1a07 Citations

Peptide ligands of pp60(c-src) SH2 domains: a thermodynamic and structural study.

Biochemistry 36 6283-93 (1997)
Related entries: 1a08, 1a09, 1a1a, 1a1b, 1a1c, 1a1e

Cited: 52 times
EuropePMC logo PMID: 9174343

Abstract

Thermodynamic measurements, structural determinations, and molecular computations were applied to a series of peptide ligands of the pp60(c-src) SH2 domain in an attempt to understand the critical binding determinants for this class of molecules. Isothermal titration calorimetry (ITC) measurements were combined with structural data derived from X-ray crystallographic studies on 12 peptide-SH2 domain complexes. The peptide ligands studied fall into two general classes: (1) dipeptides of the general framework N-acetylphosphotyrosine (or phosphotyrosine replacement)-Glu or methionine (or S-methylcysteine)-X, where X represents a hydrophobic amine, and (2) tetra- or pentapeptides of the general framework N-acetylphosphotyrosine-Glu-Glu-Ile-X, where X represents either Glu, Gln, or NH2. Dipeptide analogs which featured X as either hexanolamine or heptanolamine were able to pick up new hydrogen bonds involving their hydroxyl groups within a predominantly lipophilic surface cavity. However, due to internal strain as well as the solvent accessibility of the new hydrogen bonds formed, no net increase in binding affinity was observed. Phosphatase-resistant benzylmalonate and alpha,alpha-difluorobenzyl phosphonate analogs of phosphotyrosine retained some binding affinity for the pp60(c-src) SH2 domain but caused local structural perturbations in the phosphotyrosine-binding site. In the case where a reversible covalent thiohemiacetal was formed between a formylated phosphotyrosine analog and the thiol side chain of Cys-188, deltaS was 25.6 cal/(mol K) lower than for the nonformylated phosphotyrosine parent. Normal mode calculations show that the dramatic decrease in entropy observed for the covalent thiohemiacetal complex is due to the inability of the phosphotyrosine moiety to transform lost rotational and translational degrees of freedom into new vibrational modes.

Reviews - 1a07 mentioned but not cited (2)

  1. Peptide-Based Vaccines: Current Progress and Future Challenges. Malonis RJ, Lai JR, Vergnolle O. Chem Rev 120 3210-3229 (2020)
  2. Influenza B: Prospects for the Development of Cross-Protective Vaccines. Tsybalova LM, Stepanova LA, Ramsay ES, Vasin AV. Viruses 14 1323 (2022)

Articles - 1a07 mentioned but not cited (11)

  1. Molecular recognition of lipid antigens by T cell receptors. Grant EP, Degano M, Rosat JP, Stenger S, Modlin RL, Wilson IA, Porcelli SA, Brenner MB. J Exp Med 189 195-205 (1999)
  2. Thermodynamics of T cell receptor binding to peptide-MHC: evidence for a general mechanism of molecular scanning. Boniface JJ, Reich Z, Lyons DS, Davis MM. Proc Natl Acad Sci U S A 96 11446-11451 (1999)
  3. Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor. Streltsov VA, Varghese JN, Carmichael JA, Irving RA, Hudson PJ, Nuttall SD. Proc Natl Acad Sci U S A 101 12444-12449 (2004)
  4. Molecular basis of mycobacterial lipid antigen presentation by CD1c and its recognition by αβ T cells. Roy S, Ly D, Li NS, Altman JD, Piccirilli JA, Moody DB, Adams EJ. Proc Natl Acad Sci U S A 111 E4648-57 (2014)
  5. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing. Fang Y, Ding Y, Feinstein WP, Koppelman DM, Moreno J, Jarrell M, Ramanujam J, Brylinski M. PLoS One 11 e0158898 (2016)
  6. A network pharmacology-based approach to explore the active ingredients and molecular mechanism of Lei-gong-gen formula granule on a spontaneously hypertensive rat model. Li Q, Lan T, He S, Chen W, Li X, Zhang W, Liu Y, Zhang Q, Chen X, Han Y, Su Z, Zhu D, Guo H. Chin Med 16 99 (2021)
  7. Dissecting the molecular mechanism of cepharanthine against COVID-19, based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation. Liu J, Sun T, Liu S, Liu J, Fang S, Tan S, Zeng Y, Zhang B, Li W. Comput Biol Med 151 106298 (2022)
  8. The Mechanism of Osthole in the Treatment of Gastric Cancer Based on Network Pharmacology and Molecular Docking Technology. Ju Y. Appl Bionics Biomech 2022 5997895 (2022)
  9. Molecular Docking Integrated with Network Pharmacology Explores the Therapeutic Mechanism of Cannabis sativa against Type 2 Diabetes. Guzmán-Flores JM, Pérez-Vázquez V, Martínez-Esquivias F, Isiordia-Espinoza MA, Viveros-Paredes JM. Curr Issues Mol Biol 45 7228-7241 (2023)
  10. Network Pharmacology, Molecular Docking and Molecular Dynamics to Explore the Potential Immunomodulatory Mechanisms of Deer Antler. Liu L, Jiao Y, Yang M, Wu L, Long G, Hu W. Int J Mol Sci 24 10370 (2023)
  11. Potential mechanisms of osthole against bladder cancer cells based on network pharmacology, molecular docking, and experimental validation. Jiang Y, Zhang M, Wang L, Zhang L, Ma M, Jing M, Li J, Song R, Zhang Y, Yang Z, Zhang Y, Pu Y, Qu X, Fan J. BMC Complement Med Ther 23 122 (2023)


Reviews citing this publication (6)

  1. Computer simulations with explicit solvent: recent progress in the thermodynamic decomposition of free energies and in modeling electrostatic effects. Levy RM, Gallicchio E. Annu Rev Phys Chem 49 531-567 (1998)
  2. Measurements of binding thermodynamics in drug discovery. Holdgate GA, Ward WH. Drug Discov Today 10 1543-1550 (2005)
  3. Src homology-2 domains: structure, mechanisms, and drug discovery. Sawyer TK. Biopolymers 47 243-261 (1998)
  4. SH2 domain inhibition: a problem solved? Shakespeare WC. Curr Opin Chem Biol 5 409-415 (2001)
  5. Measuring protein-protein interactions. Lakey JH, Raggett EM. Curr Opin Struct Biol 8 119-123 (1998)
  6. SH2 domains: from structure to energetics, a dual approach to the study of structure-function relationships. Grucza RA, Bradshaw JM, Fütterer K, Waksman G. Med Res Rev 19 273-293 (1999)

Articles citing this publication (33)

  1. Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase. Bradshaw JM, Mitaxov V, Waksman G. J Mol Biol 293 971-985 (1999)
  2. Structure-based design of an osteoclast-selective, nonpeptide src homology 2 inhibitor with in vivo antiresorptive activity. Shakespeare W, Yang M, Bohacek R, Cerasoli F, Stebbins K, Sundaramoorthi R, Azimioara M, Vu C, Pradeepan S, Metcalf C, Haraldson C, Merry T, Dalgarno D, Narula S, Hatada M, Lu X, van Schravendijk MR, Adams S, Violette S, Smith J, Guan W, Bartlett C, Herson J, Iuliucci J, Weigele M, Sawyer T. Proc Natl Acad Sci U S A 97 9373-9378 (2000)
  3. WIWS: a protein structure bioinformatics Web service collection. Hekkelman ML, Te Beek TA, Pettifer SR, Thorne D, Attwood TK, Vriend G. Nucleic Acids Res 38 W719-23 (2010)
  4. Structural parameterization of the binding enthalpy of small ligands. Luque I, Freire E. Proteins 49 181-190 (2002)
  5. Reconstruction of ancestral protein sequences and its applications. Cai W, Pei J, Grishin NV. BMC Evol Biol 4 33 (2004)
  6. Identification of novel non-phosphorylated ligands, which bind selectively to the SH2 domain of Grb7. Pero SC, Oligino L, Daly RJ, Soden AL, Liu C, Roller PP, Li P, Krag DN. J Biol Chem 277 11918-11926 (2002)
  7. A new high affinity binding site for suppressor of cytokine signaling-3 on the erythropoietin receptor. Hörtner M, Nielsch U, Mayr LM, Heinrich PC, Haan S. Eur J Biochem 269 2516-2526 (2002)
  8. Mass spectrometric and thermodynamic studies reveal the role of water molecules in complexes formed between SH2 domains and tyrosyl phosphopeptides. Chung E, Henriques D, Renzoni D, Zvelebil M, Bradshaw JM, Waksman G, Robinson CV, Ladbury JE. Structure 6 1141-1151 (1998)
  9. A Src SH2 selective binding compound inhibits osteoclast-mediated resorption. Violette SM, Shakespeare WC, Bartlett C, Guan W, Smith JA, Rickles RJ, Bohacek RS, Holt DA, Baron R, Sawyer TK. Chem Biol 7 225-235 (2000)
  10. Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization. Henriques DA, Ladbury JE, Jackson RM. Protein Sci 9 1975-1985 (2000)
  11. The hidden thermodynamics of a zinc finger. Lachenmann MJ, Ladbury JE, Phillips NB, Narayana N, Qian X, Weiss MA. J Mol Biol 316 969-989 (2002)
  12. Identification of the linker-SH2 domain of STAT as the origin of the SH2 domain using two-dimensional structural alignment. Gao Q, Hua J, Kimura R, Headd JJ, Fu XY, Chin YE. Mol Cell Proteomics 3 704-714 (2004)
  13. Src binds cortactin through an SH2 domain cystine-mediated linkage. Evans JV, Ammer AG, Jett JE, Bolcato CA, Breaux JC, Martin KH, Culp MV, Gannett PM, Weed SA. J Cell Sci 125 6185-6197 (2012)
  14. DNA and RNA-controlled switching of protein kinase activity. Röglin L, Altenbrunn F, Seitz O. Chembiochem 10 758-765 (2009)
  15. Inhibitors to the Src SH2 domain: a lesson in structure--thermodynamic correlation in drug design. Henriques DA, Ladbury JE. Arch Biochem Biophys 390 158-168 (2001)
  16. Structure-based design and synthesis of a novel class of Src SH2 inhibitors. Buchanan JL, Bohacek RS, Luke GP, Hatada M, Lu X, Dalgarno DC, Narula SS, Yuan R, Holt DA. Bioorg Med Chem Lett 9 2353-2358 (1999)
  17. Simultaneous assay of Src SH3 and SH2 domain binding using different wavelength fluorescence polarization probes. Lynch BA, Minor C, Loiacono KA, van Schravendijk MR, Ram MK, Sundaramoorthi R, Adams SE, Phillips T, Holt D, Rickles RJ, MacNeil IA. Anal Biochem 275 62-73 (1999)
  18. Structure, dynamics, and binding thermodynamics of the v-Src SH2 domain: implications for drug design. Taylor JD, Ababou A, Fawaz RR, Hobbs CJ, Williams MA, Ladbury JE. Proteins 73 929-940 (2008)
  19. Improved convergence of binding affinities with free energy perturbation: application to nonpeptide ligands with pp60src SH2 domain. Price DJ, Jorgensen WL. J Comput Aided Mol Des 15 681-695 (2001)
  20. alpha-Ketocarboxylic acid-based inhibitors of protein tyrosine phosphatases. Chen YT, Onaran MB, Doss CJ, Seto CT. Bioorg Med Chem Lett 11 1935-1938 (2001)
  21. The energetics of phosphate binding to a protein complex. Edgcomb SP, Baker BM, Murphy KP. Protein Sci 9 927-933 (2000)
  22. The formation of a covalent complex between a dipeptide ligand and the src SH2 domain. Alligood KJ, Charifson PS, Crosby R, Consler TG, Feldman PL, Gampe RT, Gilmer TM, Jordan SR, Milstead MW, Mohr C, Peel MR, Rocque W, Rodriguez M, Rusnak DW, Shewchuk LM, Sternbach DD. Bioorg Med Chem Lett 8 1189-1194 (1998)
  23. Role of solution conformation and flexibility of short peptide ligands that bind to the p56(lck) SH2 domain. Dekker FJ, de Mol NJ, Bultinck P, Kemmink J, Hilbers HW, Liskamp RM. Bioorg Med Chem 11 941-949 (2003)
  24. An efficient synthesis of a 4'-phosphonodifluoromethyl-3'-formyl-phenylalanine containing SRC SH2 ligand. Shakespeare WC, Bohacek RS, Narula SS, Azimioara MD, Yuan RW, Dalgarno DC, Madden L, Botfield MC, Holt DA. Bioorg Med Chem Lett 9 3109-3112 (1999)
  25. Hierarchy of simulation models in predicting molecular recognition mechanisms from the binding energy landscapes: structural analysis of the peptide complexes with SH2 domains. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Schaffer L, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW. Proteins 45 456-470 (2001)
  26. Solid-phase synthesis of potential protein tyrosine phosphatase inhibitors via the Ugi four-component condensation. Li Z, Yeo SL, Pallen CJ, Ganesan A. Bioorg Med Chem Lett 8 2443-2446 (1998)
  27. Probing SH2-domains using Inhibitor Affinity Purification (IAP). Höfener M, Heinzlmeir S, Kuster B, Sewald N. Proteome Sci 12 41 (2014)
  28. Small ligands interacting with the phosphotyrosine binding pocket of the Src SH2 protein. Deprez P, Mandine E, Gofflo D, Meunier S, Lesuisse D. Bioorg Med Chem Lett 12 1295-1298 (2002)
  29. Reactivity of Cdc25 phosphatase at low pH and with thiophosphorylated protein substrate. Rudolph J. Bioorg Chem 33 264-273 (2005)
  30. Selective inhibition of Src SH2 by a novel thiol-targeting tricarbonyl-modified inhibitor and mechanistic analysis by (1)H/(13)C NMR spectroscopy. Sundaramoorthi R, Siedem C, Vu CB, Dalgarno DC, Laird EC, Botfield MC, Combs AB, Adams SE, Yuan RW, Weigele M, Narula SS. Bioorg Med Chem Lett 11 1665-1669 (2001)
  31. A Statistical Survey on the Binding Constants of Covalently Bound Protein-Ligand Complexes. Li X, Liu Z, Li Y, Li J, Li J, Wang R. Mol Inform 29 87-96 (2010)
  32. Discovery of highly potent Src SH2 binders: structure-activity studies and X-ray structures. Deprez P, Baholet I, Burlet S, Lange G, Amengual R, Schoot B, Vermond A, Mandine E, Lesuisse D. Bioorg Med Chem Lett 12 1291-1294 (2002)
  33. Recombinant human CIS2 (SOCS2) protein: subcloning, expression, purification, and characterization. Biener E, Maurice S, Sandowski Y, Cohen Y, Gusakowsky EE, Hooghe R, Yoshimura A, Livnah O, Gertler A. Protein Expr Purif 25 305-312 (2002)