EMD-29424
CryoEM strucutre of 22-mer RBM2 of the Salmonella MS-ring
EMD-29424
Single-particle3.8 Å

Map released: 31/05/2023
Last modified: 19/06/2024
Sample Organism:
Salmonella enterica subsp. enterica serovar Typhimurium
Sample: MS-ring of the flagellar complex
Fitted models: 8fte (Avg. Q-score: 0.268)
Raw data: EMPIAR-11942
Deposition Authors: Singh PS, Nakagawa T, Cecchini G, Iverson TM
Sample: MS-ring of the flagellar complex
Fitted models: 8fte (Avg. Q-score: 0.268)
Raw data: EMPIAR-11942
Deposition Authors: Singh PS, Nakagawa T, Cecchini G, Iverson TM

CryoEM structure of a post-assembly MS-ring reveals plasticity in stoichiometry and conformation.
Abstract:
The flagellar motor supports bacterial chemotaxis, a process that allows bacteria to move in response to their environment. A central feature of this motor is the MS-ring, which is composed entirely of repeats of the FliF subunit. This MS-ring is critical for the assembly and stability of the flagellar switch and the entire flagellum. Despite multiple independent cryoEM structures of the MS-ring, there remains a debate about the stoichiometry and organization of the ring-building motifs (RBMs). Here, we report the cryoEM structure of a Salmonella MS-ring that was purified from the assembled flagellar switch complex (MSC-ring). We term this the 'post-assembly' state. Using 2D class averages, we show that under these conditions, the post-assembly MS-ring can contain 32, 33, or 34 FliF subunits, with 33 being the most common. RBM3 has a single location with C32, C33, or C34 symmetry. RBM2 is found in two locations with RBM2inner having C21 or C22 symmetry and an RBM2outer-RBM1 having C11 symmetry. Comparison to previously reported structures identifies several differences. Most strikingly, we find that the membrane domain forms 11 regions of discrete density at the base of the structure rather than a contiguous ring, although density could not be unambiguously interpreted. We further find density in some previously unresolved areas, and we assigned amino acids to those regions. Finally, we find differences in interdomain angles in RBM3 that affect the diameter of the ring. Together, these investigations support a model of the flagellum with structural plasticity, which may be important for flagellar assembly and function.
The flagellar motor supports bacterial chemotaxis, a process that allows bacteria to move in response to their environment. A central feature of this motor is the MS-ring, which is composed entirely of repeats of the FliF subunit. This MS-ring is critical for the assembly and stability of the flagellar switch and the entire flagellum. Despite multiple independent cryoEM structures of the MS-ring, there remains a debate about the stoichiometry and organization of the ring-building motifs (RBMs). Here, we report the cryoEM structure of a Salmonella MS-ring that was purified from the assembled flagellar switch complex (MSC-ring). We term this the 'post-assembly' state. Using 2D class averages, we show that under these conditions, the post-assembly MS-ring can contain 32, 33, or 34 FliF subunits, with 33 being the most common. RBM3 has a single location with C32, C33, or C34 symmetry. RBM2 is found in two locations with RBM2inner having C21 or C22 symmetry and an RBM2outer-RBM1 having C11 symmetry. Comparison to previously reported structures identifies several differences. Most strikingly, we find that the membrane domain forms 11 regions of discrete density at the base of the structure rather than a contiguous ring, although density could not be unambiguously interpreted. We further find density in some previously unresolved areas, and we assigned amino acids to those regions. Finally, we find differences in interdomain angles in RBM3 that affect the diameter of the ring. Together, these investigations support a model of the flagellum with structural plasticity, which may be important for flagellar assembly and function.