Chloromuconate cycloisomerase

 

Bacterial muconate lactonizing enzymes (MLEs) catalyze the conversion of cis,cis-muconate as a part of the beta-ketoadipate pathway. Some MLEs, including the enzyme annotated here, are also able to dehalogenate chlorinated muconate to form five-member furan rings. This enzyme catalyses several cyclisation and dehalogenation reactions.

 

Reference Protein and Structure

Sequence
P05404 UniProt (5.5.1.7) IPR013370 (Sequence Homologues) (PDB Homologues)
Biological species
Ralstonia eutropha JMP134 (Bacteria) Uniprot
PDB
2chr - A RE-EVALUATION OF THE CRYSTAL STRUCTURE OF CHLOROMUCONATE CYCLOISOMERASE (3.0 Å) PDBe PDBsum 2chr
Catalytic CATH Domains
3.20.20.120 CATHdb (see all for 2chr)
Cofactors
Manganese(2+) (1)
Click To Show Structure

Enzyme Reaction (EC:5.5.1.7)

3-chloro-cis,cis-muconate(2-)
CHEBI:17589ChEBI
+
hydron
CHEBI:15378ChEBI
hydrogen chloride
CHEBI:17883ChEBI
+
4-carboxylatomethylenebut-2-en-4-olide
CHEBI:57263ChEBI
Alternative enzyme names: Muconate cycloisomerase II, 2-chloro-2,5-dihydro-5-oxofuran-2-acetate lyase (decyclizing), 2-chloro-2,5-dihydro-5-oxofuran-2-acetate lyase (ring-opening),

Enzyme Mechanism

Introduction

O'6 undergoes an intramolecular addition at the C4 double bond with concomitant deprotonation of Glu323.

Calculations of the active site polarity suggest a degree of positive charge. This is thought to be neutralised on the elimination of chloride ion, and therefore drive the reaction towards the furan product.

Catalytic Residues Roles

UniProt PDB* (2chr)
Glu323 Glu323A Acts as the general acid/base. activator, hydrogen bond donor, proton acceptor, proton donor
Asp194, Glu220, Asp245 Asp194A, Glu220A, Asp245A Forms the manganese binding site. metal ligand
Lys269, Lys165, Lys163 Lys269A, Lys165A, Lys163A Helps stabilise the negatively charged intermediates and transition states. hydrogen bond donor, electrostatic stabiliser
*PDB label guide - RESx(y)B(C) - RES: Residue Name; x: Residue ID in PDB file; y: Residue ID in PDB sequence if different from PDB file; B: PDB Chain; C: Biological Assembly Chain if different from PDB. If label is "Not Found" it means this residue is not found in the reference PDB.

Chemical Components

intramolecular nucleophilic addition, intermediate formation, overall reactant used, proton transfer, rate-determining step, bimolecular elimination

References

  1. Neidhart DJ et al. (1990), Nature, 347, 692-694. Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous. DOI:10.1038/347692a0. PMID:2215699.
  2. Kajander T et al. (2003), Protein Sci, 12, 1855-1864. The structure ofPseudomonasP51 Cl-muconate lactonizing enzyme: Co-evolution of structure and dynamics with the dehalogenation function. DOI:10.1110/ps.0388503. PMID:12930985.
  3. Kaulmann U et al. (2001), J Bacteriol, 183, 4551-4561. Mechanism of Chloride Elimination from 3-Chloro- and 2,4-Dichloro-cis,cis-Muconate: New Insight Obtained from Analysis of Muconate Cycloisomerase Variant CatB-K169A. DOI:10.1128/jb.183.15.4551-4561.2001. PMID:11443090.
  4. Schell U et al. (1999), Proteins, 34, 125-136. Structural basis for the activity of two muconate cycloisomerase variants toward substituted muconates. DOI:10.1002/(sici)1097-0134(19990101)34:1<125::aid-prot10>3.3.co;2-p. PMID:10336378.
  5. Vollmer MD et al. (1998), Appl Environ Microbiol, 64, 3290-3299. Substrate specificity of and product formation by muconate cycloisomerases: an analysis of wild-type enzymes and engineered variants. PMID:9726873.
  6. Hasson MS et al. (1998), Proc Natl Acad Sci U S A, 95, 10396-10401. Evolution of an enzyme active site: The structure of a new crystal form of muconate lactonizing enzyme compared with mandelate racemase and enolase. DOI:10.1073/pnas.95.18.10396. PMID:9724714.
  7. Kleywegt GJ et al. (1996), Acta Crystallogr D Biol Crystallogr, 52, 858-863. A re-evaluation of the crystal structure of chloromuconate cycloisomerase. DOI:10.1107/s0907444995008936. PMID:15299651.
  8. Solyanikova IP et al. (1995), J Bacteriol, 177, 2821-2826. Characterization of muconate and chloromuconate cycloisomerase from Rhodococcus erythropolis 1CP: indications for functionally convergent evolution among bacterial cycloisomerases. PMID:7751292.
  9. Schmidt E et al. (1980), Biochem J, 192, 339-347. Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. DOI:10.1042/bj1920339. PMID:7305906.

Catalytic Residues Roles

Residue Roles
Asp194A metal ligand
Glu220A metal ligand
Asp245A metal ligand
Lys163A hydrogen bond donor, electrostatic stabiliser
Lys269A hydrogen bond donor, electrostatic stabiliser
Lys165A hydrogen bond donor, electrostatic stabiliser
Glu323A activator, hydrogen bond donor
Glu323A proton donor

Chemical Components

ingold: intramolecular nucleophilic addition, intermediate formation, overall reactant used, proton transfer, rate-determining step

Catalytic Residues Roles

Residue Roles
Asp194A metal ligand
Glu220A metal ligand
Asp245A metal ligand
Lys163A electrostatic stabiliser
Lys165A electrostatic stabiliser
Lys269A electrostatic stabiliser
Glu323A proton acceptor

Chemical Components

proton transfer, ingold: bimolecular elimination

Contributors

Sophie T. Williams, Gemma L. Holliday