Exo-alpha-sialidase (GH33 Family)
Exo sialidases (neuraminidases) catalyse the removal of terminal sialic acid residues in oligosaccharides, glycoproteins, glycolipids and synthetic substrates to release free sialic acid. This class function to release sialic acids for use as carbon and energy sources for non-pathogenic bacterium while in pathogenic microorganisms, sialidases have been suggested to be pathogenic factors.
Reference Protein and Structure
- Sequence
- Q02834 (3.2.1.18) (Sequence Homologues) (PDB Homologues)
- Biological species
-
Micromonospora viridifaciens (Bacteria)
- PDB
- 1euu - SIALIDASE OR NEURAMINIDASE, LARGE 68KD FORM (2.5 Å)
- Catalytic CATH Domains
- 2.120.10.10 (see all for 1euu)
Enzyme Reaction (EC:3.2.1.18)
Enzyme Mechanism
Introduction
The three catalytic residues are Tyr 370, Glu 260 and Asp 92. Tyr 370 acts as a nucleophile to attack the C1 carbon of sialic acid in an SN2 mechanism, with concerted displacement of the glycoconjagate to which the sialic acid is attached. The departing oxygen atom of the sialyl ketal linkage is protonated by Asp 92. Glu 260 functions to deprotonate Tyr 370 as it attacks the sialic acid. In the second step, Asp 92 deprotates a water molecule that attacks C1 of the intermediate to displace Tyr 370 and generate sialic acid.
Catalytic Residues Roles
UniProt | PDB* (1euu) | ||
Asp92 | Asp92(50)A | Protonates the departing oxygen of the sialyl ketal linkage. Deprotonates the water molecule that attacks the tyrosine-linked intermediate. | proton acceptor, proton donor, activator, increase nucleophilicity, promote heterolysis |
Tyr370 | Tyr370(328)A | Attacks the C1 carbon of sialic acid to displace the glycoconjugate in an SN2 mechanism. | covalently attached, nucleofuge, nucleophile, proton acceptor, proton donor |
Glu260 | Glu260(218)A | Deprotonates Tyr 370 which acts as a nucleophile to attack C1 of the sialic acid. | proton acceptor, proton donor, activator, increase nucleophilicity, promote heterolysis |
Chemical Components
overall product formed, intermediate formation, overall reactant used, bimolecular nucleophilic substitution, proton transfer, intermediate terminated, native state of enzyme regenerated, hydrolysisReferences
- Amaya MF et al. (2004), Structure, 12, 775-784. Structural Insights into the Catalytic Mechanism of Trypanosoma cruzi trans-Sialidase. DOI:10.1016/j.str.2004.02.036. PMID:15130470.
- Bueren-Calabuig JA et al. (2014), J Phys Chem B, 118, 5807-5816. Unraveling the differences of the hydrolytic activity of Trypanosoma cruzi trans-sialidase and Trypanosoma rangeli sialidase: a quantum mechanics-molecular mechanics modeling study. DOI:10.1021/jp412294r. PMID:24814976.
- Oliveira IA et al. (2014), J Biol Chem, 289, 423-436. Evidence of ternary complex formation in Trypanosoma cruzi trans-sialidase catalysis. DOI:10.1074/jbc.M112.399303. PMID:24194520.
- Pierdominici-Sottile G et al. (2011), Biochemistry, 50, 10150-10158. Free Energy Study of the Catalytic Mechanism ofTrypanosoma cruzitrans-Sialidase. From the Michaelis Complex to the Covalent Intermediate. DOI:doi:10.1021/bi2009618.
- Watson JN et al. (2004), FEBS Lett, 577, 265-269. Contribution of the active site aspartic acid to catalysis in the bacterial neuraminidase fromMicromonospora viridifaciens. DOI:10.1016/j.febslet.2004.10.016. PMID:15527797.
- Watson JN et al. (2003), Biochemistry, 42, 12682-12690. Mutagenesis of the Conserved Active-Site Tyrosine Changes a Retaining Sialidase into an Inverting Sialidase†. DOI:10.1021/bi035396g. PMID:14580216.
- Watts AG et al. (2003), J Am Chem Soc, 125, 7532-7533. Trypanosoma cruziTrans-sialidase Operates through a Covalent Sialyl−Enzyme Intermediate: Tyrosine Is the Catalytic Nucleophile. DOI:10.1021/ja0344967. PMID:12812490.
- Gaskell A et al. (1995), Structure, 3, 1197-1205. The three domains of a bacterial sialidase: a β-propeller, an immunoglobulin module and a galactose-binding jelly-roll. DOI:10.1016/s0969-2126(01)00255-6. PMID:8591030.
Step 1. Glu260 activates Tyr370 which attacks C1. The sialyl ketal linkage is broken in an SN2 reaction with Asp92 protonating the leaving group.
Download: Image, Marvin FileCatalytic Residues Roles
Residue | Roles |
---|---|
Tyr370(328)A | covalently attached |
Glu260(218)A | activator, increase nucleophilicity |
Asp92(50)A | promote heterolysis |
Glu260(218)A | proton acceptor |
Tyr370(328)A | proton donor, nucleophile |
Asp92(50)A | proton donor |
Chemical Components
overall product formed, intermediate formation, overall reactant used, ingold: bimolecular nucleophilic substitution, proton transferStep 2. Asp92 activates a water molecule which hydrolyses the tyrosine bound intermediate. Glu260 protonates the departing Tyr370.
Download: Image, Marvin FileCatalytic Residues Roles
Residue | Roles |
---|---|
Glu260(218)A | promote heterolysis |
Asp92(50)A | activator, increase nucleophilicity |
Tyr370(328)A | proton acceptor |
Asp92(50)A | proton acceptor |
Glu260(218)A | proton donor |
Tyr370(328)A | nucleofuge |