1dj7 Citations

Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster.

Articles - 1dj7 mentioned but not cited (11)

  1. Coevolution at protein complex interfaces can be detected by the complementarity trace with important impact for predictive docking. Madaoui H, Guerois R. Proc. Natl. Acad. Sci. U.S.A. 105 7708-7713 (2008)
  2. A bacterial antirepressor with SH3 domain topology mimics operator DNA in sequestering the repressor DNA recognition helix. León E, Navarro-Avilés G, Santiveri CM, Flores-Flores C, Rico M, González C, Murillo FJ, Elías-Arnanz M, Jiménez MA, Padmanabhan S. Nucleic Acids Res. 38 5226-5241 (2010)
  3. Functional evolution of two subtly different (similar) folds. Agrawal V, Kishan RK. BMC Struct. Biol. 1 5 (2001)
  4. Recognizing protein-protein interfaces with empirical potentials and reduced amino acid alphabets. Launay G, Mendez R, Wodak S, Simonson T. BMC Bioinformatics 8 270 (2007)
  5. Determining protein complex structures based on a Bayesian model of in vivo Förster resonance energy transfer (FRET) data. Bonomi M, Pellarin R, Kim SJ, Russel D, Sundin BA, Riffle M, Jaschob D, Ramsden R, Davis TN, Muller EG, Sali A. Mol. Cell Proteomics 13 2812-2823 (2014)
  6. Calculating ensemble averaged descriptions of protein rigidity without sampling. González LC, Wang H, Livesay DR, Jacobs DJ. PLoS One 7 e29176 (2012)
  7. Spontaneous assembly of redox-active iron-sulfur clusters at low concentrations of cysteine. Jordan SF, Ioannou I, Rammu H, Halpern A, Bogart LK, Ahn M, Vasiliadou R, Christodoulou J, Maréchal A, Lane N. Nat Commun 12 5925 (2021)
  8. Structural basis for thioredoxin isoform-based fine-tuning of ferredoxin-thioredoxin reductase activity. Juniar L, Tanaka H, Yoshida K, Hisabori T, Kurisu G. Protein Sci 29 2538-2545 (2020)
  9. Classification of heterodimer interfaces using docking models and construction of scoring functions for the complex structure prediction. Tsuchiya Y, Kanamori E, Nakamura H, Kinoshita K. Adv Appl Bioinform Chem 2 79-100 (2009)
  10. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of a novel plant-type ferredoxin/thioredoxin reductase-like protein from Methanosarcina acetivorans. Kumar AK, Yennawar NH, Yennawar HP, Ferry JG. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67 775-778 (2011)
  11. Dockground scoring benchmarks for protein docking. Kotthoff I, Kundrotas PJ, Vakser IA. Proteins 90 1259-1266 (2022)


Reviews citing this publication (35)

  1. Physiological functions of thioredoxin and thioredoxin reductase. Arnér ES, Holmgren A. Eur. J. Biochem. 267 6102-6109 (2000)
  2. Structure, function, and formation of biological iron-sulfur clusters. Johnson DC, Dean DR, Smith AD, Johnson MK. Annu. Rev. Biochem. 74 247-281 (2005)
  3. Redox regulation: a broadening horizon. Buchanan BB, Balmer Y. Annu Rev Plant Biol 56 187-220 (2005)
  4. Formation and transfer of disulphide bonds in living cells. Sevier CS, Kaiser CA. Nat. Rev. Mol. Cell Biol. 3 836-847 (2002)
  5. Thioredoxins and glutaredoxins: unifying elements in redox biology. Meyer Y, Buchanan BB, Vignols F, Reichheld JP. Annu. Rev. Genet. 43 335-367 (2009)
  6. The ferredoxin/thioredoxin system of oxygenic photosynthesis. Schürmann P, Buchanan BB. Antioxid. Redox Signal. 10 1235-1274 (2008)
  7. Signal transduction in response to excess light: getting out of the chloroplast. Mullineaux P, Karpinski S. Curr. Opin. Plant Biol. 5 43-48 (2002)
  8. Strategies to maintain redox homeostasis during photosynthesis under changing conditions. Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S. J. Exp. Bot. 56 1481-1489 (2005)
  9. Thioredoxins in Arabidopsis and other plants. Meyer Y, Reichheld JP, Vignols F. Photosyn. Res. 86 419-433 (2005)
  10. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Chem. Rev. 114 4366-4469 (2014)
  11. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C. Antioxid. Redox Signal. 17 1124-1160 (2012)
  12. Determination of protein function, evolution and interactions by structural genomics. Teichmann SA, Murzin AG, Chothia C. Curr. Opin. Struct. Biol. 11 354-363 (2001)
  13. Plant type ferredoxins and ferredoxin-dependent metabolism. Hanke G, Mulo P. Plant Cell Environ. 36 1071-1084 (2013)
  14. Glutaredoxins and thioredoxins in plants. Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP. Biochim. Biophys. Acta 1783 589-600 (2008)
  15. A tribute to sulfur. Beinert H. Eur. J. Biochem. 267 5657-5664 (2000)
  16. Acclimation of Chlamydomonas reinhardtii to its nutrient environment. Grossman A. Protist 151 201-224 (2000)
  17. Redox signaling in the chloroplast: the ferredoxin/thioredoxin system. Schürmann P. Antioxid. Redox Signal. 5 69-78 (2003)
  18. Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms. Jacquot JP, Eklund H, Rouhier N, Schürmann P. Trends Plant Sci. 14 336-343 (2009)
  19. Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster. Hedderich R, Hamann N, Bennati M. Biol. Chem. 386 961-970 (2005)
  20. Evolutionary development of redox regulation in chloroplasts. Balsera M, Uberegui E, Schürmann P, Buchanan BB. Antioxid. Redox Signal. 21 1327-1355 (2014)
  21. Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions. Nikkanen L, Rintamäki E. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 369 20130224 (2014)
  22. ROS homeostasis during development: an evolutionary conserved strategy. Schippers JH, Nguyen HM, Lu D, Schmidt R, Mueller-Roeber B. Cell. Mol. Life Sci. 69 3245-3257 (2012)
  23. Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Jacquot JP, Gelhaye E, Rouhier N, Corbier C, Didierjean C, Aubry A. Biochem. Pharmacol. 64 1065-1069 (2002)
  24. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology. Clokie MR, Millard AD, Mann NH. Virol. J. 7 291 (2010)
  25. Function and Regulation of Ferredoxins in the Cyanobacterium, Synechocystis PCC6803: Recent Advances. Cassier-Chauvat C, Chauvat F. Life (Basel) 4 666-680 (2014)
  26. Chloroplast thioredoxin systems: prospects for improving photosynthesis. Nikkanen L, Toivola J, Diaz MG, Rintamäki E. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372 (2017)
  27. Redox Modulation Matters: Emerging Functions for Glutaredoxins in Plant Development and Stress Responses. Li S. Plants (Basel) 3 559-582 (2014)
  28. The blood fibrinolysis/deep-sea analogy: a hypothesis on the cell signals singlet oxygen/photons as natural antithrombotics. Stief TW. Thromb. Res. 99 1-20 (2000)
  29. Integron-sequestered dihydrofolate reductase: a recently redeployed enzyme. Alonso H, Gready JE. Trends Microbiol. 14 236-242 (2006)
  30. Photosynthetic fuel for heterologous enzymes: the role of electron carrier proteins. Mellor SB, Vavitsas K, Nielsen AZ, Jensen PE. Photosyn. Res. 134 329-342 (2017)
  31. Molecular views of redox regulation: three-dimensional structures of redox regulatory proteins and protein complexes. Qin J, Yang Y, Velyvis A, Gronenborn A. Antioxid. Redox Signal. 2 827-840 (2000)
  32. Biogenesis of [Fe-S] cluster in Firmicutes: an unexploited field of investigation. Riboldi GP, de Mattos EP, Frazzon J. Antonie Van Leeuwenhoek 104 283-300 (2013)
  33. Dithiol disulphide exchange in redox regulation of chloroplast enzymes in response to evolutionary and structural constraints. Gütle DD, Roret T, Hecker A, Reski R, Jacquot JP. Plant Sci. 255 1-11 (2017)
  34. Cellular Dynamics of Transition Metal Exchange on Proteins: A Challenge but a Bonanza for Coordination Chemistry. Moulis JM. Biomolecules 10 (2020)
  35. Exploring the Diversity of the Thioredoxin Systems in Cyanobacteria. Mallén-Ponce MJ, Huertas MJ, Florencio FJ. Antioxidants (Basel) 11 654 (2022)

Articles citing this publication (48)

  1. Malate valves to balance cellular energy supply. Scheibe R. Physiol Plant 120 21-26 (2004)
  2. PLANT THIOREDOXIN SYSTEMS REVISITED. Schurmann P, Jacquot JP. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51 371-400 (2000)
  3. Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. Reichheld JP, Khafif M, Riondet C, Droux M, Bonnard G, Meyer Y. Plant Cell 19 1851-1865 (2007)
  4. The universally conserved HCF101 protein is involved in assembly of [4Fe-4S]-cluster-containing complexes in Arabidopsis thaliana chloroplasts. Lezhneva L, Amann K, Meurer J. Plant J. 37 174-185 (2004)
  5. The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Buchanan BB, Schürmann P, Wolosiuk RA, Jacquot JP. Photosyn. Res. 73 215-222 (2002)
  6. A redox-dependent interaction between two electron-transfer partners involved in photosynthesis. Morales R, Charon MH, Kachalova G, Serre L, Medina M, Gómez-Moreno C, Frey M. EMBO Rep. 1 271-276 (2000)
  7. Structural snapshots along the reaction pathway of ferredoxin-thioredoxin reductase. Dai S, Friemann R, Glauser DA, Bourquin F, Manieri W, Schürmann P, Eklund H. Nature 448 92-96 (2007)
  8. Characterization of a unique [FeS] cluster in the electron transfer chain of the oxygen tolerant [NiFe] hydrogenase from Aquifex aeolicus. Pandelia ME, Nitschke W, Infossi P, Giudici-Orticoni MT, Bill E, Lubitz W. Proc. Natl. Acad. Sci. U.S.A. 108 6097-6102 (2011)
  9. Crystal structures of [NiFe] hydrogenase maturation proteins HypC, HypD, and HypE: insights into cyanation reaction by thiol redox signaling. Watanabe S, Matsumi R, Arai T, Atomi H, Imanaka T, Miki K. Mol. Cell 27 29-40 (2007)
  10. Proteomics uncovers proteins interacting electrostatically with thioredoxin in chloroplasts. Balmer Y, Koller A, Val GD, Schürmann P, Buchanan BB. Photosyn. Res. 79 275-280 (2004)
  11. PSRP1 is not a ribosomal protein, but a ribosome-binding factor that is recycled by the ribosome-recycling factor (RRF) and elongation factor G (EF-G). Sharma MR, Dönhöfer A, Barat C, Marquez V, Datta PP, Fucini P, Wilson DN, Agrawal RK. J. Biol. Chem. 285 4006-4014 (2010)
  12. Substrate recognition, protein dynamics, and iron-sulfur cluster in Pseudomonas aeruginosa adenosine 5'-phosphosulfate reductase. Chartron J, Carroll KS, Shiau C, Gao H, Leary JA, Bertozzi CR, Stout CD. J. Mol. Biol. 364 152-169 (2006)
  13. Evolution of redoxin genes in the green lineage. Meyer Y, Riondet C, Constans L, Abdelgawwad MR, Reichheld JP, Vignols F. Photosyn. Res. 89 179-192 (2006)
  14. Characterization of Arabidopsis Mutants for the Variable Subunit of Ferredoxin:thioredoxin Reductase. Keryer E, Collin V, Lavergne D, Lemaire S, Issakidis-Bourguet E. Photosyn. Res. 79 265-274 (2004)
  15. A turn-on fluorescent probe based on hydroxylamine oxidation for detecting ferric ion selectively in living cells. Wang R, Yu F, Liu P, Chen L. Chem. Commun. (Camb.) 48 5310-5312 (2012)
  16. Structure of a thioredoxin-like [2Fe-2S] ferredoxin from Aquifex aeolicus. Yeh AP, Chatelet C, Soltis SM, Kuhn P, Meyer J, Rees DC. J. Mol. Biol. 300 587-595 (2000)
  17. Heterodisulfide reductase from Methanothermobacter marburgensis contains an active-site [4Fe-4S] cluster that is directly involved in mediating heterodisulfide reduction. Duin EC, Madadi-Kahkesh S, Hedderich R, Clay MD, Johnson MK. FEBS Lett. 512 263-268 (2002)
  18. A paramagnetic species with unique EPR characteristics in the active site of heterodisulfide reductase from methanogenic archaea. Madadi-Kahkesh S, Duin EC, Heim S, Albracht SP, Johnson MK, Hedderich R. Eur. J. Biochem. 268 2566-2577 (2001)
  19. Redox control of human mitochondrial outer membrane protein MitoNEET [2Fe-2S] clusters by biological thiols and hydrogen peroxide. Landry AP, Ding H. J. Biol. Chem. 289 4307-4315 (2014)
  20. Structural Basis of Redox Signaling in Photosynthesis: Structure and Function of Ferredoxin:thioredoxin Reductase and Target Enzymes. Dai S, Johansson K, Miginiac-Maslow M, Schürmann P, Eklund H. Photosyn. Res. 79 233-248 (2004)
  21. Proteome-Wide Analysis of Cysteine Reactivity during Effector-Triggered Immunity. McConnell EW, Berg P, Westlake TJ, Wilson KM, Popescu GV, Hicks LM, Popescu SC. Plant Physiol 179 1248-1264 (2019)
  22. A closer look at the spectroscopic properties of possible reaction intermediates in wild-type and mutant (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase. Xu W, Lees NS, Hall D, Welideniya D, Hoffman BM, Duin EC. Biochemistry 51 4835-4849 (2012)
  23. Coenzyme M binds to a [4Fe-4S] cluster in the active site of heterodisulfide reductase as deduced from EPR studies with the [33S]coenzyme M-treated enzyme. Duin EC, Bauer C, Jaun B, Hedderich R. FEBS Lett. 538 81-84 (2003)
  24. Ferredoxin:thioredoxin Reductase: Disulfide Reduction Catalyzed via Novel Site-specific [4Fe-4S] Cluster Chemistry. Walters EM, Johnson MK. Photosyn. Res. 79 249-264 (2004)
  25. Ferredoxin:thioredoxin reductase (FTR) links the regulation of oxygenic photosynthesis to deeply rooted bacteria. Balsera M, Uberegui E, Susanti D, Schmitz RA, Mukhopadhyay B, Schürmann P, Buchanan BB. Planta 237 619-635 (2013)
  26. Characterization of ferredoxin:thioredoxin reductase modified by site-directed mutagenesis. Glauser DA, Bourquin F, Manieri W, Schürmann P. J. Biol. Chem. 279 16662-16669 (2004)
  27. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Benjdia A, Guillot A, Ruffié P, Leprince J, Berteau O. Nat Chem 9 698-707 (2017)
  28. Significance of the epsilon subunit in the thiol modulation of chloroplast ATP synthase. Konno H, Suzuki T, Bald D, Yoshida M, Hisabori T. Biochem. Biophys. Res. Commun. 318 17-24 (2004)
  29. Ferredoxin/ferredoxin-thioredoxin reductase complex: Complete NMR mapping of the interaction site on ferredoxin by gallium substitution. Xu X, Kim SK, Schürmann P, Hirasawa M, Tripathy JN, Smith J, Knaff DB, Ubbink M. FEBS Lett. 580 6714-6720 (2006)
  30. FRET-based ratiometric fluorescent probes for selective Fe3+ sensing and their applications in mitochondria. Chen WD, Gong WT, Ye ZQ, Lin Y, Ning GL. Dalton Trans 42 10093-10096 (2013)
  31. A dicistronic construct for the expression of functional spinach chloroplast ferredoxin:thioredoxin reductase in Escherichia coli. Gaymard E, Franchini L, Manieri W, Stutz E, Schürmann P. Plant Sci. 158 107-113 (2000)
  32. Role of histidine-86 in the catalytic mechanism of ferredoxin:thioredoxin reductase. Walters EM, Garcia-Serres R, Naik SG, Bourquin F, Glauser DA, Schürmann P, Huynh BH, Johnson MK. Biochemistry 48 1016-1024 (2009)
  33. Thioredoxin-like2/2-Cys peroxiredoxin redox cascade supports oxidative thiol modulation in chloroplasts. Yoshida K, Hara A, Sugiura K, Fukaya Y, Hisabori T. Proc. Natl. Acad. Sci. U.S.A. 115 E8296-E8304 (2018)
  34. Core level (S 2p) excitation and fragmentation of the dimethyl sulfide and dimethyldisulfide molecules. Bernini RB, da Silva LB, Rodrigues FN, Coutinho LH, Rocha AB, de Souza GG. J Chem Phys 136 144307 (2012)
  35. Enzymes degraded under high light maintain proteostasis by transcriptional regulation in Arabidopsis. Li L, Duncan O, Ganguly DR, Lee CP, Crisp PA, Wijerathna-Yapa A, Salih K, Trösch J, Pogson BJ, Millar AH. Proc Natl Acad Sci U S A 119 e2121362119 (2022)
  36. Improved prediction of protein binding sites from sequences using genetic algorithm. Du X, Cheng J, Song J. Protein J. 28 273-280 (2009)
  37. Unexpected diversity of ferredoxin-dependent thioredoxin reductases in cyanobacteria. Buey RM, Fernández-Justel D, González-Holgado G, Martínez-Júlvez M, González-López A, Velázquez-Campoy A, Medina M, Buchanan BB, Balsera M. Plant Physiol 186 285-296 (2021)
  38. 2-nitrobenzoate 2-nitroreductase (NbaA) switches its substrate specificity from 2-nitrobenzoic acid to 2,4-dinitrobenzoic acid under oxidizing conditions. Kim YH, Song WS, Go H, Cha CJ, Lee C, Yu MH, Lau PC, Lee K. J. Bacteriol. 195 180-192 (2013)
  39. Advanced electron paramagnetic resonance on the catalytic iron-sulfur cluster bound to the CCG domain of heterodisulfide reductase and succinate: quinone reductase. Fielding AJ, Parey K, Ermler U, Scheller S, Jaun B, Bennati M. J. Biol. Inorg. Chem. 18 905-915 (2013)
  40. Depletion of m-type thioredoxin impairs photosynthesis, carbon fixation, and oxidative stress in cyanobacteria. Mallén-Ponce MJ, Huertas MJ, Sánchez-Riego AM, Florencio FJ. Plant Physiol 187 1325-1340 (2021)
  41. Desulfovibrio gigas ferredoxin II: redox structural modulation of the [3Fe-4S] cluster. Rodrigues PM, Macedo AL, Goodfellow BJ, Moura I, Moura JJ. J. Biol. Inorg. Chem. 11 307-315 (2006)
  42. Determining the Rate-Limiting Step for Light-Responsive Redox Regulation in Chloroplasts. Yoshida K, Hisabori T. Antioxidants (Basel) 7 (2018)
  43. Ferredoxin/thioredoxin system plays an important role in the chloroplastic NADP status of Arabidopsis. Hashida SN, Miyagi A, Nishiyama M, Yoshida K, Hisabori T, Kawai-Yamada M. Plant J. 95 947-960 (2018)
  44. Quaternary structure of α-amino-β-carboxymuconate-ϵ-semialdehyde decarboxylase (ACMSD) controls its activity. Yang Y, Davis I, Matsui T, Rubalcava I, Liu A. J Biol Chem 294 11609-11621 (2019)
  45. Fluorescent Sensing of both Fe(III) and pH Based on 4-Phenyl-2-(2-Pyridyl)Thiazole and Construction of OR Logic Function. Yang MY, Zhao XL, Zheng MH, Wang Y, Jin JY. J Fluoresc 26 1653-1657 (2016)
  46. Thioredoxin: an unexpected meeting place. Buchanan BB. Photosyn. Res. 92 145-148 (2007)
  47. A Resumable Fluorescent Probe BHN-Fe3O4@SiO2 Hybrid Nanostructure for Fe3+ and its Application in Bioimaging. Zhou X, Wang Y, Peng Q, Liu W. Nanoscale Res Lett 12 629 (2017)
  48. Presence and role of a second disulphide bond in recombinant lupanine hydroxylase using site-directed mutagenesis with 143Cys→Ser and 124,143Cys→Ser mutations in Escherichia coli. Stampolidis P, Kaderbhai NN, Kaderbhai MA. FEMS Microbiol. Lett. 334 35-43 (2012)