EMD-13976
Cytochrome bcc-aa3 supercomplex (respiratory supercomplex III2/IV2) from Corynebacterium glutamicum (stigmatellin and azide bound)
EMD-13976
Single-particle2.8 Å

Map released: 18/05/2022
Last modified: 09/10/2024
Sample Organism:
Corynebacterium glutamicum ATCC 13032
Sample: cytochrome bcc-aa3 supercomplex
Fitted models: 7qhm (Avg. Q-score: 0.567)
Deposition Authors: Kao W-C, Hunte C
Sample: cytochrome bcc-aa3 supercomplex
Fitted models: 7qhm (Avg. Q-score: 0.567)
Deposition Authors: Kao W-C, Hunte C

Structural basis for safe and efficient energy conversion in a respiratory supercomplex.
Kao WC
,
Ortmann de Percin Northumberland C
,
Cheng TC,
Ortiz J
,
Durand A
,
von Loeffelholz O
,
Schilling O,
Biniossek ML,
Klaholz BP
,
Hunte C
(2022) Nat Commun , 13 , 545 - 545







(2022) Nat Commun , 13 , 545 - 545
Abstract:
Proton-translocating respiratory complexes assemble into supercomplexes that are proposed to increase the efficiency of energy conversion and limit the production of harmful reactive oxygen species during aerobic cellular respiration. Cytochrome bc complexes and cytochrome aa3 oxidases are major drivers of the proton motive force that fuels ATP generation via respiration, but how wasteful electron- and proton transfer is controlled to enhance safety and efficiency in the context of supercomplexes is not known. Here, we address this question with the 2.8 Å resolution cryo-EM structure of the cytochrome bcc-aa3 (III2-IV2) supercomplex from the actinobacterium Corynebacterium glutamicum. Menaquinone, substrate mimics, lycopene, an unexpected Qc site, dioxygen, proton transfer routes, and conformational states of key protonable residues are resolved. Our results show how safe and efficient energy conversion is achieved in a respiratory supercomplex through controlled electron and proton transfer. The structure may guide the rational design of drugs against actinobacteria that cause diphtheria and tuberculosis.
Proton-translocating respiratory complexes assemble into supercomplexes that are proposed to increase the efficiency of energy conversion and limit the production of harmful reactive oxygen species during aerobic cellular respiration. Cytochrome bc complexes and cytochrome aa3 oxidases are major drivers of the proton motive force that fuels ATP generation via respiration, but how wasteful electron- and proton transfer is controlled to enhance safety and efficiency in the context of supercomplexes is not known. Here, we address this question with the 2.8 Å resolution cryo-EM structure of the cytochrome bcc-aa3 (III2-IV2) supercomplex from the actinobacterium Corynebacterium glutamicum. Menaquinone, substrate mimics, lycopene, an unexpected Qc site, dioxygen, proton transfer routes, and conformational states of key protonable residues are resolved. Our results show how safe and efficient energy conversion is achieved in a respiratory supercomplex through controlled electron and proton transfer. The structure may guide the rational design of drugs against actinobacteria that cause diphtheria and tuberculosis.