1dve Citations

Crystal structure of rat heme oxygenase-1 in complex with heme.

FEBS Lett 471 61-6 (2000)
Cited: 72 times
EuropePMC logo PMID: 10760513

Abstract

Heme oxygenase catalyzes the oxidative cleavage of protoheme to biliverdin, the first step of heme metabolism utilizing O(2) and NADPH. We determined the crystal structures of rat heme oxygenase-1 (HO-1)-heme and selenomethionyl HO-1-heme complexes. Heme is sandwiched between two helices with the delta-meso edge of the heme being exposed to the surface. Gly143N forms a hydrogen bond to the distal ligand of heme, OH(-). The distance between Gly143N and the ligand is shorter than that in the human HO-1-heme complex. This difference may be related to a pH-dependent change of the distal ligand of heme. Flexibility of the distal helix may control the stability of the coordination of the distal ligand to heme iron. The possible role of Gly143 in the heme oxygenase reaction is discussed.

Reviews - 1dve mentioned but not cited (1)

  1. Structural and thermodynamic consequences of b heme binding for monomeric apoglobins and other apoproteins. Landfried DA, Vuletich DA, Pond MP, Lecomte JT. Gene 398 12-28 (2007)

Articles - 1dve mentioned but not cited (7)

  1. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Collins BM, Davis MJ, Hancock JF, Parton RG. Dev Cell 23 11-20 (2012)
  2. Neuroprotective effects of melatonin and celecoxib against ethanol-induced neurodegeneration: a computational and pharmacological approach. Al Kury LT, Zeb A, Abidin ZU, Irshad N, Malik I, Alvi AM, Khalil AAK, Ahmad S, Faheem M, Khan AU, Shah FA, Li S. Drug Des Devel Ther 13 2715-2727 (2019)
  3. Electrostatic environment of hemes in proteins: pK(a)s of hydroxyl ligands. Song Y, Mao J, Gunner MR. Biochemistry 45 7949-7958 (2006)
  4. Flexible mapping of homology onto structure with homolmapper. Rockwell NC, Lagarias JC. BMC Bioinformatics 8 123 (2007)
  5. Mass spectrometric identification of lysine residues of heme oxygenase-1 that are involved in its interaction with NADPH-cytochrome P450 reductase. Higashimoto Y, Sugishima M, Sato H, Sakamoto H, Fukuyama K, Palmer G, Noguchi M. Biochem Biophys Res Commun 367 852-858 (2008)
  6. Carveol a Naturally-Derived Potent and Emerging Nrf2 Activator Protects Against Acetaminophen-Induced Hepatotoxicity. Rahman ZU, Al Kury LT, Alattar A, Tan Z, Alshaman R, Malik I, Badshah H, Uddin Z, Khan Khalil AA, Muhammad N, Khan S, Ali A, Shah FA, Li JB, Li S. Front Pharmacol 11 621538 (2020)
  7. Domain-Based Protein Docking with Extremely Large Conformational Changes. Christoffer C, Kihara D. J Mol Biol 434 167820 (2022)


Reviews citing this publication (14)

  1. Heme enzyme structure and function. Poulos TL. Chem Rev 114 3919-3962 (2014)
  2. Heme oxygenase and heme degradation. Kikuchi G, Yoshida T, Noguchi M. Biochem Biophys Res Commun 338 558-567 (2005)
  3. Heme degradation and vascular injury. Belcher JD, Beckman JD, Balla G, Balla J, Vercellotti G. Antioxid Redox Signal 12 233-248 (2010)
  4. Heme oxygenase: evolution, structure, and mechanism. Wilks A. Antioxid Redox Signal 4 603-614 (2002)
  5. Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. Shekhawat GS, Verma K. J Exp Bot 61 2255-2270 (2010)
  6. Structure and catalytic mechanism of heme oxygenase. Unno M, Matsui T, Ikeda-Saito M. Nat Prod Rep 24 553-570 (2007)
  7. Signaling function of heme oxygenase proteins. Dennery PA. Antioxid Redox Signal 20 1743-1753 (2014)
  8. Bacterial heme oxygenases. Frankenberg-Dinkel N. Antioxid Redox Signal 6 825-834 (2004)
  9. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Chem Rev 118 10840-11022 (2018)
  10. Artificial metalloenzymes constructed from hierarchically-assembled proteins. Ueno T, Tabe H, Tanaka Y. Chem Asian J 8 1646-1660 (2013)
  11. Crystallographic studies of heme oxygenase complexed with an unstable reaction intermediate, verdoheme. Unno M, Matsui T, Ikeda-Saito M. J Inorg Biochem 113 102-109 (2012)
  12. Crystal structure based design of functional metal/protein hybrids. Ueno T, Yokoi N, Abe S, Watanabe Y. J Inorg Biochem 101 1667-1675 (2007)
  13. The Nuclear Translocation of Heme Oxygenase-1 in Human Diseases. Yang Q, Wang W. Front Cell Dev Biol 10 890186 (2022)
  14. Recent Advances in the Understanding of the Reaction Chemistries of the Heme Catabolizing Enzymes HO and BVR Based on High Resolution Protein Structures. Sugishima M, Wada K, Fukuyama K. Curr Med Chem 27 3499-3518 (2020)

Articles citing this publication (50)

  1. Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. Ratliff M, Zhu W, Deshmukh R, Wilks A, Stojiljkovic I. J Bacteriol 183 6394-6403 (2001)
  2. The IsdG-family of haem oxygenases degrades haem to a novel chromophore. Reniere ML, Ukpabi GN, Harry SR, Stec DF, Krull R, Wright DW, Bachmann BO, Murphy ME, Skaar EP. Mol Microbiol 75 1529-1538 (2010)
  3. Bacillus anthracis IsdG, a heme-degrading monooxygenase. Skaar EP, Gaspar AH, Schneewind O. J Bacteriol 188 1071-1080 (2006)
  4. Comparison of the heme-free and -bound crystal structures of human heme oxygenase-1. Lad L, Schuller DJ, Shimizu H, Friedman J, Li H, Ortiz de Montellano PR, Poulos TL. J Biol Chem 278 7834-7843 (2003)
  5. The heme oxygenase(s)-phytochrome system of Pseudomonas aeruginosa. Wegele R, Tasler R, Zeng Y, Rivera M, Frankenberg-Dinkel N. J Biol Chem 279 45791-45802 (2004)
  6. Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis. Chim N, Iniguez A, Nguyen TQ, Goulding CW. J Mol Biol 395 595-608 (2010)
  7. Regulation of heme oxygenase-1 protein expression by miR-377 in combination with miR-217. Beckman JD, Chen C, Nguyen J, Thayanithy V, Subramanian S, Steer CJ, Vercellotti GM. J Biol Chem 286 3194-3202 (2011)
  8. Comparison of apo- and heme-bound crystal structures of a truncated human heme oxygenase-2. Bianchetti CM, Yi L, Ragsdale SW, Phillips GN. J Biol Chem 282 37624-37631 (2007)
  9. Crystal structure of heme oxygenase-1 from cyanobacterium Synechocystis sp. PCC 6803 in complex with heme. Sugishima M, Migita CT, Zhang X, Yoshida T, Fukuyama K. Eur J Biochem 271 4517-4525 (2004)
  10. Crystal structures of the ferric, ferrous, and ferrous-NO forms of the Asp140Ala mutant of human heme oxygenase-1: catalytic implications. Lad L, Wang J, Li H, Friedman J, Bhaskar B, Ortiz de Montellano PR, Poulos TL. J Mol Biol 330 527-538 (2003)
  11. Oligomerization is crucial for the stability and function of heme oxygenase-1 in the endoplasmic reticulum. Hwang HW, Lee JR, Chou KY, Suen CS, Hwang MJ, Chen C, Shieh RC, Chau LY. J Biol Chem 284 22672-22679 (2009)
  12. Structural basis for the electron transfer from an open form of NADPH-cytochrome P450 oxidoreductase to heme oxygenase. Sugishima M, Sato H, Higashimoto Y, Harada J, Wada K, Fukuyama K, Noguchi M. Proc Natl Acad Sci U S A 111 2524-2529 (2014)
  13. Interaction between heme oxygenase-1 and -2 proteins. Weng YH, Yang G, Weiss S, Dennery PA. J Biol Chem 278 50999-51005 (2003)
  14. O(2)- and H(2)O(2)-dependent verdoheme degradation by heme oxygenase: reaction mechanisms and potential physiological roles of the dual pathway degradation. Matsui T, Nakajima A, Fujii H, Matera KM, Migita CT, Yoshida T, Ikeda-Saito M. J Biol Chem 280 36833-36840 (2005)
  15. Unique features of recombinant heme oxygenase of Drosophila melanogaster compared with those of other heme oxygenases studied. Zhang X, Sato M, Sasahara M, Migita CT, Yoshida T. Eur J Biochem 271 1713-1724 (2004)
  16. Electronic properties of the highly ruffled heme bound to the heme degrading enzyme IsdI. Takayama SJ, Ukpabi G, Murphy ME, Mauk AG. Proc Natl Acad Sci U S A 108 13071-13076 (2011)
  17. Expression and characterization of cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Properties of the heme complex of recombinant active enzyme. Migita CT, Zhang X, Yoshida T. Eur J Biochem 270 687-698 (2003)
  18. Solution NMR characterization of an unusual distal H-bond network in the active site of the cyanide-inhibited, human heme oxygenase complex of the symmetric substrate, 2,4-dimethyldeuterohemin. Li Y, Syvitski RT, Auclair K, Wilks A, Ortiz De Montellano PR, La Mar GN. J Biol Chem 277 33018-33031 (2002)
  19. Crystallographic and spectroscopic insights into heme degradation by Mycobacterium tuberculosis MhuD. Graves AB, Morse RP, Chao A, Iniguez A, Goulding CW, Liptak MD. Inorg Chem 53 5931-5940 (2014)
  20. MicroRNA-218 promotes high glucose-induced apoptosis in podocytes by targeting heme oxygenase-1. Yang H, Wang Q, Li S. Biochem Biophys Res Commun 471 582-588 (2016)
  21. The molecular basis of heme oxygenase deficiency in the pcd1 mutant of pea. Linley PJ, Landsberger M, Kohchi T, Cooper JB, Terry MJ. FEBS J 273 2594-2606 (2006)
  22. Alteration of the regiospecificity of human heme oxygenase-1 by unseating of the heme but not disruption of the distal hydrogen bonding network. Wang J, Evans JP, Ogura H, La Mar GN, Ortiz de Montellano PR. Biochemistry 45 61-73 (2006)
  23. Protein expressed by the ho2 gene of the cyanobacterium Synechocystis sp. PCC 6803 is a true heme oxygenase. Properties of the heme and enzyme complex. Zhang X, Migita CT, Sato M, Sasahara M, Yoshida T. FEBS J 272 1012-1022 (2005)
  24. Solution 1H NMR investigation of the active site molecular and electronic structures of substrate-bound, cyanide-inhibited HmuO, a bacterial heme oxygenase from Corynebacterium diphtheriae. Li Y, Syvitski RT, Chu GC, Ikeda-Saito M, Mar GN. J Biol Chem 278 6651-6663 (2003)
  25. Crystal structures of ferrous and ferrous-NO forms of verdoheme in a complex with human heme oxygenase-1: catalytic implications for heme cleavage. Lad L, Ortiz de Montellano PR, Poulos TL. J Inorg Biochem 98 1686-1695 (2004)
  26. Separation and identification of the regioisomers of verdoheme by reversed-phase ion-pair high-performance liquid chromatography, and characterization of their complexes with heme oxygenase. Sakamoto H, Omata Y, Adachi Y, Palmer G, Noguchi M. J Inorg Biochem 82 113-121 (2000)
  27. C-Terminal membrane spanning region of human heme oxygenase-1 mediates a time-dependent complex formation with cytochrome P450 reductase. Huber Iii WJ, Scruggs BA, Backes WL. Biochemistry 48 190-197 (2009)
  28. Expression of heme oxygenase-1 protects endothelial cells from irradiation-induced apoptosis. Ewing P, Wilke A, Eissner G, Holler E, Andreesen R, Gerbitz A. Endothelium 12 113-119 (2005)
  29. Spectroscopic characterization of a higher plant heme oxygenase isoform-1 from Glycine max (soybean)--coordination structure of the heme complex and catabolism of heme. Gohya T, Zhang X, Yoshida T, Migita CT. FEBS J 273 5384-5399 (2006)
  30. Design of metal cofactors activated by a protein-protein electron transfer system. Ueno T, Yokoi N, Unno M, Matsui T, Tokita Y, Yamada M, Ikeda-Saito M, Nakajima H, Watanabe Y. Proc Natl Acad Sci U S A 103 9416-9421 (2006)
  31. The reactions of heme- and verdoheme-heme oxygenase-1 complexes with FMN-depleted NADPH-cytochrome P450 reductase. Electrons required for verdoheme oxidation can be transferred through a pathway not involving FMN. Higashimoto Y, Sato H, Sakamoto H, Takahashi K, Palmer G, Noguchi M. J Biol Chem 281 31659-31667 (2006)
  32. CO-trapping site in heme oxygenase revealed by photolysis of its co-bound heme complex: mechanism of escaping from product inhibition. Sugishima M, Sakamoto H, Noguchi M, Fukuyama K. J Mol Biol 341 7-13 (2004)
  33. miR-218-2 regulates cognitive functions in the hippocampus through complement component 3-dependent modulation of synaptic vesicle release. Lu SY, Fu CL, Liang L, Yang B, Shen W, Wang QW, Chen Y, Chen YF, Liu YN, Zhu L, Zhao J, Shi W, Mi S, Yao J. Proc Natl Acad Sci U S A 118 e2021770118 (2021)
  34. Crystal structures of the G139A, G139A-NO and G143H mutants of human heme oxygenase-1. A finely tuned hydrogen-bonding network controls oxygenase versus peroxidase activity. Lad L, Koshkin A, de Montellano PR, Poulos TL. J Biol Inorg Chem 10 138-146 (2005)
  35. Analysis of heme oxygenase isomers in rat. Xia ZW, Cui WJ, Zhang XH, Shen QX, Wang J, Li YZ, Chen SN, Yu SC. World J Gastroenterol 8 1123-1128 (2002)
  36. The reactivity of alpha-hydroxyhaem and verdohaem bound to haem oxygenase-1 to dioxygen and sodium dithionite. Sakamoto H, Omata Y, Hayashi S, Harada S, Palmer G, Noguchi M. Eur J Biochem 269 5231-5239 (2002)
  37. Use of normal modes for structural modeling of proteins: the case study of rat heme oxygenase 1. Maréchal JD, Perahia D. Eur Biophys J 37 1157-1165 (2008)
  38. Chlamydomonas reinhardtii LFO1 Is an IsdG Family Heme Oxygenase. Lojek LJ, Farrand AJ, Wisecaver JH, Blaby-Haas CE, Michel BW, Merchant SS, Rokas A, Skaar EP. mSphere 2 e00176-17 (2017)
  39. The effect of the Gly139His, Gly143His, and Ser142His mouse heme oxygenase-1 mutants on the HO reaction in vivo and in vitro. Zhou L, Liu Y, Zou C, Ma N, Hui Y, Lv G, Zhang H, Zhou H, Gao X. Anat Rec (Hoboken) 294 112-118 (2011)
  40. Cloning and expression of a heme binding protein from the genome of Saccharomyces cerevisiae. Auclair K, Huang HW, Moënne-Loccoz P, Ortiz de Montellano PR. Protein Expr Purif 28 340-349 (2003)
  41. Bacteriophytochrome-dependent regulation of light-harvesting complexes in Rhodopseudomonas palustris anaerobic cultures. Li M, Noll S, Beatty JT. Curr Microbiol 61 429-434 (2010)
  42. A noncanonical heme oxygenase specific for the degradation of c-type heme. Li S, Isiorho EA, Owens VL, Donnan PH, Odili CL, Mansoorabadi SO. J Biol Chem 296 100666 (2021)
  43. Heme-iron utilization by Leptospira interrogans requires a heme oxygenase and a plastidic-type ferredoxin-NADP(+) reductase. Soldano A, Yao H, Rivera M, Ceccarelli EA, Catalano-Dupuy DL. Biochim Biophys Acta 1840 3208-3217 (2014)
  44. Conformational Equilibrium of NADPH-Cytochrome P450 Oxidoreductase Is Essential for Heme Oxygenase Reaction. Sugishima M, Taira J, Sagara T, Nakao R, Sato H, Noguchi M, Fukuyama K, Yamamoto K, Yasunaga T, Sakamoto H. Antioxidants (Basel) 9 E673 (2020)
  45. Backbone assignments of the apo and Zn(II) protoporphyrin IX-bound states of the soluble form of rat heme oxygenase-1. Harada E, Sugishima M, Harada J, Noguchi M, Fukuyama K, Sugase K. Biomol NMR Assign 9 197-200 (2015)
  46. Crystal structure of higher plant heme oxygenase-1 and its mechanism of interaction with ferredoxin. Tohda R, Tanaka H, Mutoh R, Zhang X, Lee YH, Konuma T, Ikegami T, Migita CT, Kurisu G. J Biol Chem 296 100217 (2021)
  47. Iron chelators inhibit the heme-degradation reaction by HutZ from Vibrio cholerae. Dojun N, Sekine Y, Ishimori K, Uchida T. Dalton Trans 46 5147-5150 (2017)
  48. Enzymological and structural characterization of Arabidopsis thaliana heme oxygenase-1. Wang J, Li X, Chang JW, Ye T, Mao Y, Wang X, Liu L. FEBS Open Bio 12 1677-1687 (2022)
  49. Role of His63 in HutZ from Vibrio cholerae in the heme degradation reaction and heme binding. Uchida T, Dojun N, Sekine Y, Ishimori K. Dalton Trans 48 5408-5416 (2019)
  50. Two epitopes responsible for the catalytic activity of heme oxygenase-1 identified by phage display. Wei X, Liu Q, Gao Y, Yang J, Wang B, Yang G, Zhang S, Zhou H. FEBS Open Bio 7 719-726 (2017)


Related citations provided by authors (1)

  1. Crystallization and Preliminary X-ray Diffraction Studies on the Water Soluble Form of Rat Heme Oxygenase-1 in Complex with Heme. Omata Y, Asada S, Sakamoto H, Fukuyama K, Noguchi M Acta Crystallogr. D Biol. Crystallogr. 54 1017-1019 (1998)