1a8t Citations

Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-beta-lactamase.

Abstract

Background

High level resistance to carbapenem antibiotics in gram negative bacteria such as Bacteroides fragilis is caused, in part, by expression of a wide-spectrum metallo-beta-lactamase that hydrolyzes the drug to an inactive form. Co-administration of metallo-beta-lactamase inhibitors to resistant bacteria is expected to restore the antibacterial activity of carbapenems.

Results

Biphenyl tetrazoles (BPTs) are a structural class of potent competitive inhibitors of metallo-beta-lactamase identified through screening and predicted using molecular modeling of the enzyme structure. The X-ray crystal structure of the enzyme bound to the BPT L-159,061 shows that the tetrazole moiety of the inhibitor interacts directly with one of the two zinc atoms in the active site, replacing a metal-bound water molecule. Inhibition of metallo-beta-lactamase by BPTs in vitro correlates well with antibiotic sensitization of resistant B. fragilis.

Conclusion

BPT inhibitors can sensitize a resistant B. fragilis clinical isolate expressing metallo-beta-lactamase to the antibiotics imipenem or penicillin G but not to rifampicin.

Reviews - 1a8t mentioned but not cited (4)

  1. Three decades of beta-lactamase inhibitors. Drawz SM, Bonomo RA. Clin Microbiol Rev 23 160-201 (2010)
  2. Metallo-β-lactamase structure and function. Palzkill T. Ann N Y Acad Sci 1277 91-104 (2013)
  3. Tetrazoles via Multicomponent Reactions. Neochoritis CG, Zhao T, Dömling A. Chem Rev 119 1970-2042 (2019)
  4. How to do an evaluation: pitfalls and traps. Hawkins PC, Warren GL, Skillman AG, Nicholls A. J Comput Aided Mol Des 22 179-190 (2008)

Articles - 1a8t mentioned but not cited (8)

  1. Aromatic interactions at the ligand-protein interface: Implications for the development of docking scoring functions. Brylinski M. Chem Biol Drug Des 91 380-390 (2018)
  2. Evolving carbapenemases: can medicinal chemists advance one step ahead of the coming storm? Oelschlaeger P, Ai N, Duprez KT, Welsh WJ, Toney JH. J Med Chem 53 3013-3027 (2010)
  3. Biochemical, mechanistic, and spectroscopic characterization of metallo-β-lactamase VIM-2. Aitha M, Marts AR, Bergstrom A, Møller AJ, Moritz L, Turner L, Nix JC, Bonomo RA, Page RC, Tierney DL, Crowder MW. Biochemistry 53 7321-7331 (2014)
  4. Preference of small molecules for local minimum conformations when binding to proteins. Wang Q, Pang YP. PLoS One 2 e820 (2007)
  5. Computational analysis of pathogen-borne metallo β-lactamases reveals discriminating structural features between B1 types. Cadag E, Vitalis E, Lennox KP, Zhou CL, Zemla AT. BMC Res Notes 5 96 (2012)
  6. Binding of 2-(Triazolylthio)acetamides to Metallo-β-lactamase CcrA Determined with NMR. Andersson H, Jarvoll P, Yang SK, Yang KW, Erdélyi M. ACS Omega 5 21570-21578 (2020)
  7. Synthesis and Characterization of Some New Quinoxalin-2(1H)one and 2-Methyl-3H-quinazolin-4-one Derivatives Targeting the Onset and Progression of CRC with SAR, Molecular Docking, and ADMET Analyses. El-Sayed NNE, Al-Otaibi TM, Alonazi M, Masand VH, Barakat A, Almarhoon ZM, Ben Bacha A, Ben Bacha A. Molecules 26 3121 (2021)
  8. CAT-Site: Predicting Protein Binding Sites Using a Convolutional Neural Network. Petrovski ŽH, Hribar-Lee B, Bosnić Z. Pharmaceutics 15 119 (2022)


Reviews citing this publication (20)

  1. Metallo-beta-lactamases: the quiet before the storm? Walsh TR, Toleman MA, Poirel L, Nordmann P. Clin Microbiol Rev 18 306-325 (2005)
  2. Metallo-beta-lactamase: structure and mechanism. Wang Z, Fast W, Valentine AM, Benkovic SJ. Curr Opin Chem Biol 3 614-622 (1999)
  3. New strategies for combating multidrug-resistant bacteria. Wright GD, Sutherland AD. Trends Mol Med 13 260-267 (2007)
  4. New ways to treat bacterial infections. Taylor PW, Stapleton PD, Paul Luzio J. Drug Discov Today 7 1086-1091 (2002)
  5. Current challenges in antimicrobial chemotherapy: focus on ß-lactamase inhibition. Bebrone C, Lassaux P, Vercheval L, Sohier JS, Jehaes A, Sauvage E, Galleni M. Drugs 70 651-679 (2010)
  6. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Bahr G, González LJ, Vila AJ. Chem Rev 121 7957-8094 (2021)
  7. Metallo-β-lactamase: inhibitors and reporter substrates. Fast W, Sutton LD. Biochim Biophys Acta 1834 1648-1659 (2013)
  8. Molecular strategies for overcoming antibiotic resistance in bacteria. Tan YT, Tillett DJ, McKay IA. Mol Med Today 6 309-314 (2000)
  9. Overcoming antimicrobial resistance by targeting resistance mechanisms. Poole K. J Pharm Pharmacol 53 283-294 (2001)
  10. Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. Mann A, Nehra K, Rana JS, Dahiya T. Curr Res Microb Sci 2 100030 (2021)
  11. Diversity and Proliferation of Metallo-β-Lactamases: a Clarion Call for Clinically Effective Metallo-β-Lactamase Inhibitors. Somboro AM, Osei Sekyere J, Amoako DG, Essack SY, Bester LA. Appl Environ Microbiol 84 e00698-18 (2018)
  12. Targeting metallo-β-lactamase enzymes in antibiotic resistance. King DT, Strynadka NC. Future Med Chem 5 1243-1263 (2013)
  13. Tetrazolium compounds: synthesis and applications in medicine. Wei CX, Bian M, Gong GH. Molecules 20 5528-5553 (2015)
  14. The applications of binuclear metallohydrolases in medicine: recent advances in the design and development of novel drug leads for purple acid phosphatases, metallo-β-lactamases and arginases. McGeary RP, Schenk G, Guddat LW. Eur J Med Chem 76 132-144 (2014)
  15. beta-Lactamase epidemiology and the utility of established and novel beta-lactamase inhibitors. Payne DJ, Du W, Bateson JH. Expert Opin Investig Drugs 9 247-261 (2000)
  16. Progress toward inhibitors of metallo-β-lactamases. McGeary RP, Tan DT, Schenk G. Future Med Chem 9 673-691 (2017)
  17. Photochemical transformations of tetrazole derivatives: applications in organic synthesis. Frija LM, Frija LM, Ismael A, Cristiano ML. Molecules 15 3757-3774 (2010)
  18. Quantum mechanical and molecular dynamics simulations of ureases and Zn beta-lactamases. Estiu G, Suárez D, Merz KM. J Comput Chem 27 1240-1262 (2006)
  19. Fragment-based inhibitor discovery against β-lactamase. Nichols DA, Renslo AR, Chen Y. Future Med Chem 6 413-427 (2014)
  20. Synthesis of novel cyclopeptides containing heterocyclic skeletons. Hamdan F, Tahoori F, Balalaie S. RSC Adv 8 33893-33926 (2018)

Articles citing this publication (70)

  1. Organic azides: an exploding diversity of a unique class of compounds. Bräse S, Gil C, Knepper K, Zimmermann V. Angew Chem Int Ed Engl 44 5188-5240 (2005)
  2. Standard numbering scheme for class B beta-lactamases. Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frère JM, Metallo-beta-lactamases Working Group. Antimicrob Agents Chemother 45 660-663 (2001)
  3. The multifaceted roles of antibiotics and antibiotic resistance in nature. Sengupta S, Chattopadhyay MK, Grossart HP. Front Microbiol 4 47 (2013)
  4. Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-beta-lactamase. Toney JH, Hammond GG, Fitzgerald PM, Sharma N, Balkovec JM, Rouen GP, Olson SH, Hammond ML, Greenlee ML, Gao YD. J Biol Chem 276 31913-31918 (2001)
  5. Analysis of the importance of the metallo-beta-lactamase active site loop in substrate binding and catalysis. Moali C, Anne C, Lamotte-Brasseur J, Groslambert S, Devreese B, Van Beeumen J, Galleni M, Frère JM. Chem Biol 10 319-329 (2003)
  6. Thiomandelic acid, a broad spectrum inhibitor of zinc beta-lactamases: kinetic and spectroscopic studies. Mollard C, Moali C, Papamicael C, Damblon C, Vessilier S, Amicosante G, Schofield CJ, Galleni M, Frere JM, Roberts GC. J Biol Chem 276 45015-45023 (2001)
  7. Purification and biochemical characterization of the VIM-1 metallo-beta-lactamase. Franceschini N, Caravelli B, Docquier JD, Galleni M, Frère JM, Amicosante G, Rossolini GM. Antimicrob Agents Chemother 44 3003-3007 (2000)
  8. N-arylsulfonyl hydrazones as inhibitors of IMP-1 metallo-beta-lactamase. Siemann S, Evanoff DP, Marrone L, Clarke AJ, Viswanatha T, Dmitrienko GI. Antimicrob Agents Chemother 46 2450-2457 (2002)
  9. Assay platform for clinically relevant metallo-β-lactamases. van Berkel SS, Brem J, Rydzik AM, Salimraj R, Cain R, Verma A, Owens RJ, Fishwick CW, Spencer J, Schofield CJ. J Med Chem 56 6945-6953 (2013)
  10. Structural insights into the design of inhibitors for the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia. Nauton L, Kahn R, Garau G, Hernandez JF, Dideberg O. J Mol Biol 375 257-269 (2008)
  11. Identification of a series of tricyclic natural products as potent broad-spectrum inhibitors of metallo-beta-lactamases. Payne DJ, Hueso-Rodríguez JA, Boyd H, Concha NO, Janson CA, Gilpin M, Bateson JH, Cheever C, Niconovich NL, Pearson S, Rittenhouse S, Tew D, Díez E, Pérez P, De La Fuente J, Rees M, Rivera-Sagredo A. Antimicrob Agents Chemother 46 1880-1886 (2002)
  12. Penicillin-derived inhibitors that simultaneously target both metallo- and serine-beta-lactamases. Buynak JD, Chen H, Vogeti L, Gadhachanda VR, Buchanan CA, Palzkill T, Shaw RW, Spencer J, Walsh TR. Bioorg Med Chem Lett 14 1299-1304 (2004)
  13. Role of a solvent-exposed tryptophan in the recognition and binding of antibiotic substrates for a metallo-beta-lactamase. Huntley JJ, Fast W, Benkovic SJ, Wright PE, Dyson HJ. Protein Sci 12 1368-1375 (2003)
  14. Carbapenem derivatives as potential inhibitors of various beta-lactamases, including class B metallo-beta-lactamases. Nagano R, Adachi Y, Imamura H, Yamada K, Hashizume T, Morishima H. Antimicrob Agents Chemother 43 2497-2503 (1999)
  15. Structural determinants of substrate binding to Bacillus cereus metallo-beta-lactamase. Rasia RM, Vila AJ. J Biol Chem 279 26046-26051 (2004)
  16. Structure-based discovery and in-parallel optimization of novel competitive inhibitors of thymidylate synthase. Tondi D, Slomczynska U, Costi MP, Watterson DM, Ghelli S, Shoichet BK. Chem Biol 6 319-331 (1999)
  17. Diaryl-substituted azolylthioacetamides: Inhibitor discovery of New Delhi metallo-β-lactamase-1 (NDM-1). Zhang YL, Yang KW, Zhou YJ, LaCuran AE, Oelschlaeger P, Crowder MW. ChemMedChem 9 2445-2448 (2014)
  18. New leads of metallo-beta-lactamase inhibitors from structure-based pharmacophore design. Olsen L, Jost S, Adolph HW, Pettersson I, Hemmingsen L, Jørgensen FS. Bioorg Med Chem 14 2627-2635 (2006)
  19. Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics. Antony J, Gresh N, Olsen L, Hemmingsen L, Schofield CJ, Bauer R. J Comput Chem 23 1281-1296 (2002)
  20. Structural and Kinetic Studies of the Potent Inhibition of Metallo-β-lactamases by 6-Phosphonomethylpyridine-2-carboxylates. Hinchliffe P, Tanner CA, Krismanich AP, Labbé G, Goodfellow VJ, Marrone L, Desoky AY, Calvopiña K, Whittle EE, Zeng F, Avison MB, Bols NC, Siemann S, Spencer J, Dmitrienko GI. Biochemistry 57 1880-1892 (2018)
  21. Structure-activity relationships of biphenyl tetrazoles as metallo-beta-lactamase inhibitors. Toney JH, Cleary KA, Hammond GG, Yuan X, May WJ, Hutchins SM, Ashton WT, Vanderwall DE. Bioorg Med Chem Lett 9 2741-2746 (1999)
  22. Docking molecules by families to increase the diversity of hits in database screens: computational strategy and experimental evaluation. Su AI, Lorber DM, Weston GS, Baase WA, Matthews BW, Shoichet BK. Proteins 42 279-293 (2001)
  23. Inhibition of IMP-1 metallo-beta-lactamase and sensitization of IMP-1-producing bacteria by thioester derivatives. Hammond GG, Huber JL, Greenlee ML, Laub JB, Young K, Silver LL, Balkovec JM, Pryor KD, Wu JK, Leiting B, Pompliano DL, Toney JH. FEMS Microbiol Lett 179 289-296 (1999)
  24. Synthesis and SAR of thioester and thiol inhibitors of IMP-1 metallo-beta-lactamase. Greenlee ML, Laub JB, Balkovec JM, Hammond ML, Hammond GG, Pompliano DL, Epstein-Toney JH. Bioorg Med Chem Lett 9 2549-2554 (1999)
  25. Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-beta-lactamase by polarizable molecular mechanics. Validation on model binding sites by quantum chemistry. Antony J, Piquemal JP, Gresh N. J Comput Chem 26 1131-1147 (2005)
  26. Molecular dynamics simulations of the dinuclear zinc-beta-lactamase from Bacteroides fragilis complexed with imipenem. Suárez D, Díaz N, Merz KM. J Comput Chem 23 1587-1600 (2002)
  27. b-Lactamase inhibitors. Page MG. Drug Resist Updat 3 109-125 (2000)
  28. Design, synthesis, and in vitro and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-β-lactamase IMP-1. Arjomandi OK, Hussein WM, Vella P, Yusof Y, Sidjabat HE, Schenk G, McGeary RP. Eur J Med Chem 114 318-327 (2016)
  29. Probing substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis. Carenbauer AL, Garrity JD, Periyannan G, Yates RB, Crowder MW. BMC Biochem 3 4 (2002)
  30. Inhibition of bacterial peptide deformylase by biaryl acid analogs. Green BG, Toney JH, Kozarich JW, Grant SK. Arch Biochem Biophys 375 355-358 (2000)
  31. Bulgecin A: a novel inhibitor of binuclear metallo-beta-lactamases. Simm AM, Loveridge EJ, Crosby J, Avison MB, Walsh TR, Bennett PM. Biochem J 387 585-590 (2005)
  32. Homo-cysteinyl peptide inhibitors of the L1 metallo-beta-lactamase, and SAR as determined by combinatorial library synthesis. Sun Q, Law A, Crowder MW, Geysen HM. Bioorg Med Chem Lett 16 5169-5175 (2006)
  33. Inhibitors of the FEZ-1 metallo-beta-lactamase. Liénard BM, Horsfall LE, Galleni M, Frère JM, Schofield CJ. Bioorg Med Chem Lett 17 964-968 (2007)
  34. 1,2,4-Triazole-3-thione Compounds as Inhibitors of Dizinc Metallo-β-lactamases. Sevaille L, Gavara L, Bebrone C, De Luca F, Nauton L, Achard M, Mercuri P, Tanfoni S, Borgianni L, Guyon C, Lonjon P, Turan-Zitouni G, Dzieciolowski J, Becker K, Bénard L, Condon C, Maillard L, Martinez J, Frère JM, Dideberg O, Galleni M, Docquier JD, Hernandez JF. ChemMedChem 12 972-985 (2017)
  35. Docking and scoring of metallo-beta-lactamases inhibitors. Olsen L, Pettersson I, Hemmingsen L, Adolph HW, Jørgensen FS. J Comput Aided Mol Des 18 287-302 (2004)
  36. In vitro antibacterial activity and mechanism of action of J-111,225, a novel 1beta-methylcarbapenem, against transferable IMP-1 metallo-beta-lactamase producers. Nagano R, Adachi Y, Hashizume T, Morishima H. J Antimicrob Chemother 45 271-276 (2000)
  37. 2-Substituted 4,5-dihydrothiazole-4-carboxylic acids are novel inhibitors of metallo-β-lactamases. Chen P, Horton LB, Mikulski RL, Deng L, Sundriyal S, Palzkill T, Song Y. Bioorg Med Chem Lett 22 6229-6232 (2012)
  38. Loss of enzyme activity during turnover of the Bacillus cereus beta-lactamase catalysed hydrolysis of beta-lactams due to loss of zinc ion. Badarau A, Page MI. J Biol Inorg Chem 13 919-928 (2008)
  39. Solution structures of the Bacillus cereus metallo-β-lactamase BcII and its complex with the broad spectrum inhibitor R-thiomandelic acid. Karsisiotis AI, Damblon CF, Roberts GC. Biochem J 456 397-407 (2013)
  40. Inactivation of Aeromonas hydrophila metallo-beta-lactamase by cephamycins and moxalactam. Zervosen A, Valladares MH, Devreese B, Prosperi-Meys C, Adolph HW, Mercuri PS, Vanhove M, Amicosante G, van Beeumen J, Frère JM, Galleni M. Eur J Biochem 268 3840-3850 (2001)
  41. Probing the specificity of the subclass B3 FEZ-1 metallo-beta-lactamase by site-directed mutagenesis. Mercuri PS, García-Sáez I, De Vriendt K, Thamm I, Devreese B, Van Beeumen J, Dideberg O, Rossolini GM, Frère JM, Galleni M. J Biol Chem 279 33630-33638 (2004)
  42. Comparative study of the inhibition of metallo-beta-lactamases (IMP-1 and VIM-2) by thiol compounds that contain a hydrophobic group. Jin W, Arakawa Y, Yasuzawa H, Taki T, Hashiguchi R, Mitsutani K, Shoga A, Yamaguchi Y, Kurosaki H, Shibata N, Ohta M, Goto M. Biol Pharm Bull 27 851-856 (2004)
  43. Inhibition studies on the metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. Yang KW, Crowder MW. Arch Biochem Biophys 368 1-6 (1999)
  44. Conformational dynamics of metallo-β-lactamase CcrA during catalysis investigated by using DEER spectroscopy. Aitha M, Moritz L, Sahu ID, Sanyurah O, Roche Z, McCarrick R, Lorigan GA, Bennett B, Crowder MW. J Biol Inorg Chem 20 585-594 (2015)
  45. Protonation state and substrate binding to B2 metallo-beta-lactamase CphA from Aeromonas hydrofila. Simona F, Magistrato A, Vera DM, Garau G, Vila AJ, Carloni P. Proteins 69 595-605 (2007)
  46. An Update on the Status of Potent Inhibitors of Metallo-β-Lactamases. Faridoon, Ul Islam N. Sci Pharm 81 309-327 (2013)
  47. Conformational changes in the metallo-beta-lactamase ImiS during the catalytic reaction: an EPR spectrokinetic study of Co(II)-spin label interactions. Sharma N, Hu Z, Crowder MW, Bennett B. J Am Chem Soc 130 8215-8222 (2008)
  48. The inhibition of metallo-beta-lactamase by thioxo-cephalosporin derivatives. Tsang WY, Dhanda A, Schofield CJ, Frère JM, Galleni M, Page MI. Bioorg Med Chem Lett 14 1737-1739 (2004)
  49. Virtual Screening and Experimental Testing of B1 Metallo-β-lactamase Inhibitors. Kang JS, Zhang AL, Faheem M, Zhang CJ, Ai N, Buynak JD, Welsh WJ, Oelschlaeger P. J Chem Inf Model 58 1902-1914 (2018)
  50. Carbamylmethyl Mercaptoacetate Thioether: A Novel Scaffold for the Development of L1 Metallo-β-lactamase Inhibitors. Chang YN, Xiang Y, Zhang YJ, Wang WM, Chen C, Oelschlaeger P, Yang KW. ACS Med Chem Lett 8 527-532 (2017)
  51. Dilution of dipolar interactions in a spin-labeled, multimeric metalloenzyme for DEER studies. Aitha M, Richmond TK, Hu Z, Hetrick A, Reese R, Gunther A, McCarrick R, Bennett B, Crowder MW. J Inorg Biochem 136 40-46 (2014)
  52. Photochemistry of 5-allyloxy-tetrazoles: steady-state and laser flash photolysis study. Frija LM, Frija LM, Khmelinskii IV, Serpa C, Reva ID, Fausto R, Cristiano ML. Org Biomol Chem 6 1046-1055 (2008)
  53. Dithiocarbamate as a Valuable Scaffold for the Inhibition of Metallo-β-Lactmases. Ge Y, Xu LW, Liu Y, Sun LY, Gao H, Li JQ, Yang K. Biomolecules 9 E699 (2019)
  54. Synthesis, single crystal analysis, biological and docking evaluation of tetrazole derivatives. Aziz H, Saeed A, Jabeen F, Din NU, Flörke U. Heliyon 4 e00792 (2018)
  55. Computational study on hydrolysis of cefotaxime in gas phase and in aqueous solution. Meliá C, Ferrer S, Moliner V, Tuñón I, Bertrán J. J Comput Chem 33 1948-1959 (2012)
  56. In Vitro Assessment of Antimicrobial, Antioxidant, and Cytotoxic Properties of Saccharin-Tetrazolyl and -Thiadiazolyl Derivatives: The Simple Dependence of the pH Value on Antimicrobial Activity. Frija LMT, Ntungwe E, Sitarek P, Andrade JM, Toma M, Śliwiński T, Cabral L, S Cristiano ML, Rijo P, Pombeiro AJL. Pharmaceuticals (Basel) 12 E167 (2019)
  57. Sigmatropic rearrangements in 5-allyloxytetrazoles. Frija LM, Frija LM, Reva I, Ismael A, Coelho DV, Fausto R, Cristiano ML. Org Biomol Chem 9 6040-6054 (2011)
  58. The Role of Active Site Flexible Loops in Catalysis and of Zinc in Conformational Stability of Bacillus cereus 569/H/9 β-Lactamase. Montagner C, Nigen M, Jacquin O, Willet N, Dumoulin M, Karsisiotis AI, Roberts GC, Damblon C, Redfield C, Matagne A. J Biol Chem 291 16124-16137 (2016)
  59. A sensitive coupled HPLC/electrospray mass spectrometry assay for SPM-1 metallo-beta-lactamase inhibitors. Sanchez PA, Toney JH, Thomas JD, Berger JM. Assay Drug Dev Technol 7 170-179 (2009)
  60. Crystal Structure of DIM-1, an Acquired Subclass B1 Metallo-β-Lactamase from Pseudomonas stutzeri. Booth MP, Kosmopoulou M, Poirel L, Nordmann P, Spencer J. PLoS One 10 e0140059 (2015)
  61. Elusive structural changes of New Delhi metallo-β-lactamase revealed by ultraviolet photodissociation mass spectrometry. Mehaffey MR, Ahn YC, Rivera DD, Thomas PW, Cheng Z, Crowder MW, Pratt RF, Fast W, Brodbelt JS. Chem Sci 11 8999-9010 (2020)
  62. Theoretical studies of the hydrolysis of antibiotics catalyzed by a metallo-β-lactamase. Meliá C, Ferrer S, Moliner V, Bertran J. Arch Biochem Biophys 582 116-126 (2015)
  63. Antifungal properties of substituted 1-phenyl-5-mercaptotetrazoles and their oxidation product, 5-bis-(1-phenyltetrazolyl)disulfide. Nesmĕrák K, Pospísek M, Nĕmec I, Waisser K, Gabriel J. Folia Microbiol (Praha) 45 138-142 (2000)
  64. Mercaptoacetate thioesters and their hydrolysate mercaptoacetic acids jointly inhibit metallo-β-lactamase L1. Chen C, Xiang Y, Liu Y, Hu X, Yang KW. Medchemcomm 9 1172-1177 (2018)
  65. Synthesis, anticandidal activity and cytotoxicity of some tetrazole derivatives. Kaplancikli ZA, Yurttaş L, Özdemir A, Turan-Zitouni G, Işcan G, Akalın G, Abu Mohsen U. J Enzyme Inhib Med Chem 29 43-48 (2014)
  66. Crystallization and preliminary X-ray analysis of the subclass B3 metallo-β-lactamase SMB-1 that confers carbapenem resistance. Wachino J, Yamaguchi Y, Mori S, Yamagata Y, Arakawa Y, Shibayama K. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 343-346 (2012)
  67. Synthesis of (2-mercaptoacetyl)-L-[2-14 C]tryptophan as a selective metallo-β-lactamase inhibitor via [2-14 C]indole based on chiral pool strategy. Shirvani G, Shockravi A, Amini M, Saemian N. J Labelled Comp Radiopharm 60 130-134 (2017)
  68. A DFT study of the ionization and electron attachment of 2-azido pyridine. Elshakre M. Spectrochim Acta A Mol Biomol Spectrosc 138 146-157 (2015)
  69. Structural Insights for Core Scaffold and Substrate Specificity of B1, B2, and B3 Metallo-β-Lactamases. Yun Y, Han S, Park YS, Park H, Kim D, Kim Y, Kwon Y, Kim S, Lee JH, Jeon JH, Lee SH, Kang LW. Front Microbiol 12 752535 (2021)
  70. Synthesis and enzyme-based evaluation of analogues L-tyrosine thiol carboxylic acid inhibitor of metallo-β-lactamase IMP-1. Khalili Arjomandi O, Kavoosi M, Adibi H. J Enzyme Inhib Med Chem 34 1414-1425 (2019)


Related citations provided by authors (2)