Camphor 5-monooxygenase

 

Camphor 5-monooxygenase is involved in the pathway of (R)-camphor degradation, which is part of terpene metabolism. It is a B-class cytochrome P450, one of the cytochrome P450 superfamily of proteins.

 

Reference Protein and Structure

Sequence
P00183 UniProt (1.14.15.1) IPR002397 (Sequence Homologues) (PDB Homologues)
Biological species
Pseudomonas putida (Bacteria) Uniprot
PDB
1yrc - X-ray Crystal Structure of hydrogenated Cytochrome P450cam (1.4 Å) PDBe PDBsum 1yrc
Catalytic CATH Domains
1.10.630.10 CATHdb (see all for 1yrc)
Cofactors
Heme b (1), Water (1) Metal MACiE
Click To Show Structure

Enzyme Reaction (EC:1.14.15.1)

dioxygen
CHEBI:15379ChEBI
+
di-mu-sulfido-diiron(0)
CHEBI:33739ChEBI
+
hydron
CHEBI:15378ChEBI
+
(R)-camphor
CHEBI:15396ChEBI
water
CHEBI:15377ChEBI
+
(+)-exo-5-hydroxycamphor
CHEBI:15398ChEBI
+
di-mu-sulfido-diiron(2+)
CHEBI:33737ChEBI
Alternative enzyme names: 2-bornanone 5-exo-hydroxylase, D-camphor-exo-hydroxylase, Bornanone 5-exo-hydroxylase, Camphor 5-exo-hydroxylase, Camphor 5-exo-methylene hydroxylase, Camphor 5-exohydroxylase, Camphor hydroxylase, Camphor methylene hydroxylase, D-camphor monooxygenase, Methylene hydroxylase, Methylene monooxygenase, Cytochrome p450-cam,

Enzyme Mechanism

Introduction

Putidaredoxin donates a single electron to the Fe(III) centre of the heme cofactor, forming Fe(II), which in turn donates the electron to the dioxygen substrate .Putidaredoxin then donates a second electron to the bound peroxo moiety, which initiates a proton transfer relay through Thr252, water, Asp251, Arg186 to bulk solvent. Both Heme and Iron donate single electrons to the bound peroxo moiety, which eliminates water and initiates a proton transfer relay through the same chain as used previously. The iron-bound oxy group abstracts a hydrogen from the camphor substrate. In the final step, the camphor radical initiates a homolytic substitution, hydroxylating the intermediate to form 5-hydroxycamphor. The iron centre accepts a single electron and water displaces the product.

Catalytic Residues Roles

UniProt PDB* (1yrc)
Cys358 Cys357A One of the axial ligands of the heme iron. Antibonding interactions of the iron with the axial ligands (Cys357 and a water molecule) stabilise the doublet with respect to the quartet and sextet states. hydrogen bond acceptor, metal ligand, electrostatic stabiliser
Leu359 (main-N), Gly360 (main-N) Leu358A (main-N), Gly359A (main-N) The stabilisation of the high-spin state could be explained by electrostatic interactions of the protein with the cysteine sulfur decreasing the spin density in the sulfur atom for all the spin states. Such effect is caused by hydrogen bonds from Gly359 and Leu358 to the sulfur. hydrogen bond donor, electrostatic stabiliser
Asp252, Thr253, Arg187 Asp251A, Thr252A, Arg186A Form a proton relay chain from the active site to bulk solvent. hydrogen bond acceptor, hydrogen bond donor, proton acceptor, proton donor, proton relay
*PDB label guide - RESx(y)B(C) - RES: Residue Name; x: Residue ID in PDB file; y: Residue ID in PDB sequence if different from PDB file; B: PDB Chain; C: Biological Assembly Chain if different from PDB. If label is "Not Found" it means this residue is not found in the reference PDB.

Chemical Components

electron transfer, elimination (not covered by the Ingold mechanisms), overall reactant used, cofactor used, decoordination from a metal ion, intermediate formation, bimolecular homolytic addition, redox reaction, radical formation, coordination to a metal ion, radical termination, proton transfer, proton relay, electron relay, unimolecular elimination by the conjugate base, overall product formed, hydrogen transfer, bimolecular homolytic substitution, intermediate terminated, native state of cofactor regenerated, native state of enzyme regenerated

References

  1. Schlichting I et al. (2000), Science, 287, 1615-1622. The Catalytic Pathway of Cytochrome P450cam at Atomic Resolution. DOI:10.1126/science.287.5458.1615. PMID:10698731.
  2. Poulos TL (2014), Chem Rev, 114, 3919-3962. Heme enzyme structure and function. DOI:10.1021/cr400415k. PMID:24400737.
  3. Hiruma Y et al. (2013), J Mol Biol, 425, 4353-4365. The structure of the cytochrome p450cam-putidaredoxin complex determined by paramagnetic NMR spectroscopy and crystallography. DOI:10.1016/j.jmb.2013.07.006. PMID:23856620.
  4. Stoll S et al. (2012), Proc Natl Acad Sci U S A, 109, 12888-12893. Double electron-electron resonance shows cytochrome P450cam undergoes a conformational change in solution upon binding substrate. DOI:10.1073/pnas.1207123109. PMID:22826259.
  5. Galinato MG et al. (2011), Biochemistry, 50, 1053-1069. Elucidating the role of the proximal cysteine hydrogen-bonding network in ferric cytochrome P450cam and corresponding mutants using magnetic circular dichroism spectroscopy. DOI:10.1021/bi101911y. PMID:21158478.
  6. Hayashi T et al. (2009), J Am Chem Soc, 131, 1398-1400. A role of the heme-7-propionate side chain in cytochrome P450cam as a gate for regulating the access of water molecules to the substrate-binding site. DOI:10.1021/ja807420k. PMID:19133773.
  7. Sakurai K et al. (2009), Acta Crystallogr Sect F Struct Biol Cryst Commun, 65, 80-83. Substrate binding induces structural changes in cytochrome P450cam. DOI:10.1107/S1744309108044114. PMID:19193991.
  8. Aldag C et al. (2009), Proc Natl Acad Sci U S A, 106, 5481-5486. Probing the role of the proximal heme ligand in cytochrome P450cam by recombinant incorporation of selenocysteine. DOI:10.1073/pnas.0810503106. PMID:19293375.
  9. Harada K et al. (2008), J Am Chem Soc, 130, 432-433. Evaluation of the functional role of the heme-6-propionate side chain in cytochrome P450cam. DOI:10.1021/ja077902l. PMID:18088124.
  10. Zheng J et al. (2006), J Am Chem Soc, 128, 13204-13215. QM/MM Study of Mechanisms for Compound I Formation in the Catalytic Cycle of Cytochrome P450cam. DOI:10.1021/ja063439l. PMID:17017800.
  11. Spolitak T et al. (2005), J Biol Chem, 280, 20300-20309. Reaction of ferric cytochrome P450cam with peracids: kinetic characterization of intermediates on the reaction pathway. DOI:10.1074/jbc.M501761200. PMID:15781454.
  12. Davydov R et al. (2005), J Am Chem Soc, 127, 1403-1413. Substrate modulation of the properties and reactivity of the oxy-ferrous and hydroperoxo-ferric intermediates of cytochrome P450cam as shown by cryoreduction-EPR/ENDOR spectroscopy. DOI:10.1021/ja045351i. PMID:15686372.
  13. Nagano S et al. (2005), J Biol Chem, 280, 31659-31663. Crystallographic study on the dioxygen complex of wild-type and mutant cytochrome P450cam. Implications for the dioxygen activation mechanism. DOI:10.1074/jbc.M505261200. PMID:15994329.
  14. Guallar V et al. (2004), J Am Chem Soc, 126, 8501-8508. Cytochrome P450CAM Enzymatic Catalysis Cycle:  A Quantum Mechanics/Molecular Mechanics Study. DOI:10.1021/ja036123b. PMID:15238007.
  15. Pylypenko O et al. (2004), Annu Rev Biochem, 73, 991-1018. Structural aspects of ligand binding to and electron transfer in bacterial and fungal P450s. DOI:10.1146/annurev.biochem.73.011303.073711. PMID:15189165.
  16. Hays AM et al. (2004), J Mol Biol, 344, 455-469. Conformational states of cytochrome P450cam revealed by trapping of synthetic molecular wires. DOI:10.1016/j.jmb.2004.09.046. PMID:15522298.
  17. Hishiki T et al. (2000), J Biochem, 128, 965-974. X-ray crystal structure and catalytic properties of Thr252Ile mutant of cytochrome P450cam: roles of Thr252 and water in the active center. PMID:11098139.
  18. Vidakovic M et al. (1998), Biochemistry, 37, 9211-9219. Understanding the role of the essential Asp251 in cytochrome p450cam using site-directed mutagenesis, crystallography, and kinetic solvent isotope effect. DOI:10.1021/bi980189f. PMID:9649301.
  19. Schlichting I et al. (1997), FEBS Lett, 415, 253-257. Crystal structure of cytochrome P-450cam complexed with the (1S)-camphor enantiomer. DOI:10.1016/s0014-5793(97)01135-6. PMID:9357977.

Catalytic Residues Roles

Residue Roles
Cys357A metal ligand
Arg186A hydrogen bond donor
Asp251A hydrogen bond donor, hydrogen bond acceptor
Thr252A hydrogen bond acceptor, hydrogen bond donor
Cys357A electrostatic stabiliser, hydrogen bond acceptor
Leu358A (main-N) hydrogen bond donor, electrostatic stabiliser
Gly359A (main-N) hydrogen bond donor, electrostatic stabiliser

Chemical Components

electron transfer, elimination (not covered by the Ingold mechanisms), overall reactant used, cofactor used, decoordination from a metal ion, intermediate formation

Catalytic Residues Roles

Residue Roles
Cys357A metal ligand
Arg186A hydrogen bond donor
Asp251A hydrogen bond donor, hydrogen bond acceptor
Thr252A hydrogen bond acceptor, hydrogen bond donor
Cys357A electrostatic stabiliser, hydrogen bond acceptor
Leu358A (main-N) hydrogen bond donor, electrostatic stabiliser
Gly359A (main-N) hydrogen bond donor, electrostatic stabiliser

Chemical Components

ingold: bimolecular homolytic addition, redox reaction, radical formation, overall reactant used, coordination to a metal ion, intermediate formation

Catalytic Residues Roles

Residue Roles
Cys357A metal ligand
Arg186A hydrogen bond donor, proton relay
Asp251A hydrogen bond donor, hydrogen bond acceptor, proton relay
Thr252A hydrogen bond acceptor, hydrogen bond donor, proton relay
Cys357A electrostatic stabiliser, hydrogen bond acceptor
Leu358A (main-N) hydrogen bond donor, electrostatic stabiliser
Gly359A (main-N) hydrogen bond donor, electrostatic stabiliser
Asp251A proton donor, proton acceptor
Arg186A proton acceptor
Thr252A proton donor, proton acceptor
Arg186A proton donor

Chemical Components

electron transfer, radical termination, proton transfer, intermediate formation, proton relay, electron relay

Catalytic Residues Roles

Residue Roles
Arg186A hydrogen bond donor, proton relay
Asp251A hydrogen bond donor, hydrogen bond acceptor, proton relay
Thr252A hydrogen bond acceptor, hydrogen bond donor, proton relay
Cys357A metal ligand, electrostatic stabiliser, hydrogen bond acceptor
Leu358A (main-N) hydrogen bond donor, electrostatic stabiliser
Gly359A (main-N) hydrogen bond donor, electrostatic stabiliser
Asp251A proton donor
Arg186A proton acceptor
Thr252A proton donor, proton acceptor
Asp251A proton acceptor
Arg186A proton donor

Chemical Components

ingold: unimolecular elimination by the conjugate base, proton transfer, electron transfer, overall reactant used, intermediate formation, overall product formed, proton relay

Catalytic Residues Roles

Residue Roles
Cys357A metal ligand
Arg186A hydrogen bond donor
Asp251A hydrogen bond donor, hydrogen bond acceptor
Thr252A hydrogen bond acceptor, hydrogen bond donor
Cys357A electrostatic stabiliser, hydrogen bond acceptor
Leu358A (main-N) hydrogen bond donor, electrostatic stabiliser
Gly359A (main-N) hydrogen bond donor, electrostatic stabiliser

Chemical Components

radical formation, hydrogen transfer, overall reactant used, intermediate formation

Catalytic Residues Roles

Residue Roles
Cys357A metal ligand
Arg186A hydrogen bond donor
Asp251A hydrogen bond donor, hydrogen bond acceptor
Thr252A hydrogen bond acceptor, hydrogen bond donor
Cys357A electrostatic stabiliser, hydrogen bond acceptor
Leu358A (main-N) hydrogen bond donor, electrostatic stabiliser
Gly359A (main-N) hydrogen bond donor, electrostatic stabiliser

Chemical Components

ingold: bimolecular homolytic substitution, radical termination, electron transfer, coordination to a metal ion, decoordination from a metal ion, intermediate terminated, overall product formed, native state of cofactor regenerated, native state of enzyme regenerated

Contributors

Gemma L. Holliday, Daniel E. Almonacid, Stuart Lucas, Craig Porter