6. Each gene was therefore classified according to whether the

observed expression profile was better explained by a model allowing an instanta-

neous change in mRNA stability during the stress response than by a model with

a contant decay rate. Each class – constant mRNA stability or piecewise constant

mRNA stability – was then examined to identify genes which are highly induced

or repressed in response to stress. I also investigated the genes in each class for

evidence of an additional change in stability at the start of the stress response.

An observed mRNA abundance profile was considered to be better explained by

a change in stability during the timecourse than by constant stability during the

timecourse if the following thresholds were satisfied:

• adjusted-R2 greater for a change in stability than for constant stability,

• adjusted=R2 > 0.6 for a change in stability,

• adjusted-R2 < 0.9 for constant stability

• kinitial
k f inal

> 1.4 or
k f inal
kinitial

> 1.4

• tswitch between 12 mins and 60 mins.

873 genes were classified as being better explained by single change in mRNA decay

rate 12-60 mins into the stress response than by a constant decay rate throughout

the response. Of these, 433 genes showed a putative destabilization (kinitial < k f inal),

and 440 genes showed a putative stabilization (kinitial > k f inal).
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Figure 4.6: Improvement in R2 values between the two models of mRNA degra-
dation (first-order degradation (”constant”) or piecewise first-order degradation
(”piecewise constant”). This plot indicates that for a number of genes there is an
apparent improvement in goodness-of-fit by adopting a piecewise constant model
over a constant model. Shown are R2 values for the maximum of (A = 0) and
(A ≥ 0) fits (see Model fitting). An adjusted-R2 value was used to classify genes
according to goodness-of-fit (see Methods).

mRNA abundance profiles of putative destabilized genes and of putative stabilized

genes were clustered in order to identify groups of genes with similar mRNA abun-

dance behaviour. Clustered mRNA abundance profiles for putative destabilized

and stabilized mRNAs are shown in Figures 4.7, 4.9 respectively. Several clusters

represent groups of genes with low fold change in both abundance and transcrip-

tion rate throughout the timecourse; these clusters represent genes with low or no

response to oxidative stress and trends in these clusters may be technical rather than

biological in origin.

Clusters 6, 7 and 8 of the putative destabilized genes (outlined in red in Figure 4.7)

display a delayed decrease in mRNA abundance approximately 15 to 40 minutes af-

ter the induction of the stress response (t=0). Of these, clusters 6 and 8 are enriched

for genes involved in ribosome biogenesis and assembly (Table 4.2). There is no co-

herent detected change in transcription rate for the genes in Clusters 6 and 8 (Figure

4.8) which suggests that the observed delayed decrease in mRNA abundance may
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Table 4.2: GO term enrichment (biological process) for selected clusters of genes
with putative mRNA destabilization 12-60 mins after stress induction. p-values cal-
culated using Fisher’s exact test with a FDR correction at α = 0.05

Cluster Enriched GO terms % of cluster (%
of genome) an-
notated

p-value

Cluster 6 (18 genes) GO:0042254 (ribosome biogenesis and assembly) 44% (3.7%) p = 1.4× 10−5

Cluster 7 (9 genes) No significant enrichment

Cluster 8 (20 genes) GO:0042254 (ribosome biogenesis and assembly) 70% (3.7%) p = 8.8× 10−3

GO:0016070 (RNA metabolic process) 50% (15%) p < 10−8

be predominantly post-transcriptionally controlled.

4.4.3 First-order mRNA decay during the stress response: evidence
of initial stabilization/destabilization

2385 genes were found to have a good fit to the first-order degradation model (adjusted-

R2 > 0.6) and were not better explained by a change in mRNA stability 12-60 mins

after stress induction. The transcription rate and expression profiles of each of the

2385 genes were concatenated and clustered in order to identify groups of genes

with similar transcription rate or mRNA abundance behaviour. Clustering reveals

distinct stress response behaviours for induced or repressed genes (Figure 4.10). The

amplitude of the transcription rate and mRNA abundance response in each clus-

ter is summarized in Figure 4.11, where the amplitude of the response in a given

cluster is defined as the maximal fold-change observed in the median profile of the

cluster. Gene clusters with the largest amplitude in mRNA abundance tend to also

have the largest amplitude in transcription rate, so that high fold-changes in mRNA

abundance are associated with high fold-changes in transcription rate. However, it

can be seen from Figure 4.11 that there are clusters which have a large amplitude

response in mRNA abundance but a relatively small amplitude response in tran-

scription rate. Clusters 17, 20, 22, and 32 (Figures 4.10 and 4.11) have transcription

rate amplitudes amongst the lowest over all clusters but display a two- to four-fold

change in mRNA abundance during the stress response. Genes in these clusters

are therefore candidates for putative (de-)stabilization early in the stress response.
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Figure 4.7: Putative delayed destabilization. mRNA abundance profiles of genes
with putative destabilized decay rate 12-60 mins after induction of a stress response.
Clustering was performed on log2 normalised ratios relative to the first timepoint
(parameters: prior precision (β) = 10−7). Predicted profiles are shown in blue. Clus-
ters 6, 7, 8 outlined in red show a delayed decrease in mRNA abundance with pre-
dicted fold change >2-fold during the response and are enriched for ribosome bio-
genesis and assembly. Blue lines show predicted mean cluster profiles, inferred
using a spline cluster algorithm (see Methods).
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Figure 4.8: Transcription rate and mRNA abundance profiles of putative destabi-
lized clusters (12-60 mins) which are enriched for ribosome biogenesis and assem-
bly. (Clusters 6 and 8 from Figure 4.7). Colours represent individual genes.
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Figure 4.9: Putative stabilization: clustered mRNA abundance profiles for genes
with a putative stabilized decay rate between 12-60 mins after induction of a stress
response (parameters: prior precision (β) = 10−7). All clusters show either < 2-fold
change in predicted profile during the stress response, or small or incoherent clus-
ters.
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Table 4.3: GO term enrichment (biological process) for selected clusters of genes
with putative mRNA (de-)stabilization early in the stress response. p-values calcu-
lated using Fisher’s exact test with a FDR correction at α = 0.05. Cluster names
correspond to Figures 4.10, 4.11

Cluster Enriched GO terms % of cluster (%
of genome) an-
notated

p-value

Cluster 17 (19 genes) No significant enrichment

Cluster 20 (37 genes) GO:0042254 (ribosome biogenesis and assembly) 70% (3.5%) p < 10−8

GO:0016070 (RNA metabolic process) 59% (15%) p = 3× 10−8

Cluster 22 (64 genes) GO:0042254 (ribosome biogenesis and assembly) 28% (3.5%) p < 10−8

GO:0016070 (RNA metabolic process) 38% (15%) p = 1.4× 10−4

Cluster 32 (52 genes) GO:0006950 (response to stress) 31% (12%) p = 8.6× 10−3

Gene Ontology enrichment analysis shows that Clusters 20 and 22, which are puta-

tive destabilized clusters, are enriched for ribosome biogenesis and assembly (Table

4.3). Similarly, clusters already identified as having a putative change in mRNA de-

cay rate later in the stress response were also enriched for ribosome biogenesis and

assembly (Figure 4.7; Table 4.2). I identified no clusters that have a relatively large

transcription rate amplitude and ia small mRNA abundance amplitude: a high fold-

change in transcription rate is always associated with a high fold-change in mRNA

abundance during the response.
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Figure 4.10: Clusters of genes assigned to first-order mRNA decay model. Tran-
scription rate and mRNA abundance profiles were concatenated and clustered us-
ing a Bayesian hierarchical spline clustering algorithm (see Methods). Red: accu-
mulation or loss of mRNA is detected, but with a comparatively small change in
transcription rate. 85
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Figure 4.11: Cluster amplitudes for genes classified as having first-order mRNA
degradation throughout the stress response. Each point corresponds to the pre-
dicted profile of a cluster. The transcription rate amplitude (y-axis) is plotted against
the abundance amplitude (x-axis), where amplitude is defined as (max − min)) of
the (log2-scale) predicted profile. Circled clusters deviate from the majority of clus-
ters. Cluster 32 shows a high expression amplitude (accumulation of mRNA) but no
change in transcription rate. Clusters 17, 20, 22 show a high expression amplitude
(loss of mRNA) but no change in transcription rate (enriched for ribosome biogen-
esis and assembly). Clusters 27, 28, 29 show a similar expression amplitude (loss of
mRNA) but also show a drop in transcription rate (enriched for ribosomal proteins).
[Transcription rate and mRNA abundance profiles for each cluster are displayed in
Figure 4.10.]
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4.4.4 Dynamics of induction and repression

The preceeding sections explored the mRNA abundance and transcription rate pro-

files observed in response to oxidative stress. Two models of mRNA degradation

were fitted to the observed profiles: first-order mRNA decay, and first-order decay

with a single change in the mRNA decay rate constant. Model selection was per-

formed in order to classify genes according to the most appropriate model. It was

found that a first-order mRNA decay model is able to explain most gene profiles

(adjR2 > 0.6), whereas a subset of highly repressed genes are better explained by

mRNA destabilization 12-60 mins after stress induction. Cluster analysis revealed

that highly repressed gene clusters with immediate or delayed mRNA destabiliza-

tion are enriched for genes with GO annotation related to ribosome biogenesis and

assembly, whereas clusters of highly repressed genes which are also transcription-

ally repressed at the point of stress induction are enriched for ribosomal proteins

(Figure 4.12).

Using a cluster analysis of transcriptionally induced genes, I identified coherent

clusters of transcription rate and mRNA abundance profiles (Figure 4.13). In par-

ticular, genes which display a rapid accumulation of mRNA at the onset of stress

are also rapidly transcriptionally induced at the onset of stress (e.g. Figure 4.13:

Clusters 1, 4, 5). Similarly, mRNA which begins to accumulate later in the stress

response (approximately 20-40 mins after stress induction) is also transcriptionally

induced at approximately the same time (e.g. Figure 4.13: Clusters 2, 10, 15). The

small number of transiently induced or transiently repressed gene clusters in this

dataset also exhibit similar transcription rate and mRNA abundance profiles (e.g.

Figure 4.13: Clusters 11, 19).

Approach to a new steady state

Many highly induced genes appear to reach a final steady state by the end of this

stress response timecourse. For example, the predicted profiles of Clusters 1, 3, 5
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Figure 4.13: Clusters of transcriptionally induced or repressed genes. Clusters from
Figure 4.11 with median fold-change > 2 in transcription rate were reclustered.
Cluster analysis revealed coherent transcription rate and mRNA abundance pro-
files amongst transcriptionally induced genes (priorprecision = 10−7, numberofclusters
= 25).
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and 6 in Figure 4.13 show approximately constant transcription rate and mRNA

abundance for t = 60, 90, 120 minutes. Assuming that highly induced genes are

initially at a steady state of transcription rate and mRNA abundance and that a final

steady state is reached by the end of the timecourse, candidate genes for mRNA (de-

)stabilization can be identified by comparing the fold change in both transcription

rate and mRNA abundance between initial and final steady states. Assuming initial

(I) and final (F) steady states, then transcription rate R, mRNA abundance E, and

decay rate constant k satisfy:

dE
dt

= R− kE = 0 =⇒ kI =
RI

EI
; kF =

RF

EF
;

kI

kF
=

RI/RF

EI/EF
=

τ1
2 F

τ1
2 I

(4.4)

where mRNA halflife τ1
2

is given by τ1
2

= ln(2)/k. Therefore changes in mRNA

halflife can be identified by looking at the ratio of fold-change in transcription rate

between steady states to fold-change in mRNA abundance between steady states.

Cluster 20 (Figure 4.13) has approximately two-fold lower final (’steady-state’) tran-

scription rate compared with the initial (’steady-state’) transcription rate, but ap-

proximately four-fold lower mRNA abundance compared with the initial mRNA

abundance. If Cluster 20 is initially at steady state and reaches a final steady state

then this suggests that mRNA is destabilized in response to stress, with the halflife

approximately halved at the final steady state compared to the initial steady state.

Further experimental evidence is required to demonstrate that the mRNA of these

genes is at steady state in exponentially growing cells immediately prior to stress

induction. Cluster 20 is enriched for genes previously reported to be downregu-

lated in response to oxidative stress, but also enriched for reported periodic genes:

(i) core environmental stress response (57% of cluster (29 genes); 7% rest of genome;

p < 10−8 (FDR α = 0.05); (ii) downregulated in response to oxidative stress [110]

(90% of cluster; 8% rest of genome; p < 10−8 (FDR α = 0.05); (iii) periodic genes

[131] (20% of cluster; 2% rest of genome; p = 0.003 (FDR α = 0.05).
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Evidence of rapid early mRNA stabilization

Exponential approach of mRNA abundance to a new steady state is a solution for

the first-order mRNA decay model (Eqn 3.4) in response to an instantaneous change

in transcription rate or decay rate constant, or both the transcription rate and the

decay rate constant, at the onset of the stress response. Assuming that the mRNA

species is at steady state before stress induction, an instantaneous change in either

the transcription rate or decay rate parameter to a new constant value results in an

exponential approach to a new steady state:

1. An instantaneous change in transcription rate from R0 to R f changes the abun-

dance to approach EF from EI exponentially at a rate determined by k:

E(t) =
1
k

[
RF + (RI − RF)e−kt

]
(4.5)

2. An instantaneous change in mRNA stability from kI to kF changes the abun-

dance to approach EF from EI exponentially at a rate determined by kF:

E(t) = R
[

1
kF

+
(

1
kI
− 1

kF

)
e−kFt

]
(4.6)

3. Simultaneous instantaneous changes in both stability (kI → kF) and transcrip-

tion rate (RI → RF)

E(t) =
RF

kF
+

(
RI

kI
− RF

kF

)
e−kFt (4.7)

Transforming these expressions for use with microarray measurements to account

for arbitrary scaling and shifting between transcription arrays and expression arrays

(Chapter 3, page 48) does not alter the form of the exponential approach solution. In

this timecourse, we identified genes with an exponential approach of mRNA abun-

dance to a new steady state, as a special case of observed mRNA abundance profiles.
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These genes were considered to be candidate genes for rapid initial mRNA (de-

)stabilization and/or change in transcription rate. Observed fold-changes in tran-

scription rate and mRNA abundance between initial and final steady states were

then used to discriminate between candidates for rapidly modulated mRNA stabil-

ity or a solely transcriptional response (Equation 4.4).

The model of exponential approach of mRNA abundance to a new steady state is

identical to the first-order degradation model (Equation 3.4 on page 41) with A=0.

Amongst all genes which were not allocated to the piecewise decay model, 910

genes were found to be best explained (greatest adjusted-R2) by exponential ap-

proach to a new steady state. The mRNA abundance profiles of these genes were

clustered in an attempt to discriminate between biologically informative exponen-

tial approach profiles and genes showing weak trends in mRNA abundance which

were seen amongst the least responsive genes (Figures 4.10 and 4.11). Most of the re-

sulting clusters were discarded due to low fold-change of mRNA abundance. Two

clusters with a combined size of 78 genes had cluster median fold-change greater

than two-fold and were enriched for genes previously reported to be upregulated as

part of the core environmental stress response (89% of gene list; 8% rest of genome;

p < 10−8 (FDR α = 0.05)). Cluster analysis of the transcription rate profiles of these

78 genes revealed three distinct transcription rate behaviours (Figure 4.14):

1. constant transcription rate;

2. rapid moderate increase to new steady transcription rate, approximately two-

fold within 5 minutes of stress induction;

3. rapid large increase to new steady transcription rate, approximately 3- to 16-

fold within 5 minutes of stress induction

To estimate the magnitude of rapid changes in mRNA stability for these 78 genes,

exponential approach solutions were re-fitted4 to provide point estimates of EI
EF

and

4Scaling the transcription rate and mRNA abundance profiles in the original fits means that pa-
rameter estimates other than the decay rate constant are not comparable between genes. For the

92



4.4. RESULTS

RI
RF

. A comparison of estimated ratios of initial steady-state to final steady-state

conditions for transcription rate and mRNA abundance suggests that there may

be widespread rapid mRNA stabilization amongst genes which are rapidly, persis-

tently and highly induced in response to oxidative stress (Figure 4.14C). Rapid sta-

bilization of mRNA may explain the larger observed fold-changes in mRNA abun-

dance than in transcription rate. Atf1 is amongst the 78 selected genes (labelled in

Figure 4.14C); aft1 mRNA has been reported to stabilize in response to oxidative

stress, contributing to rapid mRNA accumulation [119]. Quantitative estimates of a

change in mRNA stability must be treated with caution, however, until the observed

fold-changes in expression have been validated: for example, fold-change in mRNA

abundance for persistently induced genes could be validated using low-throughput

techniques. In addition, estimates of fold-change between the first timepoint and

any combination of subsequent timepoints must be treated with caution because

the first timepoint is not replicated in this study.

4.4.5 Post-transcriptional regulation: searching for transcript se-
quence motifs

Transcript sequences of putatively stabilized or destabilized mRNA were searched

for overrepresentation of short words which may indicate targeted binding by small

regulatory RNAs. Gene lists of putative stabilized or destabilized mRNA were de-

fined by combining previously identified clusters, listed in Table 4.4.

The nucleotide sequences of putative stabilized and destabilized mRNAs were searched

for enrichment of short words which may indicate targeted binding by seed regions

of small regulatory RNAs. An enrichment and depletion search was performed for

all possible 6-mer words (Markov correction = 4) [130] amongst putative stabilized

or destabilized mRNA sequences. The search did not identify any significant en-

special case of exponential approach of mRNA abundance it is of interest to estimate the asymptotic
’steady-state’ of mRNA abundance and the constant final transcription rate in order to estimate the
contribution of rapid mRNA (de-)stabilization. The model y(t) = B + De−kt was therefore re-fitted
to unscaled observed fold-change profiles, fold-change relative to t = 0.
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Figure 4.14: Transcription rate and mRNA abundance profiles of 78 genes with ex-
ponential approach of mRNA abundance. A. Transcription rate (left) and mRNA
abundance. Colours correspond to transcription rate profile clustering (B) as la-
belled. C. Point estimates of fold-change in transcription rate (x-axis, log2) and
mRNA abundance (y-axis, log2) for each gene. EF

EI
estimated as the median of the

transcription rate profile, excluding the first timepoint. RF
RI

estimated as B + D where
mRNA abundance is modelled as y(t) = B + De−kFt. Colours correspond to tran-
scription profile clusters (identified in figures A, B).
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Table 4.4: Gene lists of putative stabilized and destabilized mRNA, selected for use
in sequence searches for short words and sequence motifs.

Gene list Combined clusters # genes

Putative stabilized Cluster 32 (Figure 4.10 115 genesClusters 1, 2, 3 (Figure 4.14)

Putative destabilized Clusters 6, 8 (Figure 4.7) 229 genesClusters 17, 20, 21, 22 (Figure 4.10)
Putative destabilized (delayed) Clusters 6, 8 (Figure 4.7) 38 genes

richment or depletion which could not be explained by the presence of duplicated

genomic sequences in the selected gene list (Figure 4.15). Similar results were ob-

tained for 5-mer and 7-mer words (Markov correction = 3, 5, respectively; Table 4.5).

Amongst putative stabilized mRNAs, several 6-mers were reported to have a sharp

approach to a broad peak (Figure 4.15) but this enrichment was found to correspond

to a group of identical Tf2 transposable elements in the selected gene list. Tf2 trans-

posable elements exist in several copies in the S. pombe genome and the overrepre-

sentation of Tf2 sequences in the selected gene list was detected as sharp increases

to broad peaks in the enrichment p-value landscape for approximately ten 6-mers.

The detected 6-mer ’ACCTAG’, for example, is present in 5 copies in each of the four

Tf2 GeneDB transcripts. All Tf2 transposable elements were subsequently removed

from the gene list (Tf2-1, Tf2-5, Tf2-6, Tf2-7) and the analysis was repeated. No other

enrichment or depletion of short words was found amongst putative stabilized or

destabilized mRNA.

4.5 Discussion

In this study, I investigated whether there is evidence of mRNA stabilization or

destabilization in response to an oxidative stress (0.5mM hydrogen peroxide) ei-

ther immediately at the point of stress or later in the stress response. Simultaneous

timecourse data were obtained from ChIP-chip arrays and expression arrays at 12

timepoints during the first two hours of oxidative stress response in S. pombe. This

experimental design specifically excludes the blocking of transcription, for example
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Figure 4.15: Sylamer landscapes for list of putative stabilized genes, searching for
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ground of annotated complete transcripts (GeneDB coding sequences flanked by
GeneDB annotated 5’/3’ UTRs, if available). Putative stabilized genes are defined
as Cluster 32 (Figure 4.10; 52 genes) and Clusters 1, 2, 3 (Figure 4.14; 27 genes, 33
genes) (duplicate entries removed). Words with the 3 highest and 3 lowest peaks are
highlighted; purple: arbitrary 6-mer word. Left: a sharp increase to a broad peak of
enrichment p-values indicates enrichment of 6-mers in the lower portion of the gene
list. Right: enrichment is lost when Tf2 transposable elements are removed from
the list of putative stabilized genes. The shape and size of the depletion peak for the
word ’CATCTT’ is typical of enrichment/depletion peaks seen in random gene lists
[130]

Table 4.5: Sylamer 6-mer enrichment/depletion search amongst putative stabilized
and destabilized mRNA transcripts, Markov correction = 4. a. UTR lengths taken
to be (1) annotated UTRs (GeneDB), (2) per-gene median UTR length over all con-
ditions (Wilhelm et al. 2008 [50]), (3) 500 base pairs. b. Gene lists (see Table 4.4). c.
Peak log10(enrichment p-value). d. Empirical quantile: proportion of 100 randomly
selected gene lists with higher peak enrichment / lower peak depletion than the
observed peak value.

Version: UTR lengtha Gene listb Peak scorec (high/low) Peak quantiled (high/low)

Annotated (GeneDB)(1)

Putative stabilized 6.49 / -5.56 0.14 / 0.05
– ” – (Tf2 removed) 3.69 / -4.78 0.88 / 0.16
Putative destabilized 4.54 / -4.58 0.48 / 0.26
Destabilized (delayed) 3.94 / -3.48 0.41 / 0.57

Median (conditions)(2)

Putative stabilized 6.82 / -5.98 0.11 / 0.03
– ” – (Tf2 removed) 3.73 / -4.67 0.86 / 0.13
Putative destabilized 4.69 / -4.26 0.40 / 0.55
Destabilized (delayed) 4.32 / -3.79 0.25 / 0.34

500 base pairs(3)

Putative stabilized 5.77 / -4.99 0.12 / 0.08
– ” – (Tf2 removed) 3.61 / -4.28 0.95 / 0.39
Putative destabilized 4.28 / -4.37 0.68 / 0.63
Destabilized (delayed) 3.55 / -3.70 0.82 / 0.57
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by 1,10-phenanthroline or using a heat-shock mutant. Transcription-block studies

allow direct estimation of mRNA decay rates during the period of transcriptional

inhibition, but post-transcriptional processes are not blocked and transcriptional in-

hibition itself causes a compounding stress response [102].

The kinetics of transcription and mRNA decay during the stress response were in-

vestigated by combining two approaches. Firstly, two models of mRNA degrada-

tion were fitted to the observed transcription rate and mRNA abundance profiles:

constant mRNA decay after stress induction (first-order decay), and a single change

in the mRNA decay rate between 12 mins and 60 mins after stress induction (piece-

wise first-order decay).

A conservative list of genes was identified as being better explained by a delayed

change in mRNA stability than by a constant mRNA decay rate after stress induc-

tion, while a model of constant decay rate was found to have good fit to most re-

maining genes. Secondly, genes assigned to each degradation model were clus-

tered (either by mRNA abundance only, or by concatenated transcription rate and

mRNA abundance) to reveal coherent gene clusters with various magnitudes of re-

sponse in transcription rate or mRNA abundance. Most genes are assumed to be

at transcriptional and mRNA abundance steady-state in exponential growth before

stress induction5. Gene clusters which displayed coherent accumulation or loss of

transcripts together with small or incoherent changes in observed transcription rate

(compared to all other clusters) were therefore considered to be candidates for rapid

immediate mRNA stabilization or destabilization.

Alternative models of mRNA degradation are biologically plausible. In the absence

of measurements of absolute quantities of mRNA abundance and transcription rate,

however, models with more parameters become unidentifiable. The models con-

sidered here are not nested so it is not straightforward to use a likelihood ratio test

for model selection [109]. Adjusted-R2 values were used to compare models while

5Exceptions are periodically expressed genes associated with the cell cycle
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penalising models which have more parameters.

Through model selection and subsequent clustering, I obtained a dataset of genes

with coherent transcription rate and mRNA abundance behaviour in reponse to

oxidative stress. Gene clusters were identified which are highly repressed at the

level of mRNA abundance but which display no change in transcription rate. These

genes are therefore candidates for putative mRNA destabilization either rapidly af-

ter stress induction (0-12 mins) or delayed (12-60 mins). Four such clusters are en-

riched for GO term ribosome biogenesis and assembly. In contrast, gene clusters

which showed both highly reduced transcription rate and mRNA abundance are

enriched for ribosomal proteins. This indicates that loss of mRNA of ribosomal pro-

teins is explained in part by a reduction in transcription rate, whereas loss of mRNA

of ribosome biogenesis and assembly factors may be primarily due to rapid (0-12

mins) or delayed (approximately 30 mins) mRNA destabilization. This is consistent

with findings by Grigull et al. [102] in S. cerevisiae that mRNA in the functional cate-

gories of ribosomal RNA biogenesis and ribosome assembly may be destabilized in

response to heat shock, mediated by the mRNA deadenylase component Ccr4.

In this particular stress response timecourse, many genes appear to approach a new

steady state towards the end of the timecourse (120 minutes). Few genes display a

transient response on this timescale. Cluster analysis of genes which are relatively

highly induced in both transcription rate and mRNA abundance revealed clusters

displaying a rapid upregulation of transcription rate to a new steady transcription

rate, and clusters with a delayed (approximately 30 mins) gradual upregulation of

both transcription rate and mRNA abundance. Genes with an exponential approach

of mRNA abundance to an apparent final steady state were analysed as a special

case of transcriptional upregulation in order to estimate the contribution of regu-

lated transcription rate to the mRNA abundance response. Initial and final tran-

scription rate and mRNA abundance were compared. The observed discrepancy

between changes in transcription rate and changes in mRNA abundance amongst

genes which appear to reach a final steady state indicates possible mRNA stabi-
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lization amongst genes which are rapidly and persistently upregulated during the

stress response. This finding is concordant with the findings of Shalem et al. [98] that

genes which are persistently induced are stabilized compared to exponential growth

conditions. However, further studies with a replicated initial timepoint would be

required in order to gain more accurate estimates of transcription rate fold-change

when the transcription rate is upregulated within the first few minutes (and there-

fore captured by a single datapoint in this timecourse), and to verify that initial and

final steady states are in fact reached.

Selected gene clusters of putatively stabilized and putatively destabilized genes

were investigated for evidence of targeted post-transcriptional regulation through

complementary short non-coding RNAs. However, no enrichment of any short nu-

cleotide motifs was found to be overrepresented amongst the sequences of the gene

clusters compared to background sequences. The presence of sequence and struc-

ture motifs in targets of RNA-binding proteins can partly explain the differential

half-lives in a population of mRNA species [100, 101]. It is possible that targeted

binding by RNA-binding proteins also regulates mRNA degradation in response

to environmental conditions. De novo identification of combined sequence and sec-

ondary structure motifs is a challenging computational problem even amongst gene

lists which are know to be targeted by specific RNA-binding proteins [125, 132, 133].

Further work would look at the presence of sequence and secondary structure mo-

tifs and the ability to discriminate selected gene clusters on the basis of secondary

structure motifs, potentially indicating targeted binding.

There could be alternative degradation models that better explain the observed tran-

scription rate and abundance profiles. The complexity of the models which can be

considered is limited by the number of timepoints and the noise in the dataset. In

particular, a rapid change in mRNA stability coupled with an asynchronous stress

response in the cell population may result in observing a progressive change in the

decay rate constant from one steady rate constant to another over a period of several

minutes. Such behaviour may be modelled using a generalized logistic function, for
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example (Figure 3.1). Here I chose to use simple models with a small number of

parameters to avoid overfitting.

A timecourse which includes a full recovery to a pre-stress state may reveal further

phases of the stress response, defined by several changes in transcription rate and

mRNA stability for each mRNA species. This implies a further model of mRNA

degradation in which there are two or more instantaneous changes in mRNA stabil-

ity at different (unknown) times during the stress response. As the number of pa-

rameters in the governing equation for mRNA abundance increases, we encounter

difficulties with parameter inference when attempting to fit a highly parameterized

model to a small number of timepoints.

An assumption of this study is that RNA polymerase II ChIP-chip measurements

are a useful estimate of changes in the RNA polymerase II occupancy of transcribed

regions and therefore of changes in transcription rate. The use of microarray probes

targetting the 3’ end of transcripts and the use of cell populations are assumed to

minimize the impact of polymerase stalling and early transcript termination on the

observed changes in transcription rate. An additional assay, such as the presence

of H3K36me3 histone modifications [134], could serve an independent indicator

of transcriptionally active regions and provide further evidence that the observed

changes in transcription rate were detected in transcriptionally active regions.

This study has identified candidate genes for rapid or delayed mRNA destabiliza-

tion in response to oxidative stress in S. pombe, including clusters of genes with

coherent functional annotation. Genes contained in the clusters highlighted in this

chapter are listed in the Appendix.

100



Chapter 5

Integration of global gene expression
studies in Fusarium graminearum

This chapter presents an integrative study of gene expression patterns in the fungal

crop pathogen Fusarium graminearum. In contrast to the yeasts S. cerevisiae and S.

pombe studied in previous chapters, F. graminearum is not a model organism and rel-

atively little is known about the regulation of developmental stages and pathogen-

host pathways on a genomic scale. Following the release of the F. graminearum genome

sequence in 2003, a number of transcriptomics datasets are now available permitting

an early integrative study of F. graminearum gene expression patterns.

5.1 Introduction

The Fusarium genus contains a diverse collection of plant-pathogenic fungi which

cause disease in a wide range of plants and opportunistic infections in humans. The

Fusarium graminearum species complex is a major cause of disease in cereal crops

worldwide, causing blights, rots and wilts in wheat and barley, reducing crop yield

and producing mycotoxins which are harmful to human health. Despite the eco-

nomic impact of F. graminearum as a crop pathogen, the F. graminearum species com-

plex was only recently described and relatively little is known about the function

and regulation of F. graminearum genes on a genomic scale.
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5.1.1 F. graminearum sequencing and gene calls

F. graminearum (strain PH-1) was the first complete Fusarium genome to be sequenced

[135]. Two automatic gene call sets were produced from the first draft genome

released in 2003: the Broad FG1 gene call set, and the MIPS draft gene call set

[135, 136, 137]. Gene calls are manually corrected and curated at the Broad Institute

Fusarium Comparative Project and the MIPS F. graminearum Genome Database. An

oligonucleotide DNA microarray, Affymetrix GeneChip Fusariuma520094, was de-

signed based on a combined gene call set containing manually processed gene calls

and predicted genes from both the MIPS draft gene calls and the Broad FG1 gene

calls [138]. Transcriptomics datasets from studies based on the Fusariuma520094

GeneChip are deposited at the PLEXdb plant expression database [139].

5.1.2 Study aims

This aims of this study were twofold. Firstly, all publicly available F. graminearum tran-

scriptomics studies were analysed in order to identify genes which are differentially

expressed during stages of the F. graminearum lifecycle and crop infection. This

analysis provides a dataset of summarized expression patterns and groups of coex-

pressed – and potentially coregulated – F. graminearum genes. Secondly, the summa-

rized coexpression groups were investigated for clues about the transcriptional reg-

ulation of identified coexpressed genes: (i) the presence and protein domain com-

position of predicted DNA-binding transcription factors within each coexpression

group; and (ii) constraints on the chromosomal location of coexpressed genes and

transcription-associated proteins. Localized genomic clusters of coexpressed genes

were identified and the putative function of these gene clusters was investigated.
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5.2 Datasets

5.2.1 Gene expression datasets

There are eight publicly available F. graminearum GeneChip gene expression exper-

iments deposited at the PLEXdb plant expression database [139], at February 2009.

Experiments are listed by PLEXdb experiment identifier (FG1-FG7, FG12) in Table

5.1. All eight experiments are based on the Fusariuma520094 Affymetrix GeneChip.

Two experiments, FG3 and FG4, are excluded from this study because they had

been designed to test the hybridization efficiency and cross-species hybridization

properties of the array: FG3 is an RNA dilution experiment to test hybridization

efficiency over a range of sample dilutions, and FG4 uses samples containing RNA

from three closely related Fusarium species to test for cross-hybridization of probe-

sets by mRNA originating from other species. Five of the remaining six experiments

measure changes in gene expression during various stages of the F. graminearum life-

cycle and crop infection [138, 140, 141, 142], and one compares carbon- and nitrogen-

starvation to complete media growth conditions [138] (Figure 5.1).

5.2.2 Gene calls and genome annotation

The F. graminearum gene complement was considered to be the 14,100 protein entries

which had been used to design the Fusariuma520094 GeneChip [138]. Genetic re-

combination rates and chromosomal location of protein entries were obtained from

the Omnimap FgraMap project [143]: genetic recombination rates had been esti-

mated based on a cross between the sequenced strain and a field strain [144]; gene

start and end positions and strand had been defined for 14,044 protein entries based

on a BLAT alignment of open reading frames against chromosomal sequences, per-

formed by John Antoniw1 [143]. Gene Ontology (GO) annotation of the 14,100 gene

entries was performed by Richard Coulson2. GO identifiers were assigned to F.

1Rothamsted Research
2Microarray Group, EMBL-EBI
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Ascospores
  (sexual) 

Conidia
(asexual)

Blighted seedling

Infected seed

Infected spike,
leaf sheath,
stem

Crop debris (wheat, maize, rice)
bearing perithecia and conidia

Fusarium lifecycle + Affymetrix transcriptomics Exps 

Ear anthesis

FG1
barley ear
infection

FG2 growth in vitro
on complete media (CM),
CMC, CMN

FG7 conidia
germination

FG12 wheat 
crown infection

FG5 perithecia
formation
on carrot agar

FG6 ∆cch1

Figure 5.1: F. graminearum transcriptomics datasets represent stages of the F. gramin-
earum lifecycle and crop infection. Transcriptomics datasets were downloaded from
PLEXdb (Table 5.1). (Figure adapted with permission from Kim Hammond-Kosack,
personal comm.)

104



5.2. DATASETS

Ex
pt

D
es

cr
ip

ti
on

#
hy

bs
Ex

pe
ri

m
en

ta
lf

ac
to

rs
(#

re
pl

ic
at

es
)

Ex
pe

ri
m

en
tN

am
e

R
ef

er
en

ce

FG
1

Ba
rl

ey
he

ad
in

fe
ct

io
n

ti
m

ec
ou

rs
e

18

Ti
m

e
(h

ou
rs

po
st

in
fe

ct
io

n)
:

‘F
us

ar
iu

m
tr

an
sc

ri
pt

de
te

ct
io

n
on

M
or

ex
ba

rl
ey

sp
ik

es
us

in
g

Fu
sa

ri
um

A
ff

y
G

en
eC

hi
ps

’
G

ül
de

ne
r

et
al

.2
00

6
[1

38
]

24
h

(3
re

ps
)

48
h

(3
re

ps
)

72
h

(3
re

ps
)

96
h

(3
re

ps
)

14
4h

(3
re

ps
)

w
at

er
co

nt
ro

l(
3

re
ps

)

FG
2

C
ar

bo
n

an
d

ni
tr

og
en

st
ar

va
ti

on
co

nd
it

io
ns

9

G
ro

w
th

co
nd

it
io

ns
:

‘E
xp

re
ss

io
n

Pr
ofi

le
s

in
C

ar
bo

n
an

d
N

it
ro

ge
n

St
ar

va
ti

on
C

on
di

ti
on

s’
G

ül
de

ne
r

et
al

.2
00

6
[1

38
]

C
om

pl
et

e
m

ed
ia

(3
re

ps
)

C
ar

bo
n

st
ar

va
ti

on
(3

re
ps

)
N

it
ro

ge
n

st
ar

va
ti

on
(3

re
ps

)
FG

3/
FG

4
R

N
A

di
lu

ti
on

ex
pe

ri
m

en
t/

cr
os

s-
sp

ec
ie

s
hy

br
id

iz
at

io
n

ex
pe

ri
m

en
t(

ex
cl

ud
ed

)
G

ül
de

ne
r

et
al

.2
00

6
[1

38
]

FG
5†

In
vi

tr
o

se
xu

al
de

ve
lo

pm
en

t
23

D
ev

el
op

m
en

ta
ls

ta
ge

s∗
:

‘F
us

ar
iu

m
tr

an
sc

ri
pt

de
te

ct
io

n
du

ri
ng

in
vi

tr
o

se
xu

al
de

ve
lo

pm
en

t
us

in
g

Fu
sa

ri
um

A
ff

y
G

en
eC

hi
ps

’
H

al
le

n
an

d
Tr

ai
l,

20
07

[1
40

]

0h
-v

eg
et

at
iv

e
hy

ph
ae

(5
re

ps
)

24
h

-d
ik

ar
yo

tic
hy

ph
ae

(3
re

ps
)

48
h

-p
er

ith
ec

iu
m

in
iti

at
io

n
(4

re
ps

)
72

h
-p

ar
ap

hy
si

s
de

ve
lo

pm
en

t(
3

re
ps

)
96

h
-a

sc
us

de
ve

lo
pm

en
t(

5
re

ps
)

14
4h

-a
sc

op
or

e
fo

rm
at

io
n

(3
re

ps
)

FG
6†

In
vi

tr
o

se
xu

al
de

ve
lo

pm
en

t,
∆

cc
h1

9

D
ev

el
op

m
en

ta
ls

ta
ge

s∗
:

‘T
ra

ns
cr

ip
td

et
ec

ti
on

du
ri

ng
in

vi
tr

o
se

xu
al

de
ve

lo
pm

en
to

f
Fu

sa
ri

um
C

ch
1

ca
lc

iu
m

ch
an

ne
l

de
le

ti
on

m
ut

an
tu

si
ng

Fu
sa

ri
um

a
A

ff
y

G
en

eC
hi

ps
’

H
al

le
n

an
d

Tr
ai

l,
20

08
[1

41
]

0h
-v

eg
et

at
iv

e
hy

ph
ae

(3
re

ps
)

96
h

-a
sc

us
de

ve
lo

pm
en

t(
3

re
ps

)
14

4h
-a

sc
op

or
e

fo
rm

at
io

n
(3

re
ps

)

FG
7

Sp
or

e
ge

rm
in

at
io

n
12

Ti
m

e
(h

ou
rs

,c
on

id
ia

de
ve

lo
pm

en
t)

:

‘F
us

ar
iu

m
ge

ne
ex

pr
es

si
on

pr
ofi

le
s

du
ri

ng
co

ni
di

a
ge

rm
in

at
io

n
st

ag
es

’
Se

on
g

et
al

.[
14

2]
0h

(3
re

ps
)

2h
(3

re
ps

)
8h

(3
re

ps
)

24
h

(3
re

ps
)

FG
12

W
he

at
st

em
ba

se
in

fe
ct

io
n

ti
m

ec
ou

rs
e

an
d

m
yc

el
iu

m
cu

lt
ur

e
15

Ti
m

e
(d

ay
s

po
st

in
fe

ct
io

n)
:

‘F
us

ar
iu

m
gr

am
in

ea
ru

m
ge

ne
ex

pr
es

si
on

du
ri

ng
cr

ow
n

ro
to

f
w

he
at

’

Su
bm

it
te

d
by

A
.S

te
ve

ns
,J

.
M

an
ne

rs
,C

SI
R

O

2
dp

i(
4

re
ps

)
14

dp
i(

4
re

ps
)

35
dp

i(
3

re
ps

)
m

yc
el

ia
cu

lt
ur

e
(4

re
ps

)

Ta
bl

e
5.

1:
PL

EX
db

F.
gr

am
in

ea
ru

m
ge

ne
ex

pr
es

si
on

da
ta

se
ts

us
ed

in
th

is
st

ud
y.

#
hy

bs
:

nu
m

be
r

of
ar

ra
ys

.
A

ll
da

ta
se

ts
ar

e
ba

se
d

on
th

e
A

ff
ym

et
ri

x
Fu

sa
ri

um
a5

20
09

4
G

en
eC

hi
p.

R
aw

(C
EL

)
da

ta
se

ts
w

er
e

ob
ta

in
ed

fr
om

th
e

PL
EX

db
pl

an
t

ex
pr

es
si

on
da

ta
ba

se
[1

39
].

† FG
5,

FG
6

ar
e

tw
o

in
vi

tr
o

se
xu

al
de

ve
lo

pm
en

t
st

ud
ie

s
pe

rf
or

m
ed

by
th

e
sa

m
e

au
th

or
s:

FG
5

us
es

a
w

ild
ty

pe
,

FG
6

us
es

a
∆

cc
h1

m
ut

an
t.

∗ T
im

es
in

di
ca

te
d

fo
r

FG
5,

FG
6

ar
e

ap
pr

ox
im

at
e

an
d

ar
e

us
ed

as
la

be
ls

fo
r

th
e

de
ve

lo
pm

en
ta

ls
ta

ge
s

sh
ow

n
[1

41
].

105



5.2. DATASETS

graminearum protein entries based on the presence of protein domains with existing

automated GO annotation reported in InterPro [58, 145]. 5,024 of the 14,100 protein

entries were annotated with one or more GO identifiers.

5.2.3 Mapping probesets to genes

GeneChip probesets were mapped to 14,100 protein entries using a mapping pro-

vided by Ulrich Güldener3. Probesets which map to more than one protein entry

were discarded (129 probesets discarded). Of the 14,100 protein entries, 13,830 are

represented on the array by one or more probesets which are not reported to cross-

hybridize to any other gene. Where more than one probeset matched a single gene

and the probeset expression profiles differed, the gene was reported once for each

expression profile represented amongst matching probesets. In total, 2,317 genes

matched 2-5 probesets; all other genes matched exactly one probeset.

5.2.4 Gene expression data selection and preprocessing

Quality assessment and appropriate normalization of microarray datasets are cru-

cial for the interpretation of genome-wide gene expression studies. Raw CEL files

for each experiment were obtained from PLEXdb, and quality assessment and nor-

malization steps were carried out for each experiment prior to differential expres-

sion analysis.

5.2.4.1 Quality assessment of CEL files

Raw CEL files from each experiment were quality assessed in order to check for in-

tegrity of data format, absence of spatial artifacts, and standard oligonucleotide ar-

ray diagnostics. Quality assessment of CEL files was performed using the R/Bioconductor

package arrayQualityMetrics4 [146]. A chip description file (CDF) Bioconductor

3MIPS. http://mips.gsf.de/projects/fungi/Fgraminearum.html
4version 1.6.1; R 2.7.2

106



5.2. DATASETS

package was built for the Fusariuma520094 GeneChip5 using the R/Bioconductor

package makecdfenv [147]. The CDF describes the layout of features on the array,

and the corresponding CDF package is required by arrayQualityMetrics in order

to detect spatial artifacts and to identify control probesets for use in standard diag-

nostic tests.

An arrayQualityMetrics report was generated for each experiment. Several arrays

were flagged as potential outlier arrays in each arrayQualityMetrics report based

one or more diagnostic tests. However, most of the flagged arrays were judged not

to be clear outliers on inspection of all diagnostic plots. After careful inspection of

the generated diagnostic plots, only one experiment was deemed to contain poten-

tial outlier arrays. On inspection, three potential outliers were identified in experi-

ment FG5 (Figure 5.2). As the experiment datasets had been prefiltered by the study

authors, we required clear evidence that an array was an outlier before removing

it from this study. All arrays were initially retained for normalization within each

experiment. Potential outlier arrays were considered for removal only after array

normalization.

Experiment FG12 contains samples from a wheat crown infection timecourse and a

mycelium culture. The probeset intensity distributions of the infection timecourse

arrays are consistently different from the mycelium culture arrays, with modal val-

ues at a lower intensity and more probesets in the higher intensity range than seen

in the infection timecourse (Figure 5.3). Due to the difference in raw intensity dis-

tributions between the infection and mycelium culture arrays, normalization and

subsequent differential expression analysis was not attempted between the infec-

tion timecourse and mycelium culture samples. Therefore only the arrays from the

infection timecourse were used in further analysis.

Analysis of experiment FG7 (germination from spores) was restricted to the first

two timepoints of the germination timecourse (0h, 2h). Conidia start to die within

5The chip description file for the Fusariuma520094 GeneChip was requested from Ulrich
Güldener, MIPS
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Figure 5.2: Extracts from arrayQualityMetrics reports for experiment FG5. A. Den-
sity (top) and empirical cumulative distribution (bottom) of raw intensities on each
array. B. RLE (relative log expression; top) and NUSE (normalized unscaled stan-
dard errors; bottom) diagnostic plots. Potential outliers arrays are 96H 4, 24H 3
(RLE/NUSE) and 144H 1 (intensity distribution). C. Intensity distribution after
RMA quantile normalization. Array 96H 4 was discarded from the study and ar-
rays renormalized.
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Figure 5.3: Extracts from arrayQualityMetrics report for experiment FG12 CEL
files. A. Density (top) and empirical cumulative distribution (bottom) of intensities
on each array. B. between-array distances measured as median absolute difference
in M-values between arrays. Arrays 1-11 are wheat crown infection samples. Arrays
12-15 are mycelium culture samples. The mycelium culture arrays display a distinct
intensity distribution from that of the wheat infection arrays.
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hours of germination on plates, and the spore germination timecourse in experiment

FG7 is therefore dominated by the rapid loss of conidia (Kim Hammond-Kosack,

personal communication).

5.2.4.2 Array normalization for differential expression analysis

It has been previously noted that due to a large degree of technical (non-biological)

variation between arrays from different datasets that had been generated in differ-

ent labs at different times, array normalisation and differential expression analysis

should first be performed within each individual set, and a comparison of differen-

tially expressed gene sets needs to be determined by meta-analysis [148].

Arrays were normalized within each PLEXdb experiment prior to differential ex-

pression analysis. Arrays for experiments FG2, FG5, FG6, FG7 (0h / 2h), and FG12

(infection) were processed by robust multiarray analysis (RMA) using the R/Bioconductor

package RMA [149]: raw probe intensity values were background-corrected, normal-

ized across arrays by quantile normalization, log2 transformed, and summarized by

the median polish algorithm to produce normalized probeset intensity values. (See

Chapter 1 for an overview of preprocessing methods for oligonucleotide arrays.)

It was necessary to consider alternative normalization procedures for experiment

FG1. In experiment FG1 (infection of barley heads), a global upward trend in probe-

set intensities was observed across the timecourse under quantile normalization.

This trend was also noted by the authors of the original study [138] and is likely to be

caused by the relative dilution of F. graminearum RNA in samples taken at early time-

points compared to later timepoints. At later timepoints there is a larger biomass of

F. graminearum and therefore a higher concentration of F. graminearum RNA in the

sample. The effect of F. graminearum dilution at early timepoints is to overestimate

the number of genes which are differentially expressed between early and late time-

points. Arrays in experiment FG1 were therefore renormalized using an alternative

method in place of quantile normalization, with the aim of removing the global
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upwards trend in probeset intensities along the timecourse. The RNA polymerase

subunits were selected as an invariant subset of genes: that is, a set of genes which a

priori are not expected to be transcriptionally regulated during barley infection. The

data were normalized using a variance-stabilizing normalization (VSN) [36] with

the parameters of the transformation estimated using the invarient set. The invari-

ant gene set is represented on the array by 27 probesets (Table B.1, Appendix A). A

larger invariant set would permit a more robust estimate of the VSN normalization

function, but there is considerable uncertainty about which F. graminearum genes

are expected to maintain a constant mRNA level during the infection timecourse.

It is possible that the wheat infection timecourse in experiment FG12 is similarly

affected by an RNA dilution effect at early timepoints compared to later timepoints.

However, far fewer probesets were detected at each FG12 infection timepoint than

in any other experiment (Table 5.4(a) below). Under quantile normalization, almost

all (19 / 24) of the differentially expressed probesets are upregulated late in the time-

course, consistent with relative dilution of F. graminearum RNA at early timepoints.

Only 4 of the 27 RNA polymerase subunit probesets were detected (MAS 5.0) dur-

ing experiment FG12 and therefore a normalization based on the same invariant set

is likely to be misleading. Due to the low rate of detection on the FG12 arrays, the

choice of normalization does not have a large impact on conclusions drawn from the

FG12 infection timecourse in this study. Quantile normalization was therefore used

for FG12, with the caveat that the observed upregulation of 19 genes during wheat

infection may be a consequence of early sample dilution rather than transcriptional

regulation.

5.3 Methods

5.3.1 Overview

Probeset detection calls were assigned for each array and differentially expressed

genes were identified within each experiment. A set of predicted transcription-
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associated proteins was identified, including DNA-binding transcription factors.

The genomic location of classes of transcription-associated proteins and the genomic

clustering of coexpressed genes was assessed. Localized genomic clusters of coex-

pressed genes were identified, and the coexpressed genes lying in these clusters

were annotated with additional predicted protein function.

5.3.2 Probeset detection

Probeset detection calls (present, marginal, absent) were assigned using the MAS 5.0

algorithm [40] implemented in the function mas5calls of the R/Bioconductor pack-

age affy [147]. This step is complementary to the subsequent differential expres-

sion analysis: probesets which are not called as differentially expressed within an

experiment may be constitutively expressed (i.e. expressed at a similar level in all

conditions), or might not be expressed or detected in any condition. Within each ex-

periment, each probeset was classified according to whether it is (i) never detected,

or (ii) detected in at least one condition. Probeset detection calls from replicate ar-

rays were combined into a single detected / not detected call for each condition. The

present / marginal / absent flag for each replicate was scored as 1 / 0.5 / 0 respec-

tively. A probeset was called as detected in a condition if the mean score of replicates

was more than 0.6. This replicate scoring scheme is consistent with the schemes used

by Hallen et al. [140, 141] in the FG5 and FG6 study publications and by Güldener

et al. [138] in the FG2 study publication to call probesets detected in each condition.

5.3.3 Defining groups of coexpressed genes

Within each experiment, a discrete expression profile was assigned to each probeset

by fitting a linear model to the observed expression levels and testing for differen-

tial expression between conditions. The R/Bioconductor package LIMMA [150] was

used to fit a linear model to normalized data and to identify differentially expressed

probesets within each experiment based on selected contrasts. For each timecourse
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experiment (FG1, FG5, FG6, FG7, FG12 wheat infection), contrasts were chosen such

that the expression level at the first timepoint was compared to the expression level

at each subsequent timepoint. Timepoints represent distinct stages of development

or infection and have low time resolution compared to the dynamics of induction

or repression. For experiment FG7, we report a comparison only between spores

(0h) and the first timepoint (2h of development from spores). For experiment FG2,

carbon-minimal medium and nitrogen-minimal medium growth conditions were

each compared to complete media growth conditions.

For each fitted linear model, an F statistic was calculated for each probeset and

p-values were derived using an empirical Bayes approach [151] implemented in

LIMMA. Probesets were ranked by p-value and a probeset was called as differentially

expressed if the p-value was below a threshold value. The threshold was defined as

the minimum p-value amongst all AFFX control probesets on the array: p-value ≤

min{p-values of AFFX control probesets}. This method acknowledges that the as-

sumption of an F-distribution null model for non-differentiated probesets may not

be an accurate assumption and instead treats the ranking of probesets by p-value

as a ranking of confidence in differential expression. For these datasets, a threshold

chosen to exclude AFFX control probesets from being called as differentially ex-

pressed typically identifies fewer differentially expressed probesets than are found

by comparing each probeset to an F-distribution null model.

Amongst probesets which were detected and differentially expressed, differential

expression patterns were defined using the following contrasts:

• FG1: (48h, 72h, 96h, 144h) vs. 24h

• FG2: (MMC, MMN) vs. CM

• FG5: (24h, 48h, 72h, 96h, 144h) vs. 0h

• FG6: (96h, 144h) vs. 0h

• FG7: spores vs. 2h
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• FG12 wheat infection: (14dpi, 35dpi) vs. 2dpi

Symbols 1 / -1 / 0 denote differential expression up / down / no differential ex-

pression compared to the reference condition, respectively. There are many possible

patterns of differential expression for timecourse experiments with more than three

timepoints. Differential expression patterns were summarized into the following

coexpression groups:

• upregulated and stays upregulated,

• downregulated and stays downregulated,

• transiently upregulated,

• transiently downregulated,

• any other differential expression behaviour.

The majority of differentially expressed probesets within each experiment could be

described using the first four coexpression groups. A complete listing of differential

expression patterns making up each coexpression group is given in the Appendix.

Probesets were mapped to genes as described above. If more than one probeset

mapped to a single gene, the gene was permitted to lie in one or more coexpression

groups, but note that almost all genes lie in exactly one coexpression group. A small

number of probesets were called as differentially expressed but not detected by MAS

5.0 (described above); these probesets were classified as ‘not detected’ and were not

included in any of the coexpression groups.

5.3.4 Prediction of transcription-associated proteins (TAPs)

Putative transcription-associated proteins (TAPs) in the F. graminearum genome were

identified by Richard Coulson6 using a combination of homology searches. To iden-

6Microarray Group, EBI
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tify genes involved in transcription and transcriptional regulation, F. graminearum pro-

tein entries were queried against a reference set of TAPs and protein domains. The

method has previously been described in detail for Plasmodium falciparum[152] and

was used as the basis for comparative genomics studies of proteins involved in tran-

scription in evolutionarily diverse species [153, 154]. Briefly, the sequences of all

14,100 F. graminearum protein entries were queried for (i) protein domain homology

using PFAM Hidden Markov Models (HMMs) related to transcriptional control in

eukaryotes, and (ii) sequence homology to a TAP reference set (Blastp) followed by

sequence similarity clustering to identify families of genes with a high degree of se-

quence similarity. The results of the HMM protein domain and sequence similarity

searches were combined to produce a conservative set of putative functional TAPs

in F. graminearum .

723 of the 14,100 predicted F. graminearum protein entries were found to be homol-

ogous to a member of the TAP reference set. The classification and prevalance of

predicted transcription-associated factors are summarized in Table 5.2. In addition,

the clade specificity of putative TAPs was defined by identifying putative functional

homologues of the F. graminearum TAPs amongst eukaryotic genomes. Putative

functional homologues of the F. graminearum TAPs were identified by querying 54

eukaryotic genomes using strict similarity criteria of sequence identity (Blastp) and

presence of protein domains (PFAM HMM protein domain search). The clade speci-

ficity of each TAP was assigned as ‘Fusarium’, ‘Pezizomycotina’, ‘Fungi’, or ‘Eu-

karyotes’ according to whether a putative functional homologue is present in the

respective clade.

5.3.5 Functional annotation and clade specificity of selected genes

The Broad Institute and MIPS provide manually curated and automated putative

functional annotation for predicted F. graminearum genes based on sequence homol-

ogy searches [137]. F. graminearum functional annotation is archived by the Broad

Institute for the most recent (FG3) gene calls. This annotation includes manually
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Table 5.2: Categories of F. graminearum genes with homology to a reference set of
transcription-associated proteins (TAPs) and HMM protein domains.

Category Description Count
B Basal transcription factors and cofactors 63
C Chromatin remodelling and histone modification 63
D DNA-binding proteins 546
P RNA polymerase subunits 27
O Unclassified† (CCR-NOT subunits, non-DNA-binding factors) 24

Total number of predicted F. graminearum TAPs 723

† ‘Unclassified’ genes are homologues of transcription-associated proteins which do not fall into the
other categories: more than half of these are homologues of CCR4-NOT complex subunits [155], and
the rest are homologues of other transcriptional regulators which are not DNA-binding.

validated gene names, and gene names transferred from other annotated genomes

due to strong protein sequence homology.

During this study, a set of 170 genes was identified which were present in coex-

pressed genomic clusters. To investigate whether the presence of coexpressed gene

clusters is related to protein function, a more complete coverage of putative gene

function was required for the genes in this set. A comparative analysis of putative

protein function was therefore carried out for this gene set. The 170 genes in this set

are non-TAP genes and are referred to here as the query set.

Putative functional annotation was transferred from eukaryotic protein-coding genes

with protein sequence homology to a gene in the query set. Homologues were iden-

tified using a Blastp search (blastp, NCBI toolkit [62]; E = 10−6; -F F). Low com-

plexity regions of query genes were masked using CAST [156] before performing

Blastp searches. The resulting hits were combined with the original query set and a

second round of BlastP was run (E = 10−6; -F F) in order to identify further protein

sequence homologues. All proteins thus identified as sequence homologues to the

query set were partitioned into clusters of homologous proteins using Markov clus-

tering of E values (mcl [157]; inflation = 2) [63, 158]. Of the 170 F. graminearum pro-

teins in the query set, 139 were assigned to one of 122 protein clusters containing one

or more homologous proteins, with the remaining 31 F. graminearum proteins hav-
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ing no identified homologues (and therefore appearing as singletons in the Markov

clustering).

Protein clusters were annotated as follows. For each protein cluster member, the

gene name (if any) and Gene Ontology (GO) assignments (if any) annotated in

UniProtKB (Uniprot Knowledgebase [61]) were transferred to the protein cluster.

The clade of each protein cluster member was determined according to the cur-

rent NCBI taxonomic description [159] of the respective genome. A short description

of putative protein function was assigned to each protein cluster by inspection of

UniProt gene names, functional annotation, and GO annotation in the cluster. The

clade specificity of each cluster was assigned to one of ‘Fusarium’, ‘Pezizomycotina’,

‘Fungi’, ‘non-metazoan Eukaryotes’, ‘Eukaryotes’ according to the presence in the

cluster of proteins from each clade. The 31 F. graminearum proteins with no iden-

tified homologues were queried against the UniProtKB database using the UniProt

BlastP webservice (E = 10−6) [160] to identify any additional functional information

from all functionally annotated organisms.

5.3.6 Testing for chromosomal clustering of coexpressed genes

Genomic clustering of coexpressed genes

Coexpressed genes were tested for evidence of clustering on the genome. For the

purposes of this test, coexpressed genes are defined as genes which have the same ex-

pression pattern within one experiment. Each GeneChip experiment is considered

separately, and expression patterns are defined using the combined differential ex-

pression patterns described above. The background gene list was taken to be the

13,830 genes, out of the 14,100 F. graminearum protein entries, which are mapped

onto the array. Genes were ordered according to the genomic ordering of the first

base of each gene.

A measure of the degree of chromosomal clustering amongst a set of genes was

defined: for a gene list L containing c coexpressed genes, the number of genes Ng
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which lie within g genes of a coexpressed gene was counted (Figure 5.4). If Ng (the

number of genes with a proximity of g genes or fewer to a coexpressed gene) is sig-

nificantly higher than expected under the null hypothesis, this is evidence that coex-

pressed genes exhibit a higher degree of chromosomal clustering than expected by

chance. The null hypothesis was that coexpressed genes are drawn uniformly from

all annotated genes on the genome, where Ng is sampled from a null distribution ng.

The null distribution of ng for 1 < g < gmax was simulated using 1000 samples of c

genes, where genes were sampled uniformly from the background gene list without

replacement. As the 13,830 genes are distributed on only four chromosomes, chro-

mosome edge effects were ignored and chromosomes 1, 2, 3, 4 were concatenated

for both the test case and for resampling. An empirical p-value was defined as the

proportion of simulated samples Nsim
g for which Ng ≥ ng and used to determine the

significance of observing Ng. Within each gene list L, p-values were corrected for

multiple testing of proximities g = 1..200 using the Benjamini-Yekutieli correction

[161].

For each gene list L, a Z-score was also calculated for each Ng. The Z-score is defined

as

Z =
Ng − µg

σg
(5.1)

where µg, σg are the mean and standard deviation of the empirical null distribution,

respectively. The Z-score allows us to use a rapid approximate method to deter-

mine whether specific localized clusters identified by other methods can account

for observed significant genome-wide clustering. If a genes have been identifed to

be part of a localized gene cluster, then using a Z-score of 3 to determine significant

genome-wide clustering, the number of genes Ng with proximity g to a coexpressed

gene must satisfy Ng − a > µ + 3σ in order for the genome-wide clustering to still

be considered significant after discounting the effect of the known gene cluster.
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TAP-centric clustering of coexpressed genes

The 723 TAPs were tested for the presence of significant clusters of coexpressed

genes within a neighbourhood around each TAP. For the purposes of this test, the

coexpressed genes for a given TAP are all the genes coexpressed with the TAP, in any

experiment. For a gene to be coexpressed with the TAP, it is sufficient for the gene to

have the same differential expression pattern as the gene in any one of the GeneChip

experiments.

Within a chromosomal region defined by t adjacent genes in a chromosome of length

G, we consider the distribution of the number of coexpressed genes, k, present in

the region from a list L of c coexpressed genes. The null distribution of k is the

hypergeometric distribution, so that the probability of finding exactly k genes from

list L of size c in a region of size t is p(k; G, t, c) =
(t

k
)(g−t

c−k

)
/
(G

c
)
. For each TAP,

windows of size 2 to 40 genes centred on the TAP were tested for enrichment of

genes coexpressed with the TAP using Fisher’s exact test with α = 0.05. All p-values

were corrected for multiple testing using the Benjamini-Hochberg correction [57].

Localized clustering of coexpressed genes

Similar to the test for TAP-centric clustering, the number k of genes from list L of

size c which are found in a region of size t follows the hypergeometric distribution

under the null distribution of uniform sampling from the genome. In order to iden-

tify a conservative list of chromosomal regions which are significantly enriched for

coexpressed genes, all possible regions of the genome were tested for enrichment

for coexpressed genes and an empirical correction for multiple testing was applied.

The Positional Gene Enrichment (PGE) tool [162] was used to detect regions of the

F. graminearum genome which are enriched for genes in each coexpression group7.

7Source code for the PGE tool and for applying the min pi multiple testing correction was provided
by Roland Barriot (KU Leuven, Bioinformatics Research Group). I adapted the code for use with the
F. graminearum genome and for the code to be run on a local machine cluster using the minPi multiple
testing correction.
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PGE aims to test almost all possible chromosomal regions, from pairs of neighbour-

ing genes to whole chromosomes, for overrepresentation of a given gene list. As the

number of regions of any size located at any position in the genome is massive, the

emphasis is on identifying localised clusters of genes. Large regions are discarded

if they contain smaller, more significant regions. To reduce the number of possible

regions to test, PGE tests only pertinent regions, defined by Rules 1-6 according to De

Preter and colleagues [162]. Rules 1-4 avoid the testing of redundant regions, and

Rules 5-6 cause large regions to be discarded if they contain smaller, more significant

regions. According to De Preter and co-authors, a region is pertinent if:

Rule 1: it contains at least two genes of interest,

Rule 2: there is no smaller region containing the same number of genes of interest,

Rule 3: there is no bigger region with more genes of interest and the same number of genes
not of interest,

Rule 4: there is no larger encompassing region with a higher percentage of genes of interest,

Rule 5: there is no smaller encompassed region with a better P-value,

Rule 6: it does not contain any region having fewer than expected genes of interest.

A large number of chromosomal regions are tested for enrichment of a given gene

list of coexpressed genes, so all p-values must be corrected for multiple testing us-

ing an appropriate correction method. A min pi correction was used to correct for

multiple tests. For each coexpression list, the set of coexpressed genes was resam-

pled 10,000 times from the background gene list uniformly without replacement.

For each random gene list, we find the minimum p-value amongst all pertinent re-

gions. A corrected p-value of 0.05 means that 5% of random lists of genes of the

same length contained a chromosomal region with a smaller p-value for enrichment

of genes in a gene list of the same length.
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5.4 Results

5.4.1 Overview

Differentially expressed genes and coexpression groups are summarized for each

PLEXdb F. graminearum experiment. In particular, the predicted DNA-binding tran-

scription factors identified within each coexpression group are listed. There is ev-

idence of constraints on the chromosomal position of transcription-associated pro-

teins (TAPs) and genomic clustering of coexpressed genes. In several coexpression

groups, significantly more genes lie adjacent to or within 2-10 genes of a coexpressed

gene than expected by chance under uniform selection from all genes on the array.

Moreover, 8 TAP-centric genomic regions were found to be enriched for coexpressed

genes and centred on a coexpressed TAP, and 18 genomic regions were found to

be significantly dense in coexpressed genes. Combining all TAP-centric and non-

TAP-centric coexpressed gene clusters, 20 distinct genomic clusters were identified

containing 2 – 22 coexpressed genes. Coexpressed genes in all TAP-centric and

non-TAP-centric gene clusters were annotated with predicted protein function. A

systematic analysis of predicted protein function based on Gene Ontology annota-

tion did not identify differential function between TAP-centric and non-TAP-centric

coexpressed gene clusters. A bias in protein domain composition was identified

amongst detected and differentially expressed TAPs, in which classes of protein do-

main were under- or overrepresented in some of the experiments.

5.4.2 Differential expression within experiments

There is much variation in the number of genes and TAPs detected and differen-

tially expressed during each experiment (Figure 5.5(a, b)) and a high degree of

specificity of differentially expressed genes and TAPs to each experiment (Figure

5.5(c)). For this summary, experiments FG5 and FG6 are combined into a single set

of genes which are differentially expressed during either of the two sexual develop-
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ment timecourses (FG5/6). Experiment FG7 (development from spores) is excluded

due to uncertainty about the interpretation of differential expression calls in FG7

(germination from spores) (see Datasets). Most of the differentially expressed genes

are specifically differentially expressed during one gene expression response: 80%

(3603/4479) of genes differentially expressed during experiments FG1, FG2, FG5/6,

and FG12 are differentially expressed in exactly one experiment. Similarly, 86%

(134/155) of differentially expressed DNA-binding TAPs are specific to FG1, FG2 or

FG5/6. A comparison of growth media (FG2) revealed that the two largest coex-

pression groups contain genes which are specifically up- or down-regulated in ei-

ther carbon- or nitrogen- starvation conditions compared to complete media (Table

5.3, below). There is a high degree of overlap, however, between genes differentially

expressed during the two crop infection timecourses (FG1 and FG12). Despite the

low probeset detection rate in the FG12 wheat crown infection timecourse, almost

all genes differentially expressed in FG12 are also differentially expressed in the FG1

barley infection timecourse (FG1: 807, FG12: 22, overlap: 18, n = 13830; χ2 = 231,

p < 0.0005). These genes may therefore form part of a core gene expression response

involved in the progression of crop infection (Table B.3) [138], although the size of

such a core infection response may be significantly underestimated here due to the

low detection rate in FG12.

Amongst genes differentially expressed within each experiment, groups of coex-

pressed genes were defined (Table 5.3). The DNA-binding TAPs in each coexpres-

sion group are listed here in full (Table B.2). Our results describe the expression pat-

terns of putative F. graminearum DNA-binding transcription factors across diverse

developmental and environmental conditions, and provide a basis for further work

on the transcriptional regulation of F. graminearum gene expression programmes.
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Figure 5.4: Testing for chromosomal clustering of coexpressed genes. A. Genomic
clustering of coexpressed genes: for a gene list of L genes (red), the number Ng of
genes within g genes of a coexpressed gene is counted. B. TAP-centric clusters of
coexpressed genes: for each TAP (T), the number of genes k coexpressed with the
TAP and lying within a TAP-centred window spanning t adjacent genes is counted.
C. Localized clustering of coexpressed genes: for each genomic region R containing
g genes, the number of coexpressed genes k is counted. See text for details of each
test.
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(a) Number of detected and differentially expressed (DE) genes within each experiment

Detected (MAS5) Detected (MAS5) Detected (MAS5)
Not DE (limma) DE (limma)

# genes # TAPs # genes # TAPs # genes # TAPs
FG1 6795 348 5988 333 807 15
FG2 10055 658 8305 570 1750 88
FG5 11475 669 9605 614 1870 55
FG6 12990 678 11287 620 1703 58
FG12 (infection timecourse) 3096 106 3074 105 22 1
FG7 (0h & 2h arrays only) 8496 589 6041 480 2455 109

(b) Number of detected / detected and differentially expressed TAPs, displayed by TAP class. B:
basal transcription factors and cofactors; C: chromatin remodelling and histone modification; D: DNA-
binding proteins; P: RNA polymerase subunits; O: unclassified.

# TAPs detected / detected & DE B C D O P
on array 61 63 536 23 27
FG1 44 / 2 42 / 2 227 / 11 16 / 0 19 / 0
FG2 59 / 0 61 / 3 490 / 85 22 / 0 26 / 0
FG5 60 / 6 62 / 0 497 / 47 23 / 1 27 / 1
FG6 59 / 6 62 / 5 508 / 46 23 / 1 26 / 0
FG12 (infection timecourse) 13 / 0 12 / 1 72 / 0 5 / 0 4 / 0
FG7 (0h & 2h arrays only) 59 / 9 60 / 8 424 / 76 20 / 4 26 / 12

(c) Summary of all genes (top) and DNA-binding TAPs
(bottom) differentially expressed in one or more experi-
ments

Figure 5.5: Summary of genes and DNA-binding TAPs which are differentially ex-
pressed in one or more experiments. [Venn diagrams were drawn using the Venny
tool [163]]
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Table 5.3: Definition of coexpression groups and symbols. Non-empty coexpression groups are listed. †See Appendix A for a complete
list of limma patterns defining each coexpression group.

Experiment Coexpression group† Symbol # genes # TAPs # DNA-
binding
TAPs

FG1

Downregulated and stays downregulated during infection FG1↓ 4 - -
Upregulated and stays upregulated during infection FG1↑ 781 14 10
Transiently upregulated FG1↑↓ 13 - -
Other behaviour FG1˜ 10 1 1

FG12 infection

Downregulated early and stays downregulated during infection FG12.-1-1 1 - -
Transiently downregulated FG12.-11 1 - -
Downregulated late FG12.0-1 1 - -
Upregulated late FG12.01 19 1 -

FG2

Downregulated in carbon-minimal media (CMM) and in nitrogen-minimal
media (NMM) compared to complete media

FG2.-1-1 206 11 11

Downregulated in CMM but not in NMM FG2.-10 321 7 6
Down-regulated in CMM; upregulated in NMM FG2.-11 69 1 1
Downregulated in NMM but not in CMM FG2.0-1 131 5 5
Upregulated in NMM but not in CMM FG2.01 348 35 35
Upregulated in CMM; downregulated in NMM FG2.1-1 23 1 1
Upregulated in CMM but not in NMM FG2.10 484 13 11
Upregulated in CMM and in NMM FG2.11 178 15 15

FG5

Downregulated and stays downregulated during sexual development FG5↓ 426 8 8
Upregulated and stays upregulated FG5↑ 806 23 18
Transiently downregulated FG5↓↑ 247 1 1
Transiently upregulated FG5↑↓ 316 17 16
Other behaviour FG5˜ 101 6 4

FG6

Downregulated and stays downregulated during sexual development/∆ cch1 FG6↓ 781 28 26
Upregulated and stays upregulated FG6↑ 668 24 15
Transiently downregulated FG6.-11 38 1 1
Transiently upregulated FG6.1-1 1 - -
Transiently downregulated FG6↓↑ 126 1 1
Transiently upregulated FG6↑↓ 98 5 4

FG7 (2 hrs vs. spores) Down in spores compared to 2 hrs FG7 2h spores.-1 1222 40 16
Up in spores compared to 2 hrs FG7 2h spores.1 1234 69 60
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5.4.3 Positional constraints on TAPs and coexpressed genes

Current evidence points to several levels of gene regulation which affect gene or-

der in eukaryotic genomes, including chromosomal clustering of coexpressed genes

and transcription factor target genes [164, 165], chromatin remodelling which acts to

promote the transcriptional regulation of genes lying within open chromatin regions

[166], and the spatial location of chromosomal regions within the nucleus [167].

Gene location and gene order also need to be considered in light of meiotic recombi-

nation, which is a major source of heterogeneity across the eukaryotic genome. The

F. graminearum genetic map is unusual in that long regions of high or low recombina-

tion rates have been observed spanning several hundred kilobases, whereas regions

of high or low recombination rate (so-called recombination hotspots and coldspots)

are more commonly found to span only a few kilobases in other eukaryotes [144].

The mechanisms and consequences of recombination for the evolution of gene loca-

tion and gene order are not yet well understood (see [168], for example, for a recent

high-resolution study of recombination in S. cerevisiae) but it seems likely that fur-

ther classes of genes may be associated with differential recombination rates.

There is growing evidence that transcriptionally coregulated genes are not randomly

distributed across the genome. Using S. cerevisiae transcription factor ChIP-chip

datasets to identify in vivo binding to the promotor regions of target genes, Janga et

al. [165] found that the target genes of most transcription factors have a higher de-

gree of proximity than is seen for whole genome permutations of the transcription

factor-targets network. More limited studies have similarly reported non-random

distribution of putatively coregulated genes across the S. cereviciae genome [169,

170].

Genomic clusters of adjacent coexpressed genes have been observed in many eu-

karyotic genomes, ranging from frequent pairs and triplets of adjacent coexpressed

genes in human and Mus musculus to stretches of up to 30 adjacent or near-adjacent

genes in Drosophila (e.g. [171, 172, 173]; reviewed in [164]). In the F. graminearum genome
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there are well-characterized examples of localized clusters of coexpressed genes.

Mutant knock-outs of many genes involved in secondary metabolite biosynthesis

cause reduced pathogenicity in F. graminearum [174] and some of these genes lie in

highly localized genomic clusters of coexpressed genes involved in the biosynthesis

of mycotoxins and other secondary metabolites. The aurofusarin biosynthesis gene

cluster contains 12 genes involved in the aurofusarin biosynthesis pathway and ly-

ing within a 30kb genomic region [175]. The gene cluster contains a transcriptional

activator aurR1/GIP2 (fg02320; DNA-binding) which is required for aurofusarin pro-

duction [176, 177]. The cluster includes the aurofusarin polyketide synthase PKS12

(fg12040) which is one of 15 type I polyketide synthases in F. graminearum [178].

Gene clusters of 4 – 9 adjacent genes located within 17kb genomic regions are in-

volved in the biosynthesis of the polyketide mycotoxins zearalenone and buteno-

lide, respectively [179, 180]. It is not yet clear whether functionally related clus-

ters of coexpressed genes occur frequently in the F. graminearum genome, whether

such gene clusters are typically transcriptionally regulated by adjacent genes, and

whether such clusters are primarily involved in the biosynthesis of mycotoxins and

other secondary metabolites or are functionally diverse.

Are coexpressed genes and gene encoding transcription-associated proteins ran-

domly distributed on the F. graminearum genome, or is there evidence of widespread

structured genomic organisation? I investigated the genomic organization of (i)

genes encoding transcription-associated proteins (TAPs), and (ii) all genes which

are coexpressed within each gene expression dataset. TAP genes were tested for

evidence of non-random genomic location. Coexpressed genes were investigated

for genomic clustering using three methods. First, the degree of genomic cluster-

ing of coexpressed genes was tested across the genome. Second, each differentially

expressed TAP was tested for the presence of coexpressed genes in a surrounding

region. Third, the presence of localized clusters of coexpressed genes was assessed,

regardless of whether a coexpressed TAP lies within the gene cluster.
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5.4.3.1 Constrained chromosomal distribution of TAPs

The chromosomal location of genes coding for transcription-associated proteins are

subject to positional constraints (Figure 5.6). The recombination rate of chromoso-

mal regions appears to act as a constraint on the presence of some classes of TAPs.

Basal transcription factors and cofactors, RNA polymerase subunits, and chromatin

remodelling / histone modification factors tend not to be located in chromosomal

regions of high recombination rate. In contrast, DNA-binding transcription factors

and ‘unclassified’ (CCR4-NOT subunits and other non-DNA-binding transcription-

associated factors) are not subject to the same constraint and are not over- or under-

represented in regions of high or low recombination rate.

5.4.3.2 Evidence of chromosomal clustering of coexpressed genes

Each coexpression group was tested for chromosomal clustering on the genome.

The degree of chromosomal clustering of each group of coexpressed genes was sum-

marised by counting the number of genes in the group which lie within g genes of

a coexpressed gene. The proximity g was varied from 1 to 200 genes. For 11 of

the 25 coexpression groups, there is some evidence of a higher degree of clustering

than would be expected by chance from a gene list drawn uniformly from all 13,830

genes on the array. The coexpression groups with significant chromosomal cluster-

ing are shown in Table 5.4. Where there is significant clustering with proximity of

g ≥ 5, the significance of the clustering may be accounted for if a small number

of localized coexpressed clusters is identified. For g > 4, it is typically sufficient

for approximately 20 genes to lie in localized clusters on the genome in order to ex-

plain the significance of the genome-wide clustering: the clustering of the remaining

coexpressed genes would not deviate significantly from the clustering expected un-

der the null hypothesis of uniform sampling. There are significantly many more

genes lying adjacent to a coexpressed gene (g = 1) than expected from a uniform

null distribution. For example, coexpression group FG2.10 (genes upregulated in
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A

B

R ≥ 8 3 ≤ R < 8 1 ≤ R < 3 R < 1 X2; p value

B Obs 0 0 5 58 15.54; p = 0.007 *Exp 0 9 9 44

C Obs 0 3 1 59 16.56; p = 0.005 *Exp 0 9 9 44

P Obs 0 0 1 26 8.80; p = 0.04 *Exp 0 4 4 19

D Obs 3 85 81 370 1.38; p = 0.7Exp 4 77 79 380

O Obs 0 2 4 18 0.91; p = 0.8Exp 0 3 4 17

Figure 5.6: A. The F. graminearum genome is divided into four blocks according to
the recombination rate, R (cM/27kb). The genomic locations of TAP classes B, C, P,
(above) and D, O (below) are shown (for TAP class descriptions see Table 5.2). B.
Observed (Obs) and expected (Exp) gene counts are shown for each TAP class (B,
C, P, D, O) in each recombination block under a null model of uniform distribution
over F. graminearum gene positions. P-values result from a χ2 test for each TAP class
( * : p < 0.05).
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Table 5.4: Testing for genomic clustering of coexpressed genes. The 9 groups of
coexpressed genes which show significant chromosomal clustering are shown (see
Methods). p-value: the proportion of simulated gene lists with the same or greater
number of genes within the indicated gene proximity of a coexpressed gene, after
correction for multiple testing. Z: the observed Z-score. obs: the observed number of
genes within the indicated proximity of a coexpressed gene. expZ=3: the number of
genes which must be observed in order to achieve significance at Z = 3. All groups
of coexpressed genes in experiments FG1, FG2, FG5, FG6 and FG12 were tested; the
groups not shown had no significant chromosomal clustering.

Group proximity: 1 2 3 4 5

FG1↑ p-value (Z) 0 (5.80) 0 (4.55) 0 (4.60) 0 (3.62)
obs (expZ=3) 245 (203) 299 (274) 362 (335) 398 (388)

FG2.01 p-value 0 (6.17) 0 (5.68) 0 (4.81) 1e-04 (4.12)
obs (expZ=3) 52 (34) 76 (56) 91 (75) 103 (92)

FG2.10 p-value 0 (10.40) 0 (8.40) 0 (7.28) 0 (5.60) 0 (4.94)
obs (expZ=3) 112 (56) 148 (94) 175 (127) 188 (156) 207 (182)

FG2.-1-1 p-value 0 (5.10) 0 (5.02) 1e-04 (4.27) 0 (4.23) 2e-04 (3.69)
obs (expZ=3) 23 (16) 35 (26) 41 (34) 49 (41) 53 (48)

FG2.11 p-value 0 (7.07) 1e-04 (5.02) 0 (4.94)
obs (expZ=3) 25 (13) 29 (21) 37 (28)

FG5↓ p-value 0 (11.00) 0 (8.24) 0 (6.34) 0 (5.36) 2e-04 (3.81)
obs (expZ=3) 101 (46) 123 (76) 138 (104) 154 (128) 159 (149)

FG5↑ p-value 0 (6.40) 0 (6.24) 0 (4.41) 0 (3.86)
obs (expZ=3) 170 (128) 268 (218) 317 (294) 373 (358)

FG5↑↓ p-value 1e-04 (4.24) 0 (4.48) 0 (5.30) 0 (4.51) 0 (4.42)
obs (expZ=3) 36 (30) 58 (48) 83 (65) 93 (80) 107 (93)

FG6↓ p-value 0 (10.39) 0 (8.47) 0 (7.99) 0 (6.64) 0 (5.82)
obs (expZ=3) 209 (121) 286 (205) 357 (277) 399 (339) 439 (392)

Group proximity: 6 7 8 9 10

FG1↑ p-value (Z) 1e-04 (3.55) 1e-04 (4.34) 2e-04 (3.77)
obs (expZ=3) 443 (434) 495 (474) 521 (509)

FG2.01 p-value
obs (expZ=3)

FG2.10 p-value 0 (4.75) 0 (4.38) 0 (4.46)
obs (expZ=3) 229 (206) 246 (228) 267 (248)

FG2.-1-1 p-value
obs (expZ=3)

FG2.11 p-value
obs (expZ=3)

FG5↓ p-value 0 (4.39) 0 (4.44) 0 (4.55) 0 (4.37) 4e-04 (3.67)
obs (expZ=3) 186 (169) 205 (187) 223 (204) 236 (219) 242 (234)

FG5↑ p-value
obs (expZ=3)

FG5↑↓ p-value 0 (4.20) 0 (4.10) 0 (4.03) 1e-04 (3.75)
obs (expZ=3) 118 (106) 129 (118) 139 (128) 146 (138)

FG6↓ p-value 0 (4.89) 0 (5.36) 0 (4.55) 0 (4.47) 1e-04 (3.88)
obs (expZ=3) 470 (439) 517 (480) 539 (516) 568 (547) 587 (575)
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carbon-minimal media, but not in nitrogen-minimal media, compared to complete

media growth conditions; 484 genes) includes 121 genes which are adjacent to a co-

expressed gene (g = 1), whereas only 56 such genes must be observed in order to be

significant at Z = 3. There is probably a high false positive rate associated with this

observation. It is important to note that in the most recently released gene calls (ver-

sion FG3, [137]) there were 26 merges of adjacent gene calls from version 1 (FG1) into

a single gene call in version 3 (FG3). We may speculate, however, that a proportion

of coexpressed adjacent genes have constrained chromosomal positions which may

be due to shared promoter regions, transcriptional run-through of adjacent tran-

scripts, or the presence of a transcriptionally active chromosomal region. There is

no evidence of chromosomal clustering in the remaining coexpression groups, nor

any evidence of significant clustering with a proximity of 10 genes or more in any

coexpression group.

5.4.3.3 TAP-centric clustering of coexpressed genes

Eight transcription-associated proteins (TAPs) were identified as having significant

enrichment of coexpressed genes in a chromosomal neighbourhood around the TAP

gene, at a corrected p-value of p < 0.05 (Fisher’s exact test with Bejamini-Hochberg

correction [57]). Seven of the eight identified TAPs are DNA-binding. Two of the

eight identified TAP-centric clusters overlap the aurofusarin gene cluster, and there

are seven disjoint TAP-centric gene clusters (Figure 5.7).

Three of the seven TAP-centric clusters overlap known gene clusters of gene which

have previously been shown to be coexpressed. Clusters overlapping the auro-

fusarin and butenolide biosynthesis gene clusters are downregulated during sexual

development, while a cluster overlapping the mating type locus is upregulated in

carbon-minimal conditions (Figure 5.7).

A TAP-centric cluster upregulated during sexual development contains the polyke-

tide synthase gene involved in the biosynthesis of black perithecia pigment biosyn-

131



5.4. RESULTS

Figure 5.7: The eight TAPs located within a window significantly enriched for genes
coexpressed with the TAP are shown (p < 0.05). For each region the columns are
(left to right) (i) recombination rate, R (red: 3 ≤ R < 8; yellow: 1 ≤ R < 3; blue:
R < 1 cM/27kb); (ii) all 14,100 protein entries (dark grey: DNA-binding TAPs; light
grey: all other genes); (iii) (where shown) previously annotated genes of interest
are shown in red and labelled; (iv) coexpressed genes with the expression pattern
indicated at the head of the column (olive green: DNA-binding TAPs; green: all other
genes). Barplots show the clade specificity of coexpressed genes in each cluster (Fg:
Fusarium; Pz: Pezizomycotina; Fu: Fungi; Fu+nmEuk: Fungi and non-metazoan
Eukaryotes; Ek: Eukaryotes).
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thesis (fg12125). The gene cluster contains 11 genes which are coexpressed with the

polyketide synthase gene. The identifying TAP is DNA-binding (fg09188). Coex-

pressed genes in the cluster may be part of a coordinately regulated perithecium

pigment gene cluster and are candidates for further study.

The remaining three TAP-centric clusters do not overlap known or putative genomic

clusters. These clusters contain 3–5 adjacent genes and therefore have a similar size

to the detected gene cluster overlapping the butenolide synthesis gene cluster. One

of the clusters (fg00068 - fg00070) is adjacent to the p450 oxygenase, Tri1 (fg00071).

Tri1 is involved in the biosynthesis of trichothecene mycotoxins but lies distal to

the trichothecene gene cluster [181]. However, the Tri1 gene was not detected as

coexpressed with the adjacent gene cluster and the proximity of the detected cluster

to Tri1 may not be functionally relevant.

Four of the seven disjoint TAP-centric clusters overlap known secondary metabo-

lite gene clusters, or contain a polyketide synthase gene (and are therefore putative

members of a coregulated secondary metabolite gene cluster). The lack of further

TAP-centric clusters of coexpressed genes suggests that gene clusters of coexpressed

genes containing a coexpressed TAP do not occur frequently in F. graminearum un-

der the conditions considered here. The putative function of the three unidentified

TAP-centric gene clusters (TAPs: fg12093, fgd231-660, fg00069) is investigated below.
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Figure 5.8: All summarized chromosomal regions enriched for coexpressed genes are shown (see Methods). Columns and barplots are
as for Figure 5.7, with light green columns showing the maximal extent of nested or overlapping significantly enriched regions.
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5.4.3.4 Localized chromosomal clusters of coexpressed genes

Eighteen disjoint chromosomal regions are significantly enriched for coexpressed

genes (Figure 5.8). These regions are significantly enriched pertinent regions (p < 0.05

after min pi multiple testing correction; see Methods).

The 18 disjoint regions identified here as significantly enriched for coexpressed genes

are considered to be high-confidence regions with respect to a shared functional and

evolutionary significance, the exact nature of which is investigated below.

A further pair of adjacent genes (fg01079, fg01080) was found to define a significantly

enriched region upregulated during wheat infection (experiment FG12). These two

genes were merged into a single gene call in the most recent gene calls release (FG3)

[137] and this cluster was therefore not considered further.

A strict significance criterion was used to identify chromosomal regions which are

enriched for coexpressed genes. Clearly the density of coexpressed genes required

in a given region in order to achieve the threshold for significant enrichment varies

with the number of coexpressed genes. A conservative multiple testing method was

used in order to reduce the false positive rate, so that regions identified as enriched

for coexpressed genes are unlikely to have occured by chance due to the crowding of

coexpressed genes into the genome (see Methods). There is likely to be a high false

negative rate for the detection functional or evolutionarily selected clustering of co-

expressed genes. It is difficult to estimate the false negative rate, however, given

the incomplete current understanding of the function and evolution of coexpressed

chromosomal clusters. For example, a genomic region spanning five adjacent co-

expressed genes (fg03932 - fg03936) is significantly enriched for genes which are

persistently downregulated during experiment FG5 (in vitro sexual development;

Table 5.1). On inspection, the same five adjacent genes are also coexpressed and

persistently downregulated during experiment FG6 (in vitro sexual development,

∆cch1). However this region does not meet the criterion for enrichment for coex-

pressed genes amongst the persistently downregulated genes in FG6: genomic re-
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gions which are similarly dense in coexpressed genes are seen in more than 5% of

random draws containing the same number of genes (see Methods). This discrep-

ancy is due to the higher number of genes identified as persistently downregulated

in experiment FG6 compared to experiment FG5 (781 genes in FG6; 426 genes in

FG5; Table B.2): the occurence of five adjacent coexpressed genes is more likely by

chance amongst the 721 genes differentially expressed in FG6 than amongst the 426

genes differentially expressed in FG5, and this region does not meet the conservative

threshold for significant enrichment amongst the 721 genes persistently downregu-

lated during FG6.

5.4.3.5 Functional annotation of localized coexpressed genes

Putative functional annotation was assigned to the coexpressed genes contained in

TAP-centric gene cluster and localized coexpressed gene cluster (Figures 5.9, 5.10).

A total of 170 genes were investigated for putative function as described (see Meth-

ods; page 115). To investigate systematically whether TAP-centric and non-TAP-

centric gene clusters are associated with differential protein function, all identified

TAP-centric and localized gene clusters were further combined into 20 distinct ge-

nomic regions (see Methods; page 119). Each combined region was identified as

TAP-centric/non-TAP-centric according to the presence/absence of a coexpressed

DNA-binding TAP in the region, and each region was annotated with the Gene On-

tology identifiers associated with one or more coexpressed genes contained in the

region. Regions were clustered using an asymmetric binary distance measure, such

that the distance between regions A and B is the proportion of GO identifiers present

in exactly one of A or B amongst GO identifiers present in A or B or both. Figure

5.11 shows a clustering of regions using the generic GO slim mapping [182], for ex-

ample: the manual classification of TAP-centric and non-TAP-centric regions is not

recovered, and there is therefore no evidence from this analysis that TAP-centric and

non-TAP-centric clusters are associated with differential protein function.
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Figure 5.9: Predicted functional annotation and clade specificity of coexpressed genes are shown for all significant regions consisting
of coexpressed genes flanking a coexpressed TAP. Clade specificity is colour coded as shown in the key. Functional annotation was
assigned using a Blastp search against 54 eukaryotic genomes followed by Markov clustering of similarity scores (Blastp E-values).
Functional annotation was inferred for each protein cluster by inspection of all annotated genes in the cluster. Clade specificity was
determined according to the presence of clades within each protein cluster.
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Figure 5.10: Predicted functional annotation and clade specificity of coexpressed genes are shown for all regions enriched for coex-
pressed genes. Clade specificity is colour coded as shown in the key. Functional annotation and clade specificity were assigned as for
Figure 5.9.
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5.4.4 Bias in protein domain composition of detected and differen-
tially expressed TAPs

A bias was observed in the protein domain composition of TAPs which are detected,

or detected and differentially expressed (Figure 5.12, broken down by clade speci-

ficity). In particular, in all GeneChip experiments, TAPs containing a zinc cluster

domain were found to be underrepresented amongst detected TAPs. In crop in-

fection experiments (FG1, barley head infection and FG12, wheat crown infection),

TAPs containing bZIP1/bZIP2, GATA and C2H2 zinc finger domains were found to

be overrepresented amongst all detected TAPs. While this observation is based on

a small number of experiments and a sparse matrix of protein domain counts, the

concordance of domain overrepresentation between the two infection timecourses

and the consistent absence of zinc cluster domains amongst detected TAPs is strik-

ing. It remains to be seen whether these observations continue to hold as additional

datasets are made available.

5.5 Discussion

Groups of detected and coordinately expressed genes were identified within six

transcriptomics experiments, representing various stages of the F. graminearum life-

cycle and crop infection. Furthermore, coexpressed predicted DNA-binding TAPs

were identified and may be considered as candidates for transcriptional regulators

of coexpressed genes.

A dataset of F. graminearum coexpressed gene clusters is presented together with

putative functional annotation. Twenty distinct genomic regions were found to be

significantly dense in coexpressed genes. Eight gene clusters were found to con-

tain coexpressing genes for DNA-binding TAPs; almost all such clusters are already

well-characterized and there is no evidence from this study that TAP-centric coex-

pressed gene clusters are widespread in the F. graminearum genome. The aurofusarin

and butenolide biosynthesis gene clusters [176, 179] were identified amongst the 20
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GO:0009405 pathogenesis
GO:0030234 enzyme regulator activity
GO:0008565 protein transporter activity
GO:0045182 translation regulator activity
GO:0007610 behavior
GO:0016853 isomerase activity
GO:0016829 lyase activity
GO:0016874 ligase activity
GO:0007275 multicellular organismal development
GO:0005198 structural molecule activity
GO:0030312 external encapsulating structure
GO:0005576 extracellular region
GO:0005694 chromosome
GO:0016209 antioxidant activity
GO:0016301 kinase activity
GO:0030154 cell differentiation
GO:0004386 helicase activity
GO:0008219 cell death
GO:0030528 transcription regulator activity
GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process
GO:0006519 amino acid and derivative metabolic process
GO:0004872 receptor activity
GO:0004871 signal transducer activity
GO:0015075 ion transmembrane transporter activity
GO:0005215 transporter activity
GO:0006810 transport
GO:0043170 macromolecule metabolic process
GO:0009056 catabolic process
GO:0005515 protein binding
GO:0007154 cell communication
GO:0050789 regulation of biological process
GO:0005634 nucleus
GO:0005488 binding
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GO:0050896 response to stimulus
GO:0003676 nucleic acid binding
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Figure 5.11: Heatmap representation of generic GO slim identifiers associated with
coexpressed gene clusters. Dark green: annotated. Light green: not annotated. Rows
(gene clusters) and columns (GO IDs) are clustered by complete linkage using an
asymmetric binary distance function. Row and column dendrograms are shown.
The horizontal colour bar (top) identifies gene clusters which contain a coexpressed
TAP gene. Red: TAP-centric gene cluster (localized around a TAP gene). Pink: con-
tains a coexpressed gene for a DNA-binding TAP but not identified as a TAP-centric
gene cluster. Blue: does not contain a coexpressed DNA-binding TAP gene. Rows:
generic GO slim identifiers associated with one or more gene clusters. Columns:
distinct genomic clusters of coexpressed genes.140



5.5. DISCUSSION

Figure 5.12: Bias in protein domains amongst detected (top) and differen-
tially expressed (bottom) DNA-binding TAPs. x-axis: protein domain HMM
classes. y-axis: F. graminearum experiments, further broken down by clade speci-
ficity (Fusarium, Pezizomycotina, Fungi, Eukaryotes). For each experiment.clade, un-
der/overrepresentation of each HMM class is shown (χ2 test; p < 0.05). In addition,
FDR-adjusted p < 0.05 is shown after correcting for multiple testing within each
row (experiment.clade).

141



5.5. DISCUSSION

coexpressed gene clusters. A previously uncharacterized coexpressed gene cluster

was identified which contains the black perithecium pigment polyketide synthase

gene [178], and this may partially define a perithecium pigment biosynthesis gene

cluster. A systematic analysis of the putative function of genes coexpressed in lo-

calized gene clusters did not identify differential protein function between genes

located in TAP-centric and non-TAP-centric coexpressed gene clusters.

Predicted basal transcription factors, chromatin and histone remodelling factors,

and RNA polymerase subunits were found to be underrepresented in F. gramin-

earum regions with relatively high recombination rate. Pál and Hurst [183] showed

that clusters of essential genes in S. cerevisiae lie in regions of low recombination

rate, and that the low recombination rate around clusters of essential genes may be

driven by selection for genetic proximity of essential genes rather than by a bias in

mutation rate. Although recombination is thought to be mutagenic, so that a higher

recombination rate is associated with a higher mutation rate [184], this is not consis-

tent with Pál and Hurst’s observation that unclustered essential genes do not appear

to have low recombination rates [183].

Subsets of genes in each expression group may be coregulated by DNA-binding

transcription factors including the putative DNA-binding TAPs identified in this

study. However, there has been no attempt here to identify such subsets of coreg-

ulated genes. To identify putative transcriptionally coregulated genes, ChIP-chip

[46] or ChIP-Seq [185] experiments could help to identify in vivo binding sites of

certain transcription factors. In the absence of such experimental data, shared se-

quence motifs could be sought in the promotors of coexpressed genes. This was not

investigated at the present time, however, because a search for de novo DNA-binding

motifs is likely to have a high false positive rate due to the typically short length of

binding motifs in promotor regions [186]. An approach by Fraenkel and others [76]

in S. cerevisiae used closely related genome sequences to identify de novo sequence

motifs which are conserved between organisms, and this will become feasible for

the F. graminearum genome with the release of whole-genome sequences for related
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5.5. DISCUSSION

Fusarium species [187].

There are many possible approaches for defining groups of coexpressed genes within

one or more experiments. The methods used in this study to call differential expres-

sion (limma with significance cutoffs determined by AFFX control probesets) and

probeset detection (MAS 5.0) were selected to produce a consistent, conservative set

of differentially expressed genes within each experiment. Alternative approaches

include cluster analysis of individual or concatenated experiments, and differen-

tial expression analysis based on linear modelling of conditions but using alterna-

tive differential expression criteria or including minimum fold-change constraints.

Furthermore, the summary of limma groups into larger coexpression groups is in

general an arbitrary choice, made here to consolidate a large number of similar

expression profiles into a smaller number of coexpression groups. On inspection

of the expression profiles of genes in each limma group, division into more fine-

grained coexpression groups did not appear to be justified and the chosen coexpres-

sion groups were judged to be useful coexpression summaries for these datasets. If

additional datasets are included in this analysis as part of future work then the set

of summarized coexpression groups may need to be extended, for example if there

are distinct groups of genes upregulated at different times during a timecourse.
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Chapter 6

Discussion

With the arrival of post-genomic datasets, the genome-wide regulation of transcrip-

tional and post-transcriptional processes can be modelled at different levels and

with varying levels of complexity. This thesis has presented three studies of tran-

scriptional regulation based on genome-wide gene expression datasets from three

fungal species. Each of the three studies investigated distinct aspects of a gene ex-

pression response:

• transcriptional control of a gene expression timecourse by linear combinations

of binding transcription factors, in the model organism S. cerevisiae;

• the contribution of regulated mRNA stability to shaping a gene expression

response, in the model organism S. pombe;

• differential expression between steady-state conditions and the coexpression

of predicted transcription factors, in the crop pathogen Fusarium graminearum.

In the first study, a high resolution stationary phase timecourse was modelled as

the sum of interactions between active (for example, post-transcriptionally modi-

fied) DNA-binding proteins and coregulated target genes. Two related models and

inference methods were applied in order to quantify hidden variables – interpreted

as concentrations of active transcription factors and their control of target genes –

which can explain the observed gene expression profiles of target genes. While such
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models are vastly simplified representations of transcriptional control, they are a

useful exploratory tool for identifying putative functional transcription factor-target

interactions.

The second study considered the contribution of regulated mRNA stability to shap-

ing a gene expression response. A dynamic model of mRNA abundance was used

to identify genes which are better explained by a change in mRNA stability after

stress induction than by constant mRNA stability. This finding has implications

for dynamic models of transcriptional regulation: excluding the effect of regulated

mRNA stability from a model of transcriptional regulation may erroneously force

observed mRNA abundance profiles to be explained by a regulated transcription

rate.

Finally, the third study presented an integrative study of gene expression patterns in

the fungal crop pathogen F. graminearum. Unlike in the first two studies, in which the

datasets were from the model organisms S. cerevisiae and S. pombe, comparatively lit-

tle is known about the transcriptional regulation of F. graminearum and there is rela-

tively little existing genome annotation. All available gene expression datasets were

analysed in order to identify genes and putative transcriptional regulators which

are differentially expressed between different near-steady-state conditions. This has

provided a first genome-wide survey of coexpressed genes and predicted transcrip-

tion factors in F. graminearum which will contribute to the understanding of gene

expression programmes and transcriptional regulation in this economically impor-

tant pathogen. Additionally, it was shown that groups of coexpressed genes are

found in localized regions of the genome, and a comparative genomics approach

was used to annotate these genes with putative protein function.

The technologies used to study transcription and transcription-related processed on

a genome-wide scale are rapidly developing. High-throughput sequencing tech-

nologies can be used to map all transcripts which are present in a population of

cells, while recent developments survey populations of RNA-binding proteins, in
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vivo protein-protein interactions and subcellular locations, and chromatin modifica-

tions, amongst other regulatory processes in the cell. Our ability to use genome-

scale datasets to construct quantitative or semi-quantitative models of transcrip-

tional and post-transcriptional regulation will be aided by the continued develop-

ment of methods which are able to model genome-scale datasets and to quantify

technical and biological errors inherent in the data.
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Appendix A

Supplementary Tables for Chapter 4

Clusters are listed in the order in which they are mentioned in Chapter 4.

Genes are listed using S. pombe systematic gene IDs, or converted to S. pombe gene

names where these exist. (For further details of S. pombe systematic IDs and gene

names, see the S. pombe GeneDB database [188]).

Table A.1: Putative destabilized (delayed) [Figure 4.7]
Cluster 6 Cluster 7 Cluster 8

SPBC19F5.02c SPAC24H6.01c SPBC1604.06c
SPBC428.15 SPCC63.07 SPAC664.08c

SPAC1687.16c SPBC660.14 SPAC1F7.02c
SPAC977.11 SPCC613.07 SPAC222.06

SPCC1393.06c SPAC31G5.10 SPAC16E8.06c
SPBC359.06 SPBC1709.01 SPBC83.15

SPAPB1A10.15 SPBC4F6.07c SPBC17D1.02
SPBC16C6.10 SPAC1039.02 SPBC1604.09c
SPBC36B7.04 SPAPB15E9.01c SPAC22A12.05

rpl12-1: rpl12.1 pmt2
SPBC365.04c SPBC244.02c
SPAC890.04c SPBC16C6.12c
SPBC1A4.07c SPAC144.01
SPAC23C4.15 SPBC947.07
SPAP7G5.02c SPCC24B10.18
SPAC1B3.13 SPBC19C2.13c
SPAC1D4.04 SPAC926.08c

SPBP16F5.05c SPBC800.06
SPBC29A3.06
SPCC330.09
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Table A.2: Putative destabilized (rapid) and putative stabilized (rapid) [Figure 4.10]
Destabilized Stabilized

Cluster 17 Cluster 20 Cluster 21 Cluster 22 Cluster 32
SPAC13G6.10c SPBC11G11.03 SPAC1556.03 SPAC1002.06c SPBC15D4.07c
SPAC14C4.12c SPBC11G11.05 SPCC1020.08 SPCC1020.09 SPAC1006.01
SPAC1687.10 SPAC12G12.02 SPAC1093.05 SPAC10F6.03c SPBC106.13
SPCC16C4.05 SPCC1450.10c SPCC1183.07 SPAC1142.04 SPCC1223.10c
SPAC19D5.10c SPAC1486.09 SPCC1235.07 SPBC13G1.09 SPBC1347.01c
SPBC25B2.07c SPBC16D10.01c SPAC12G12.06c SPAC144.12 SPBC1683.06c
SPAC25B8.15c SPBC1711.07 SPCC1450.03 SPAC1565.05 SPBC1734.08
SPAC26A3.03c SPCC1739.05 SPAC1527.03 SPCC16C4.07 SPAC18G6.01c
SPAC3F10.15c SPAC17H9.05 SPAC16.04 SPBC16E9.10c SPAC1D4.02c
SPAC3G6.11 SPCC1827.05c SPAC16.05c SPBC16G5.10 SPBC215.07c
SPAC4D7.04c SPAC18B11.06 SPCC1682.12c SPBC1703.05 SPAC22H12.03
SPBC56F2.07c SPAC19A8.07c SPAC1687.19c SPBC1709.02c SPAC23C4.08
SPBC839.07 SPAC19B12.01 SPCC16C4.06c SPAC1834.10c SPAC25A8.02

SPAC1006.08 SPAC19B12.11c SPAC16C9.03 SPBC18H10.20c SPAC27E2.06c
SPAC27D7.03c SPAC19G12.16c SPBC1703.03c SPCC1919.13c SPAC2C4.07c
SPAC25H1.05 SPAC20G8.09c SPBC1711.05 SPAC19D5.05c SPAC2C4.15c

SPAPB15E9.02c SPBC215.06c SPAC1751.04 SPAC22G7.05 SPBC2F12.15c
SPCC320.13c SPAC22F8.09 SPBC17D1.05 SPAC139.06 SPAC2G11.13

SPNCRNA.132 SPAC23H4.15 SPCC18.01c SPBC23G7.07c SPBC365.09c
SPBC19F5.05c SPCC1827.01c SPAC24C9.11 SPAC3A12.08
SPBC26H8.08c SPBC18E5.03c SPAC27D7.12c SPAC3H1.11
SPAC2C4.11c SPCC191.02c SPAC30C2.04 SPAC4G9.19
SPBC2G5.03 SPCC191.08 SPBC31A8.02 SPBC530.05
SPCC320.11c SPAC23C11.03 SPBC3F6.04c SPAC5D6.04
SPAC3G9.10c SPAC23C4.17 SPBC409.15 SPCC61.05
SPBC4F6.13c SPBC23E6.05 SPBC428.19c SPCC622.15c
SPBC4F6.14 SPAC23H3.07c SPAC4F10.06 SPAC630.05
SPAC4F8.04 SPAC25B8.05 SPAC4G8.02c SPCC74.03c
SPBC651.01c SPAC26A3.06 SPCC569.02c SPAC750.05c
SPAC823.04 SPBC27B12.09c SPAC56F8.03 SPCC962.01
SPAC890.05 SPBC2A9.13 SPAC56F8.09 SPBC14C8.01c

SPAC8F11.04 SPAC2C4.06c SPAC57A7.06 gna1:spgna1
SPBC9B6.07 SPAC2C4.12c SPCC31H12.08c mhk1:pmk1
SPAC140.02 SPAC2G11.02 SPAC607.02c SPBP35G2.12
SPBP8B7.20c SPAC31A2.07c SPCC613.08 SPBP4H10.12

SPCPB16A4.04c SPAC31G5.02 SPCC613.12c SPBP4H10.16c
SPCC1259.03 SPCC320.12 SPCC622.14 SPBP4H10.19c

SPCC364.01 SPBC31E1.06 SPAP8A3.12c
SPBC3B8.05 SPBC800.08 SPBP8B7.13

SPBC11C11.10 SPCC825.04c SPAPB24D3.03
SPAC3F10.16c SPBC83.18c SPAC57A10.05c
SPBC28E12.05 SPBC839.14c SPBC16H5.07c
SPAC4F10.05c SPCC895.06 SPBC649.03
SPBC543.06c SPAC26A3.17c SPAC688.13
SPAC56F8.10 SPAC1420.02c SPBC365.05c
SPCC576.01c CTOKYO 453.18 SPAC10F6.09c
SPCC584.01c SPACUNK4.09 SPAC9.04
SPAC6G9.02c SPAC2F7.11 SPAPB15E9.03c
SPAC6G9.10c SPBC646.14c SPAC27E2.08
SPCC736.02 SPCP1E11.08 SPAC13D1.01c
SPBC776.08c SPBC3B9.07c SPCC777.10c
SPBC776.17 rpb6:rpo15 SPBC16A3.09c

SPAC823.08c SPBC14C8.12
SPBC839.11c rpc19:rpa17
SPBC8D2.10c rpc40:rpa42

continued on next page ...
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... continued
Cluster 17 Cluster 20 Cluster 21 Cluster 22 Cluster 32

SPAC9G1.12 SPBC776.01
dim1:C336.02 SPAC15E1.03

gpm1 rps30-1
hsk1 sfc6

kap123 snu13
lps1 sso1

misc RNA 1.1.46.RC SPCC584.04
nuc1: rpa1 sup45
P1E11.11 uvi22

P22H7.10c
pfk1
pi031
prh1
rpa49

rpl30: rpl30-1
sum3: ded1: slh3: moc2
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Table A.3: Reduced transcription rate and mRNA abundance [Figure 4.10]
Cluster 27 Cluster 28 Cluster 29

SPCC1393.08 SPAC6B12.15 SPAC4F10.14c
SPBC25B2.09c SPAC9.09 SPBC106.14c
SPBC25H2.05 SPAC513.01c SPAC10F6.01c
SPBC29A3.07c SPAPB1E7.12 SPBC12C2.07c
SPBC56F2.12 SPCC31H12.04c SPAC110.01
SPAC589.10c rpl1-2:rpl10a-2 SPBC14F5.06
SPBC839.15c SPAC1805.13 SPBC15D4.02
SPBC19C2.07 SPCC576.11 SPCC162.01c

SPBC2D10.10c SPBC2F12.04 SPCC16A11.10c
pab1:pabp rpl18-1:rpl18 SPBC16A3.08c

SPAP7G5.05 SPAPB17E12.13 SPAC1782.11
SPAC26A3.07c SPCC1322.11 SPAC17G8.05
SPBC17G9.10 rpl27-2:rpl27b SPAC17G8.08c
SPAC664.05 rpl28-1:rpl27a SPBC18E5.07

rpl13a-1:rpl16-1 SPCC5E4.07 SPAC18G6.11c
SPAC1783.08c SPAC17A5.03 SPCC1450.02
SPCC1682.14 SPBC1711.06 SPBC19G7.06
SPAC3A12.10 SPBP8B7.03c SPAC20G8.04c
SPAC26A3.04 SPAC3H5.12c SPBC211.05
SPAC959.08 SPBC11C11.09c SPAC24C9.06c

SPAC11E3.15 SPCC622.18 SPBC29A3.08
SPAC3G9.03 SPAC3H5.07 SPBC29A3.13
SPCC330.14c SPBC18H10.12c SPBC29A3.18

SPBC29B5.03c SPBC29A3.04 SPAC2F3.13c
rpl27-1:rpl27a rpl8-2:rpk37:rpk5b SPCC330.13
SPAC890.08 SPAC4G9.16c SPBC36.01c

SPBC16C6.11 SPBP8B7.06 SPCC548.06c
SPAC3H5.10 SPCC1393.03 SPBC685.06

SPAC23A1.08c rps15a-2:rps22-2 SPBC713.12
SPCC1322.15 SPBC16D10.11c SPCC74.04
rpl35a:rpl33 SPCC1259.01c SPCC1529.01
SPCC970.05 SPBC21C3.13 SPBC839.12
SPBC405.07 SPAC17G6.06 SPBC8D2.16c

SPAPB17E12.05 rps3a-1:rps1-1 SPCC965.14c
rpl37a-1:rpl43-1 rps3a-2:rps1-2 SPAC977.12
rpl37a-2: rpl43-2 rps4-2 cyc1

rpl38-1 rps5 eft2-2
rpl41-2 rps6-1 eno1
rpp1-2 rps9-1: rps9a gaf2
rps11-1 tif1 hos3
rps11-2 ubi3 ilv3
rps12-1 leu2
rps15-2 lys7

SPCC576.08c SPNCRNA.101
rps24-2 P4H10.15
rps26-2 pac2
rps29 PB10D8.01

rps30-2 PB1A10.14
rps4-3 PB1E7.07
rps7 PB2B2.09c

rps8-2 pma1
rps9-2: rps9b pol5
rpsa-2: rps0-2 prl35

tif51 rpl13a-2: rpl16-2
uep1: ubi2 rpl17-2

continued on next page ...
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... continued
Cluster 27 Cluster 28 Cluster 29

rpl24
rpl25a
rpl30-2
rpl35
rpl3-b

rpl44: rpl28
rpl8-1: rpk5a: rpl2-1: rpk5

rpl8-3: rpk5-b: rpkd4
rpp1-3

rpp2-3: rla6
rps10-1

rps10-2: pi023
rps14-1
rps17-1
rps19-2
rps23-2
rps26-1
rps28-1
rps28-2

rps3
rps4-1
sce3

tif512
ups
ura1
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Table A.4: Exponential approach to increased mRNA abundance level [Figure 4.14]
Cluster 1 Cluster 2 Cluster 3

SPAC1006.01 SPAC11E3.14 SPBC11C11.06c
SPCC1494.03 SPAC823.03 C1685.13.RC
SPBC1683.06c SPBC21H7.06c SPBC16E9.16c
SPAC1687.14c SPAC22E12.03c SPBC21C3.19
SPAC16E8.16 SPBC23G7.10c SPAC23H3.15c
SPBC16E9.11c SPAC607.08c SPBC365.12c
SPBC25B2.10 SPAC824.07 SPAC637.03

SPAC29B12.11c NC133b SPAC9E9.04
SPAC2C4.07c SPAC3C7.14c SPCC757.07c
SPBC2F12.15c SPCC330.06c SPACUNK4.15
SPAC3A12.06c atf1:mts1:sss1:gad7.B SPBC32F12.03c

SPBC530.05 SPBC106.03 SPAP8A3.04c
SPAC57A7.09 SPAC18G6.09c I23 C660.16
SPCC594.06c SPAC1687.22c SPNCRNA.44
SPCC622.15c SPCC23B6.01c SPAC343.12
SPCC736.15 SPBC25B2.03 SPAC328.03
SPCC594.01 SPAC25H1.03 SPAC10F6.06

SPAC23C4.12 SPAC26H5.04 SPAC57A10.09c
SPBC4F6.06 SPAC29A4.17c

mcs1:res2:pct1 SPAC31A2.12
SPBP4H10.16c SPAC328.04
SPBC16H5.07c SPAC328.07c
SPAC4A8.03c SPCC4G3.13c
SPAC688.13 SPCC553.10
SPBC365.05c SPCC569.01c
SPCC777.10c SPAC607.09c

SPBC16A3.09c SPCC63.13
SPAC688.03c

gti1
P7G5.01

PB24D3.09c
trx2

uvi15
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Appendix B

Supplementary Tables for Chapter 5

Table B.1: Probesets mapping to RNA polymerase subunits. Considered to be an
invariant set in order to fit a variance-stabilizing normalization function for experi-
ment FG1 (barley infection timecourse)

Invariant set:
probesets mapping to RNA polymerase subunits
fgd254-570 at
fgd228-190 at
fgd185-1310 at
fgd347-50 at
fg12242 at
fgd185-1110 at
fgd61-20 at
fgd230-70 at
fgd30-30 at
fg06937 s at
fgd41-90 at
fgd35-880 at
fgd231-150 at
fgd37-350 at
fgd192-280 at
fgd451-80 at
fgd132-550 s at
fg02659 s at
fgd74-90 at
fgd183-140 at
fg06683 s at
fgd266-550 at
fgd13-370 at
fgd276-280 s at
fg12319 s at
fgd259-1330 at
fgd56-110 at
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Table B.2: Coexpression groups identified from each F. gramin-
earum GeneChip experiments. DNA-binding TAPs (dTAPs) are
listed, colour-coded according to clade specificity (black: Eukary-
otes; green: Fungi; blue: Pezizomycotina, red; Fusarium)

Coexpression group #genes #TAPs
(#dTAPs)

DNA-binding TAPs

FG1˜ 10 1 (1) fg11623
FG1↓ 4 0 (0)
FG1↑ 781 14 (10) fg10179, fg11627, fg08696, fg10142, fg07863, fgd108-320, fg07075, fg09286, fg07052, fg09715
FG1↓↑ 0 0 (0)
FG1↑↓ 13 0 (0)
FG12.-1-1 1 0 (0)
FG12.-11 1 0 (0)
FG12.0-1 1 0 (0)
FG12.01 19 1 (0)
FG2.-1-1 206 11 (11) fg07079, fg09333, fg03566, fg10350, fg09001, fg10429, fg01350, fg09177, fg00813, fg03783, fg04683
FG2.-10 321 7 (6) fg11561, fg07431, fg00240, fg02939, fgd304-860, fg03201
FG2.-11 69 1 (1) fg10674
FG2.0-1 131 5 (5) fg09217, fg00069, fg04035, fg12190, fg10470
FG2.01 348 35 (35) fg03881, fg03159, fg10639, fg12093, fg04786, fg09524, fg08696, fg03727, fg03487, fg03606, fg03390,

fg07638, fg03327, fg12416, fg00153, fg04671, fg00678, fg10627, fg03214, fg09064, fg04643, fg10129,
fg08321, fg03786, fg12454, fg03415, fg09047, fg04170, fg04974, fg03649, fg06481, fg11462, fg01760,
fg01378, fg06934

FG2.1-1 23 1 (1) fg10266
FG2.10 484 13 (11) fg06359, fg09884, fg08892, fg00307, fgd146-300, fg08893, fg00795, fg09832, fgd122-200, fg05151,

fg01307
FG2.11 178 15 (15) fg07420, fg05283, fg12061, fg06231, fg10731, fg02750, fg05682, fg01172, fg08397, fg05381, fg04803,

fg01173, fg07368, fg08434, fg08791
FG5˜ 101 6 (4) fg08972, fgd150-720, fg00342, fg03786
FG5↓ 426 8 (8) fg08080, fg03390, fg12575, fg04932, fg02320, fg11301, fg04170, fg10812
FG5↑ 806 23 (18) fg05304, fg07420, fg09217, fg08626, fg03727, fg01327, fg01214, fg02969, fgd185-1060, fg07187,

fg00696, fg05242, fg08890, fg05904, fg09188, fg04480, fg12757, fg06160
Continued on next page
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Table B.2 – continued from previous page
Coexpression group #genes #TAPs

(#dTAPs)
DNA-binding TAPs

FG5↓↑ 247 1 (1) fg03783
FG5↑↓ 316 17 (16) fg00725, fg08892, fg08064, fg08411, fg03040, fg08431, fg05682, fg05041, fg08321, fg03912, fg01576,

fg00800, fg01366, fg01173, fg05151, fg08434
FG6.-11 38 1 (1) fg01724
FG6.1-1 1 0 (0)
FG6↓ 781 28 (26) fg03292, fg07079, fg02696, fg02068, fg07638, fg04932, fg04083, fg06713, fg04035, fg02320, fg12462,

fgd150-720, fg05588, fg02676, fg06714, fg07052, fg02323, fg01341, fg10057, fg06382, fg03861,
fg01176, fg06421, fg03663, fg03783, fg07097

FG6↑ 668 24 (15) fg05304, fg09217, fg03881, fg12654, fg00573, fg08972, fg01214, fg00678, fg09188, fg06262, fg01100,
fg09047, fg12757, fg07504, fg01139

FG6↓↑ 126 1 (1) fg02676
FG6↑↓ 98 5 (4) fg01327, fg04191, fg01366, fg05151
FG7 2h spores.-1 1222 40 (16) fg05304, fg06427, fg09857, fg07076, fg08892, fg01488, fg09868, fg04557, fgd108-320, fg07187,

fg01201, fg07052, fg06684, fg09410, fg10944, fg12528
FG7 2h spores.1 1234 69 (60) fg04293, fg01915, fg09921, fg10851, fg03292, fg09770, fg00713, fg01936, fg09884, fg12406, fg01562,

fg09111, fg07863, fg02874, fg10440, fg08064, fg09178, fg10429, fg02633, fgd213-220, fg02320,
fg12658, fgd467-70, fgd210-20, fg01507, fg05926, fg11271, fgd101-60, fg08431, fg02787, fg02323,
fg04680, fg08397, fg04888, fg08321, fg06262, fg05402, fgd224-590, fg06311, fg12287, fg09014,
fg08380, fg01753, fg11301, fg08617, fg04974, fgd246-10, fg08403, fg06160, fg05068, fg05503,
fg12183, fg06324, fg05151, fg07097, fg08713, fg08434, fg03219, fg01731, fg10868
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Table B.3: Table of protein entries differentially expressed during both crop infection experiments FG1 (barley head infection) and
FG12 (wheat crown infection). 1Broad gene name is shown unless stated (MIPS). 2fg01079 and fg01080 were later merged in gene calls
version FG3 [187].

Coexpression group
Gene ID Chromosome FG1 FG12 Gene name (Broad/MIPS)1

fg00062 1 FG1↑ FG12.01 [hypothetical]
fg01079 1 FG1↑ FG12.01 ATP synthase subunit alpha, mitochondrial precursor2

fg01080 1 FG1↑ FG12.01 ATP synthase subunit alpha, mitochondrial precursor2

fg01956 1 FG1↑ FG12.01 [conserved hypothetical]
fg02284 1 FG1↑ FG12.01 [hypothetical]
fg08366 2 FG1↑ FG12.01 [conserved hypothetical] (MIPS)
fgd166-270 2 FG1↑ FG12.-11 Probable glycine-rich RNA-binding protein (MIPS)
fg06021 3 FG1↑ FG12.01 ADP,ATP carrier protein
fg06268 3 FG1↑ FG12.01 Cytochrome c oxidase polypeptide VIb
fg06289 3 FG1↑ FG12.01 60S ribosomal protein L3
fg11368 3 FG1↑ FG12.01 [hypothetical] similar to mannose-binding lectin
fg12313 4 FG1↑ FG12.01 Probable translation initiation factor eIF-4A (MIPS)
fg06931 4 FG1↑ FG12.01 60S ribosomal protein L2
fg07335 4 FG1↑ FG12.01 Actin
fg07530 4 FG1↑ FG12.01 Alcohol oxidase
fg07647 4 FG1↑ FG12.01 [predicted protein]
fg07765 4 FG1↑ FG12.01 [hypothetical] similar to cytochrome P450 monooxygenase
fg09690 4 FG1↑ FG12.01 [conserved hypothetical]
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Hammond-Kosack. The Pathogen-Host Interactions database (PHI-base) pro-
vides insights into generic and novel themes of pathogenicity. Mol Plant-
Microbe Interact, 19:1451–1462, 2006.

[175] R. J. N. Frandsen, N. J. Nielsen, N. Maolanon, J. C. Sorensen, S. Olsson,
J. Nielsen, and H. Giese. The biosynthetic pathway for aurofusarin in Fusar-
ium graminearum reveals a close link between the naphthoquinones and naph-
thopyrones. Mol Microbiol, 61:1069–1080, 2006.

[176] S. Malz, M. N. Grell, C. Thrane, F. J. Maier, P. Rosager, A. Felk, K. S. Albertsen,
S. Salomon, L. Bohn, W. Schär, and H. Giese. Identification of a gene cluster
responsible for the biosynthesis of aurofusarin in the Fusarium graminearum
species complex. Fung Genet and Biol, 42:420–433, 2005.

[177] J-E. Kim, J. Jin, H. Kim, J-C. Kim, S-H. Yun, and Y-W. Lee. Gip2, a putative
transcription factor that regulates the aurofusarin biosynthetic gene cluster in
Gibberella zeae. App Env Microbiol, 72:1645–1652, 2006.

[178] I. Gaffoor, D. W. Brown, R. Plattner, R. H. Proctor, W. H. Qi, and F. Trail. Func-
tional analysis of the polyketide synthase genes in the filamentous fungus
Gibberella zeae (anamorph Fusarium graminearum). Eukaryotic Cell, 4:1926–1933,
2005.

171



BIBLIOGRAPHY

[179] L. J. Harris, N. J. Alexander, A. Saparno, B. Blackwell, S. P. McCormick, A. E.
Desjardins, L. S. Robert, N. Tinker, J. Hattori, C Piche, J. P. Schernthaner,
R. Watson, and Ouellet T. A novel gene cluster in Fusarium graminearum con-
tains a gene that contributes to butenolide synthesis. Fung Genet Biol, 44:293–
306, 2007.

[180] E. Lysøe, K. R. Bone, and S. S. Klemsdal. Real-time quantitative expression
studies of the zearalenone biosynthetic gene cluster in Fusarium graminearum.
Phytopath, 99:176–184, 2009.

[181] S. P. McCormick, L. J. Harris, N. J. Alexander, T. Ouellet, A. Saparno, S. Allard,
and A. E Desjardins. Tri1 in Fusarium graminearum encodes a p450 oxygenase.
Appl Env Microbiol, 70:2044–2051, 2004.

[182] The Gene Ontology Consortium. Gene ontology: tool for the unification of
biology. Nature Genet, 25:25–9, 2000.

[183] C. Pál and L. D. Hurst. Evidence for co-evolution of gene order and recombi-
nation rate. Nature Genet, 33:392–395, 2003.

[184] M. J. Lercher and L. D. Hurst. Human SNP variability and mutation rate are
higher in regions of high recombination. Trends Genet, 18:337–340, 2002.

[185] A. Barski, S. Cuddapah, K. Cui, T. Y. Roh, D. E. Schones, Z. Wang, G. Wei,
I. Chepelev, and K. Zhao. High-resolution profiling of histone methylations
in the human genome. Cell, 129:823–837, May 2007.

[186] K. D. MacIsaac and E. Fraenkel. Practical strategies for discovering regulatory
DNA sequence motifs. PLoS Comput Biol, 2:e36, 2006.

[187] L.-J. Ma, H. C. van der Does, K. A. Borkovich, J. J. Coleman, M.-J. Daboussi,
A. Di Pietro, M. Dufresne, M. Freitag, M. Grabherr, B. Henrissat, P. M. Houter-
man, S. Kang, W.-B. Shim, C. Woloshuk, X. Xie, J.-R. Xu, J. Antoniw, S. E.
Baker, B. H. Bluhm, A. Breakspear, D. W. Brown, R. A. E. Butchko, S. Chap-
man, R. M. R. Coulson, P. M. Coutinho, E. G. J. Danchin, A. Diener, L. R.
Gale, D. M. Gardiner, S. Goff, K. E. Hammond-Kosack, K. Hilburn, P. M.
Houterman, A. Hua-Van, W. Jonkers, K. Kazan, C. D. Kodira, M. Koehrsen,
L. Kumar, Y.-H. Lee, L. Li, J. M. Manners, D. Miranda-Saavedra, M. Mukher-
jee, G. Park, J. Park, S.-Y. Park, R. H. Proctor, A. Regev, M. C. Ruiz-Roldan,
D. Sain, S. Sakthikumar, S. Sykes, D. C. Schwartz, B. G. Turgeon, I. Wapinski,
O. Yoder, S. Young, Q. Zeng, S. Zhou, J. Galagan, C. A. Cuomo, H. C. Kistler,
and M Rep. Fusarium comparative genomics reveals pathogenicity related
lineage-specific genome expansion. Nature, in press.

[188] C. Hertz-Fowler, C. S. Peacock, V. Wood, M. Aslett, A. Kerhornou, P. Mooney,
A. Tivey, M. Berriman, N. Hall, K. Rutherford, J. Parkhill, A. C. Ivens, M. A.
Rajandream, and B. Barrell. GeneDB: a resource for prokaryotic and eukary-
otic organisms. Nucl Acids Res, 32:D339–D343, 2004.

172


	Summary
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Regulation of gene expression
	1.1.1 Transcriptional regulation of gene expression
	1.1.1.1 Transcription factors
	1.1.1.2 Chromatin structure and chromatin remodelling
	1.1.1.3 Spacial arrangement of transcriptionally active chromosomal regions

	1.1.2 Co-transcriptional and post-transcriptional regulation of gene expression

	1.2 DNA microarray platforms
	1.2.1 cDNA microarrays
	1.2.1.1 Normalization of cDNA microarray intensity values

	1.2.2 Affymetrix GeneChip oligonucleotide arrays
	1.2.2.1 Normalization and probeset detection for Affymetrix GeneChip oligonucleotide arrays

	1.2.3 ChIP-chip datasets
	1.2.4 High-density microarray platforms and high-throughput sequencing technologies

	1.3 Functional annotation: Gene Ontology and enrichment analysis
	1.3.1 GO annotation of S. pombe
	1.3.2 GO annotation of F. graminearum

	1.4 Thesis Aims
	1.4.1 Thesis overview


	2 Inferring transcription regulatory control from a microarray timecourse: a case study in Saccharomyces cerevisiae
	2.1 Introduction
	2.1.1 Transcription regulation during stationary phase exit and re-entry in S. cerevisiae
	2.1.2 Transcription factor activity profiles
	2.1.3 Study aims

	2.2 Datasets
	2.2.1 Stationary phase exit and entry: a gene expression timecourse
	2.2.2 Transcription factor binding network

	2.3 Methods
	2.3.1 Transcription factor activity and hidden factor analysis
	2.3.1.1 Bayesian sparse hidden components analysis
	2.3.1.2 Probabilistic dynamic model of transcription factor activity


	2.4 Results
	2.4.1 Bayesian sparse hidden components analysis
	2.4.2 Probabilistic dynamic model of transcription factor activity

	2.5 Discussion

	3 Detecting regulated mRNA stability using microarray measurements: models and applications
	3.1 Introduction
	3.1.1 Chapter outline

	3.2 Previous work: genome-wide mRNA degradation rates and mRNA abundance
	3.2.1 mRNA degradation as a first-order decay process
	3.2.2 Detecting changes in mRNA stability
	3.2.2.1 Comparison of mRNA decay rates
	3.2.2.2 Comparison of mRNA abundance and transcription rates
	3.2.2.3 Modelling timecourse datasets of mRNA abundance and transcription rates


	3.3 Fitting an mRNA kinetic model to microarray data
	3.3.1 First-order mRNA degradation
	3.3.2 First-order mRNA degradation: interpretation of parameters
	3.3.3 Alternative models of mRNA degradation
	3.3.4 Comparison of mRNA degradation models

	3.4 Discussion

	4 Regulation of mRNA stability in response to oxidative stress in Schizosaccharomyces pombe
	4.1 Introduction
	4.1.1 Oxidative stress response to hydrogen peroxide
	4.1.2 Study aims

	4.2 Datasets: transcription arrays and expression arrays
	4.2.1 Experimental procedure
	4.2.2 Data preprocessing
	4.2.3 RNA polymerase II occupancy and transcription rate

	4.3 Methods
	4.3.1 Overview of methods
	4.3.2 Modelling mRNA degradation during the stress response
	4.3.3 Model fitting
	4.3.4 Array features with complete data and model fits
	4.3.5 Clustering timecourse data using Bayesian hierarchical clustering
	4.3.6 Sequence searches for short word occurence bias and RNA sequence/structure motifs

	4.4 Results
	4.4.1 Genome-wide fits of first-order mRNA degradation
	4.4.2 Evidence of putative regulated mRNA stability 12-60 mins after stress induction
	4.4.3 First-order mRNA decay during the stress response: evidence of initial stabilization/destabilization
	4.4.4 Dynamics of induction and repression
	4.4.5 Post-transcriptional regulation: searching for transcript sequence motifs

	4.5 Discussion

	5 Integration of global gene expression studies in Fusarium graminearum
	5.1 Introduction
	5.1.1 F. graminearum sequencing and gene calls
	5.1.2 Study aims

	5.2 Datasets
	5.2.1 Gene expression datasets
	5.2.2 Gene calls and genome annotation
	5.2.3 Mapping probesets to genes
	5.2.4 Gene expression data selection and preprocessing
	5.2.4.1 Quality assessment of CEL files
	5.2.4.2 Array normalization for differential expression analysis


	5.3 Methods
	5.3.1 Overview
	5.3.2 Probeset detection
	5.3.3 Defining groups of coexpressed genes
	5.3.4 Prediction of transcription-associated proteins (TAPs)
	5.3.5 Functional annotation and clade specificity of selected genes
	5.3.6 Testing for chromosomal clustering of coexpressed genes

	5.4 Results
	5.4.1 Overview
	5.4.2 Differential expression within experiments
	5.4.3 Positional constraints on TAPs and coexpressed genes
	5.4.3.1 Constrained chromosomal distribution of TAPs
	5.4.3.2 Evidence of chromosomal clustering of coexpressed genes
	5.4.3.3 TAP-centric clustering of coexpressed genes
	5.4.3.4 Localized chromosomal clusters of coexpressed genes
	5.4.3.5 Functional annotation of localized coexpressed genes

	5.4.4 Bias in protein domain composition of detected and differentially expressed TAPs

	5.5 Discussion

	6 Discussion
	A Supplementary Tables for Chapter 4
	B Supplementary Tables for Chapter 5
	Bibliography

