1e79 Citations

The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution.

Nat Struct Biol 7 1055-61 (2000)
Related entries: 1aqt, 1bmf, 1qo1, 2xok

Cited: 278 times
EuropePMC logo PMID: 11062563

Abstract

The central stalk in ATP synthase, made of gamma, delta and epsilon subunits in the mitochondrial enzyme, is the key rotary element in the enzyme's catalytic mechanism. The gamma subunit penetrates the catalytic (alpha beta)(3) domain and protrudes beneath it, interacting with a ring of c subunits in the membrane that drives rotation of the stalk during ATP synthesis. In other crystals of F(1)-ATPase, the protrusion was disordered, but with crystals of F(1)-ATPase inhibited with dicyclohexylcarbodiimide, the complete structure was revealed. The delta and epsilon subunits interact with a Rossmann fold in the gamma subunit, forming a foot. In ATP synthase, this foot interacts with the c-ring and couples the transmembrane proton motive force to catalysis in the (alpha beta)(3) domain.

Reviews - 1e79 mentioned but not cited (4)

  1. Catalytic robustness and torque generation of the F1-ATPase. Noji H, Ueno H, McMillan DGG. Biophys Rev 9 103-118 (2017)
  2. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress. Pu X, Lv X, Tan T, Fu F, Qin G, Lin H. Ann Bot 116 583-600 (2015)
  3. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  4. Insight Into Distinct Functional Roles of the Flagellar ATPase Complex for Flagellar Assembly in Salmonella. Minamino T, Kinoshita M, Namba K. Front Microbiol 13 864178 (2022)

Articles - 1e79 mentioned but not cited (46)

  1. Global rigid body modeling of macromolecular complexes against small-angle scattering data. Petoukhov MV, Svergun DI. Biophys J 89 1237-1250 (2005)
  2. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Watt IN, Montgomery MG, Runswick MJ, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 107 16823-16827 (2010)
  3. Structure of the mitochondrial ATP synthase by electron cryomicroscopy. Rubinstein JL, Walker JE, Henderson R. EMBO J 22 6182-6192 (2003)
  4. Redox regulation of mitochondrial ATP synthase: implications for cardiac resynchronization therapy. Wang SB, Foster DB, Rucker J, O'Rourke B, Kass DA, Van Eyk JE. Circ Res 109 750-757 (2011)
  5. Structure of the yeast vacuolar ATPase. Zhang Z, Zheng Y, Mazon H, Milgrom E, Kitagawa N, Kish-Trier E, Heck AJ, Kane PM, Wilkens S. J Biol Chem 283 35983-35995 (2008)
  6. Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution. Morales-Rios E, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 112 13231-13236 (2015)
  7. On the mechanism of ATP hydrolysis in F1-ATPase. Dittrich M, Hayashi S, Schulten K. Biophys J 85 2253-2266 (2003)
  8. Structures of the thermophilic F1-ATPase epsilon subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1. Yagi H, Kajiwara N, Tanaka H, Tsukihara T, Kato-Yamada Y, Yoshida M, Akutsu H. Proc Natl Acad Sci U S A 104 11233-11238 (2007)
  9. Anatomy of F1-ATPase powered rotation. Martin JL, Ishmukhametov R, Hornung T, Ahmad Z, Frasch WD. Proc Natl Acad Sci U S A 111 3715-3720 (2014)
  10. Phosphate release coupled to rotary motion of F1-ATPase. Okazaki K, Hummer G. Proc Natl Acad Sci U S A 110 16468-16473 (2013)
  11. Mechanism of inhibition by C-terminal alpha-helices of the epsilon subunit of Escherichia coli FoF1-ATP synthase. Iino R, Hasegawa R, Tabata KV, Noji H. J Biol Chem 284 17457-17464 (2009)
  12. Crystal structure of the Mg·ADP-inhibited state of the yeast F1c10-ATP synthase. Dautant A, Velours J, Giraud MF. J Biol Chem 285 29502-29510 (2010)
  13. Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation. Okuno D, Fujisawa R, Iino R, Hirono-Hara Y, Imamura H, Noji H. Proc Natl Acad Sci U S A 105 20722-20727 (2008)
  14. ATP hydrolysis in the betaTP and betaDP catalytic sites of F1-ATPase. Dittrich M, Hayashi S, Schulten K. Biophys J 87 2954-2967 (2004)
  15. Structure of a central stalk subunit F of prokaryotic V-type ATPase/synthase from Thermus thermophilus. Makyio H, Iino R, Ikeda C, Imamura H, Tamakoshi M, Iwata M, Stock D, Bernal RA, Carpenter EP, Yoshida M, Yokoyama K, Iwata S. EMBO J 24 3974-3983 (2005)
  16. Understanding structure, function, and mutations in the mitochondrial ATP synthase. Xu T, Pagadala V, Mueller DM. Microb Cell 2 105-125 (2015)
  17. Structure of the rotor ring modified with N,N'-dicyclohexylcarbodiimide of the Na+-transporting vacuolar ATPase. Mizutani K, Yamamoto M, Suzuki K, Yamato I, Kakinuma Y, Shirouzu M, Walker JE, Yokoyama S, Iwata S, Murata T. Proc Natl Acad Sci U S A 108 13474-13479 (2011)
  18. Crystal structure of the central axis DF complex of the prokaryotic V-ATPase. Saijo S, Arai S, Hossain KM, Yamato I, Suzuki K, Kakinuma Y, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Murata T. Proc Natl Acad Sci U S A 108 19955-19960 (2011)
  19. Trapping the ATP binding state leads to a detailed understanding of the F1-ATPase mechanism. Nam K, Pu J, Karplus M. Proc Natl Acad Sci U S A 111 17851-17856 (2014)
  20. Elastic coupling power stroke mechanism of the F1-ATPase molecular motor. Martin JL, Ishmukhametov R, Spetzler D, Hornung T, Frasch WD. Proc Natl Acad Sci U S A 115 5750-5755 (2018)
  21. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum. Ferguson SA, Cook GM, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 113 10860-10865 (2016)
  22. Identification of the docking site between a type III secretion system ATPase and a chaperone for effector cargo. Allison SE, Tuinema BR, Everson ES, Sugiman-Marangos S, Zhang K, Junop MS, Coombes BK. J Biol Chem 289 23734-23744 (2014)
  23. The role of the betaDELSEED-loop of ATP synthase. Mnatsakanyan N, Krishnakumar AM, Suzuki T, Weber J. J Biol Chem 284 11336-11345 (2009)
  24. Torsional elasticity and energetics of F1-ATPase. Czub J, Grubmüller H. Proc Natl Acad Sci U S A 108 7408-7413 (2011)
  25. Differential Expression of Genes that Control Respiration Contribute to Thermal Adaptation in Redband Trout (Oncorhynchus mykiss gairdneri). Garvin MR, Thorgaard GH, Narum SR. Genome Biol Evol 7 1404-1414 (2015)
  26. Keep It Flexible: Driving Macromolecular Rotary Motions in Atomistic Simulations with GROMACS. Kutzner C, Czub J, Grubmüller H. J Chem Theory Comput 7 1381-1393 (2011)
  27. Common evolutionary origin for the rotor domain of rotary ATPases and flagellar protein export apparatus. Kishikawa J, Ibuki T, Nakamura S, Nakanishi A, Minamino T, Miyata T, Namba K, Konno H, Ueno H, Imada K, Yokoyama K. PLoS One 8 e64695 (2013)
  28. Conformational dynamics of the F1-ATPase beta-subunit: a molecular dynamics study. Böckmann RA, Grubmüller H. Biophys J 85 1482-1491 (2003)
  29. ATP synthase from Trypanosoma brucei has an elaborated canonical F1-domain and conventional catalytic sites. Montgomery MG, Gahura O, Leslie AGW, Zíková A, Walker JE. Proc Natl Acad Sci U S A 115 2102-2107 (2018)
  30. The rotor tip inside a bearing of a thermophilic F1-ATPase is dispensable for torque generation. Hossain MD, Furuike S, Maki Y, Adachi K, Ali MY, Huq M, Itoh H, Yoshida M, Kinosita K. Biophys J 90 4195-4203 (2006)
  31. MitImpact 3: modeling the residue interaction network of the Respiratory Chain subunits. Castellana S, Biagini T, Petrizzelli F, Parca L, Panzironi N, Caputo V, Vescovi AL, Carella M, Mazza T. Nucleic Acids Res 49 D1282-D1288 (2021)
  32. Power Stroke Angular Velocity Profiles of Archaeal A-ATP Synthase Versus Thermophilic and Mesophilic F-ATP Synthase Molecular Motors. Sielaff H, Martin J, Singh D, Singh D, Biuković G, Grüber G, Frasch WD. J Biol Chem 291 25351-25363 (2016)
  33. EscO, a functional and structural analog of the flagellar FliJ protein, is a positive regulator of EscN ATPase activity of the enteropathogenic Escherichia coli injectisome. Romo-Castillo M, Andrade A, Espinosa N, Monjarás Feria J, Soto E, Díaz-Guerrero M, González-Pedrajo B. J Bacteriol 196 2227-2241 (2014)
  34. The beta subunit loop that couples catalysis and rotation in ATP synthase has a critical length. Mnatsakanyan N, Kemboi SK, Salas J, Weber J. J Biol Chem 286 29788-29796 (2011)
  35. ProteinShader: illustrative rendering of macromolecules. Weber JR. BMC Struct Biol 9 19 (2009)
  36. A change in the radius of rotation of F1-ATPase indicates a tilting motion of the central shaft. Sugawa M, Okada KA, Masaike T, Nishizaka T. Biophys J 101 2201-2206 (2011)
  37. A robust and efficient method for estimating enzyme complex abundance and metabolic flux from expression data. Barker BE, Sadagopan N, Wang Y, Smallbone K, Myers CR, Xi H, Locasale JW, Gu Z. Comput Biol Chem 59 Pt B 98-112 (2015)
  38. K(ATP) channels process nucleotide signals in muscle thermogenic response. Reyes S, Park S, Terzic A, Alekseev AE. Crit Rev Biochem Mol Biol 45 506-519 (2010)
  39. Regulation of the F1F0-ATP synthase rotary nanomotor in its monomeric-bacterial and dimeric-mitochondrial forms. García-Trejo JJ, Morales-Ríos E. J Biol Phys 34 197-212 (2008)
  40. Rotation of artificial rotor axles in rotary molecular motors. Baba M, Iwamoto K, Iino R, Ueno H, Hara M, Nakanishi A, Kishikawa JI, Noji H, Yokoyama K. Proc Natl Acad Sci U S A 113 11214-11219 (2016)
  41. A conformational change of the γ subunit indirectly regulates the activity of cyanobacterial F1-ATPase. Sunamura E, Konno H, Imashimizu M, Mochimaru M, Hisabori T. J Biol Chem 287 38695-38704 (2012)
  42. Identification of two segments of the γ subunit of ATP synthase responsible for the different affinities of the catalytic nucleotide-binding sites. Mnatsakanyan N, Li Y, Weber J. J Biol Chem 294 1152-1160 (2019)
  43. MORPH-PRO: a novel algorithm and web server for protein morphing. Castellana NE, Lushnikov A, Rotkiewicz P, Sefcovic N, Pevzner PA, Godzik A, Vyatkina K. Algorithms Mol Biol 8 19 (2013)
  44. Single-molecule pull-out manipulation of the shaft of the rotary motor F1-ATPase. Naito TM, Masaike T, Nakane D, Sugawa M, Okada KA, Nishizaka T. Sci Rep 9 7451 (2019)
  45. Flagellar Hook Protein FlgE Induces Microvascular Hyperpermeability via Ectopic ATP Synthase β on Endothelial Surface. Li Y, Shen Y, Zheng Y, Ji S, Wang M, Wang B, Han Q, Tian Y, Wang Y. Front Cell Infect Microbiol 11 724912 (2021)
  46. Structure of F1-ATPase from the obligate anaerobe Fusobacterium nucleatum. Petri J, Nakatani Y, Montgomery MG, Ferguson SA, Aragão D, Leslie AGW, Heikal A, Walker JE, Cook GM. Open Biol 9 190066 (2019)


Reviews citing this publication (47)

  1. ATP synthase--a marvellous rotary engine of the cell. Yoshida M, Muneyuki E, Hisabori T. Nat Rev Mol Cell Biol 2 669-677 (2001)
  2. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Veech RL. Prostaglandins Leukot Essent Fatty Acids 70 309-319 (2004)
  3. Voltage-gated proton channels and other proton transfer pathways. Decoursey TE. Physiol Rev 83 475-579 (2003)
  4. The ATP synthase: the understood, the uncertain and the unknown. Walker JE. Biochem Soc Trans 41 1-16 (2013)
  5. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Bernardi P, Rasola A, Forte M, Lippe G. Physiol Rev 95 1111-1155 (2015)
  6. Mitochondrial ATP synthase: architecture, function and pathology. Jonckheere AI, Smeitink JA, Rodenburg RJ. J Inherit Metab Dis 35 211-225 (2012)
  7. The complex architecture of oxygenic photosynthesis. Nelson N, Ben-Shem A. Nat Rev Mol Cell Biol 5 971-982 (2004)
  8. The rotary mechanism of ATP synthase. Stock D, Gibbons C, Arechaga I, Leslie AG, Walker JE. Curr Opin Struct Biol 10 672-679 (2000)
  9. Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor. Capaldi RA, Aggeler R. Trends Biochem Sci 27 154-160 (2002)
  10. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Hong S, Pedersen PL. Microbiol Mol Biol Rev 72 590-641, Table of Contents (2008)
  11. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Chung HS, Wang SB, Venkatraman V, Murray CI, Van Eyk JE. Circ Res 112 382-392 (2013)
  12. ATP synthesis driven by proton transport in F1F0-ATP synthase. Weber J, Senior AE. FEBS Lett 545 61-70 (2003)
  13. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. Hüttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW. J Bioenerg Biomembr 40 445-456 (2008)
  14. Regulation of mitochondrial oxidative phosphorylation through cell signaling. Hüttemann M, Lee I, Samavati L, Yu H, Doan JW. Biochim Biophys Acta 1773 1701-1720 (2007)
  15. The rotary mechanism of the ATP synthase. Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK. Arch Biochem Biophys 476 43-50 (2008)
  16. Rotation of F1-ATPase: how an ATP-driven molecular machine may work. Kinosita K, Adachi K, Itoh H. Annu Rev Biophys Biomol Struct 33 245-268 (2004)
  17. Structural divergence of the rotary ATPases. Muench SP, Trinick J, Harrison MA. Q Rev Biophys 44 311-356 (2011)
  18. Co-evolution of primordial membranes and membrane proteins. Mulkidjanian AY, Galperin MY, Koonin EV. Trends Biochem Sci 34 206-215 (2009)
  19. Unraveling the heater: new insights into the structure of the alternative oxidase. Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K. Annu Rev Plant Biol 64 637-663 (2013)
  20. Redox regulation of mitochondrial ATP synthase. Wang SB, Murray CI, Chung HS, Van Eyk JE. Trends Cardiovasc Med 23 14-18 (2013)
  21. A journey from mammals to yeast with vacuolar H+-ATPase (V-ATPase). Nelson N. J Bioenerg Biomembr 35 281-289 (2003)
  22. ATP synthase: subunit-subunit interactions in the stator stalk. Weber J. Biochim Biophys Acta 1757 1162-1170 (2006)
  23. ATP synthase in mycobacteria: special features and implications for a function as drug target. Lu P, Lill H, Bald D. Biochim Biophys Acta 1837 1208-1218 (2014)
  24. The chloroplast ATP synthase features the characteristic redox regulation machinery. Hisabori T, Sunamura E, Kim Y, Konno H. Antioxid Redox Signal 19 1846-1854 (2013)
  25. Rotation, structure, and classification of prokaryotic V-ATPase. Yokoyama K, Imamura H. J Bioenerg Biomembr 37 405-410 (2005)
  26. Assembly of F0 in Saccharomyces cerevisiae. Rak M, Zeng X, Brière JJ, Tzagoloff A. Biochim Biophys Acta 1793 108-116 (2009)
  27. Biomolecular motors: the F1-ATPase paradigm. Karplus M, Gao YQ. Curr Opin Struct Biol 14 250-259 (2004)
  28. ATP synthase: a molecular therapeutic drug target for antimicrobial and antitumor peptides. Ahmad Z, Okafor F, Azim S, Laughlin TF. Curr Med Chem 20 1956-1973 (2013)
  29. Regulation of mitochondrial ATP synthase in cardiac pathophysiology. Long Q, Yang K, Yang Q. Am J Cardiovasc Dis 5 19-32 (2015)
  30. ATP synthase: Evolution, energetics, and membrane interactions. Nirody JA, Budin I, Rangamani P. J Gen Physiol 152 e201912475 (2020)
  31. Medicinal chemistry of ATP synthase: a potential drug target of dietary polyphenols and amphibian antimicrobial peptides. Ahmad Z, Laughlin TF. Curr Med Chem 17 2822-2836 (2010)
  32. ATP synthase--the structure of the stator stalk. Weber J. Trends Biochem Sci 32 53-56 (2007)
  33. The regulatory subunit ε in Escherichia coli FOF1-ATP synthase. Sielaff H, Duncan TM, Börsch M. Biochim Biophys Acta Bioenerg 1859 775-788 (2018)
  34. Molecular mechanism of the P-type ATPases. Scarborough GA. J Bioenerg Biomembr 34 235-250 (2002)
  35. Regulation of the F0F1-ATP synthase: the conformation of subunit epsilon might be determined by directionality of subunit gamma rotation. Feniouk BA, Junge W. FEBS Lett 579 5114-5118 (2005)
  36. The rotor in the membrane of the ATP synthase and relatives. Arechaga I, Jones PC. FEBS Lett 494 1-5 (2001)
  37. Electron cryomicroscopy of membrane proteins: specimen preparation for two-dimensional crystals and single particles. Schmidt-Krey I, Rubinstein JL. Micron 42 107-116 (2011)
  38. Molecular evolution of the modulator of chloroplast ATP synthase: origin of the conformational change dependent regulation. Hisabori T, Ueoka-Nakanishi H, Konno H, Koyama F. FEBS Lett 545 71-75 (2003)
  39. Opposite rotation directions in the synthesis and hydrolysis of ATP by the ATP synthase: hints from a subunit asymmetry. Nesci S, Trombetti F, Ventrella V, Pagliarani A. J Membr Biol 248 163-169 (2015)
  40. Coupling proton movement to ATP synthesis in the chloroplast ATP synthase. Richter ML, Samra HS, He F, Giessel AJ, Kuczera KK. J Bioenerg Biomembr 37 467-473 (2005)
  41. CryoEM Reveals the Complexity and Diversity of ATP Synthases. Courbon GM, Rubinstein JL. Front Microbiol 13 864006 (2022)
  42. Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases. Sielaff H, Yanagisawa S, Frasch WD, Junge W, Börsch M. Molecules 24 E504 (2019)
  43. Rotor subunits adaptations in ATP synthases from photosynthetic organisms. Cheuk A, Meier T. Biochem Soc Trans 49 541-550 (2021)
  44. Chemomechanical coupling in single-molecule F-type ATP synthase. Iino R, Rondelez Y, Yoshida M, Noji H. J Bioenerg Biomembr 37 451-454 (2005)
  45. F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. Zharova TV, Grivennikova VG, Borisov VB. Int J Mol Sci 24 5417 (2023)
  46. Operating principles of rotary molecular motors: differences between F1 and V1 motors. Yamato I, Kakinuma Y, Murata T. Biophys Physicobiol 13 37-44 (2016)
  47. Variants in Human ATP Synthase Mitochondrial Genes: Biochemical Dysfunctions, Associated Diseases, and Therapies. Del Dotto V, Musiani F, Baracca A, Solaini G. Int J Mol Sci 25 2239 (2024)

Articles citing this publication (181)

  1. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Yasuda R, Noji H, Yoshida M, Kinosita K, Itoh H. Nature 410 898-904 (2001)
  2. Structure of bovine mitochondrial F(1)-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Menz RI, Walker JE, Leslie AG. Cell 106 331-341 (2001)
  3. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Gledhill JR, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 104 13632-13637 (2007)
  4. Highly coupled ATP synthesis by F1-ATPase single molecules. Rondelez Y, Tresset G, Nakashima T, Kato-Yamada Y, Fujita H, Takeuchi S, Noji H. Nature 433 773-777 (2005)
  5. Nanoscience, nanotechnology, and chemistry. Whitesides GM. Small 1 172-179 (2005)
  6. How azide inhibits ATP hydrolysis by the F-ATPases. Bowler MW, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 103 8646-8649 (2006)
  7. How the regulatory protein, IF(1), inhibits F(1)-ATPase from bovine mitochondria. Gledhill JR, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 104 15671-15676 (2007)
  8. Structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli in an autoinhibited conformation. Cingolani G, Duncan TM. Nat Struct Mol Biol 18 701-707 (2011)
  9. The structure of bovine F1-ATPase in complex with its regulatory protein IF1. Cabezón E, Montgomery MG, Leslie AG, Walker JE. Nat Struct Biol 10 744-750 (2003)
  10. Microoxen: microorganisms to move microscale loads. Weibel DB, Garstecki P, Ryan D, DiLuzio WR, Mayer M, Seto JE, Whitesides GM. Proc Natl Acad Sci U S A 102 11963-11967 (2005)
  11. On the structure of the stator of the mitochondrial ATP synthase. Dickson VK, Silvester JA, Fearnley IM, Leslie AG, Walker JE. EMBO J 25 2911-2918 (2006)
  12. High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Pogoryelov D, Yildiz O, Faraldo-Gómez JD, Meier T. Nat Struct Mol Biol 16 1068-1073 (2009)
  13. Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase. Kabaleeswaran V, Puri N, Walker JE, Leslie AG, Mueller DM. EMBO J 25 5433-5442 (2006)
  14. The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride. Kagawa R, Montgomery MG, Braig K, Leslie AG, Walker JE. EMBO J 23 2734-2744 (2004)
  15. Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Ibuki T, Imada K, Minamino T, Kato T, Miyata T, Namba K. Nat Struct Mol Biol 18 277-282 (2011)
  16. A normal mode analysis of structural plasticity in the biomolecular motor F(1)-ATPase. Cui Q, Li G, Ma J, Karplus M. J Mol Biol 340 345-372 (2004)
  17. Bacterial Na(+)-ATP synthase has an undecameric rotor. Stahlberg H, Müller DJ, Suda K, Fotiadis D, Engel A, Meier T, Matthey U, Dimroth P. EMBO Rep 2 229-233 (2001)
  18. Structure of the dimeric ATP synthase from bovine mitochondria. Spikes TE, Montgomery MG, Walker JE. Proc Natl Acad Sci U S A 117 23519-23526 (2020)
  19. Large conformational changes of the epsilon subunit in the bacterial F1F0 ATP synthase provide a ratchet action to regulate this rotary motor enzyme. Tsunoda SP, Rodgers AJ, Aggeler R, Wilce MC, Yoshida M, Capaldi RA. Proc Natl Acad Sci U S A 98 6560-6564 (2001)
  20. Microscopic rotary mechanism of ion translocation in the F(o) complex of ATP synthases. Pogoryelov D, Krah A, Langer JD, Yildiz Ö, Faraldo-Gómez JD, Meier T. Nat Chem Biol 6 891-899 (2010)
  21. Structural analysis of a prototypical ATPase from the type III secretion system. Zarivach R, Vuckovic M, Deng W, Finlay BB, Strynadka NC. Nat Struct Mol Biol 14 131-137 (2007)
  22. Cooperative three-step motions in catalytic subunits of F(1)-ATPase correlate with 80 degrees and 40 degrees substep rotations. Masaike T, Koyama-Horibe F, Oiwa K, Yoshida M, Nishizaka T. Nat Struct Mol Biol 15 1326-1333 (2008)
  23. The structure of bovine IF(1), the regulatory subunit of mitochondrial F-ATPase. Cabezón E, Runswick MJ, Leslie AG, Walker JE. EMBO J 20 6990-6996 (2001)
  24. Evolutionary primacy of sodium bioenergetics. Mulkidjanian AY, Galperin MY, Makarova KS, Wolf YI, Koonin EV. Biol Direct 3 13 (2008)
  25. A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase. Gao YQ, Yang W, Karplus M. Cell 123 195-205 (2005)
  26. A dynamic analysis of the rotation mechanism for conformational change in F(1)-ATPase. Ma J, Flynn TC, Cui Q, Leslie AG, Walker JE, Karplus M. Structure 10 921-931 (2002)
  27. Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases. Duncan AL, Robinson AJ, Walker JE. Proc Natl Acad Sci U S A 113 8687-8692 (2016)
  28. Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM. Baker LA, Watt IN, Runswick MJ, Walker JE, Rubinstein JL. Proc Natl Acad Sci U S A 109 11675-11680 (2012)
  29. Crystal structure of yeast V-ATPase subunit C reveals its stator function. Drory O, Frolow F, Nelson N. EMBO Rep 5 1148-1152 (2004)
  30. Rotation of the c subunit oligomer in fully functional F1Fo ATP synthase. Tsunoda SP, Aggeler R, Yoshida M, Capaldi RA. Proc Natl Acad Sci U S A 98 898-902 (2001)
  31. The GxxxG motif of the transmembrane domain of subunit e is involved in the dimerization/oligomerization of the yeast ATP synthase complex in the mitochondrial membrane. Arselin G, Giraud MF, Dautant A, Vaillier J, Brèthes D, Coulary-Salin B, Schaeffer J, Velours J. Eur J Biochem 270 1875-1884 (2003)
  32. Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit. Mayr JA, Havlícková V, Zimmermann F, Magler I, Kaplanová V, Jesina P, Pecinová A, Nusková H, Koch J, Sperl W, Houstek J. Hum Mol Genet 19 3430-3439 (2010)
  33. Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase. Aksimentiev A, Balabin IA, Fillingame RH, Schulten K. Biophys J 86 1332-1344 (2004)
  34. Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthase. Vonck J, von Nidda TK, Meier T, Matthey U, Mills DJ, Kühlbrandt W, Dimroth P. J Mol Biol 321 307-316 (2002)
  35. Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. Bultema JB, Braun HP, Boekema EJ, Kouril R. Biochim Biophys Acta 1787 60-67 (2009)
  36. The structure of the V(1)-ATPase determined by three-dimensional electron microscopy of single particles. Radermacher M, Ruiz T, Wieczorek H, Grüber G. J Struct Biol 135 26-37 (2001)
  37. How subunit coupling produces the gamma-subunit rotary motion in F1-ATPase. Pu J, Karplus M. Proc Natl Acad Sci U S A 105 1192-1197 (2008)
  38. The missing link between thermodynamics and structure in F1-ATPase. Yang W, Gao YQ, Cui Q, Ma J, Karplus M. Proc Natl Acad Sci U S A 100 874-879 (2003)
  39. Activation of pausing F1 motor by external force. Hirono-Hara Y, Ishizuka K, Kinosita K, Yoshida M, Noji H. Proc Natl Acad Sci U S A 102 4288-4293 (2005)
  40. Axle-less F1-ATPase rotates in the correct direction. Furuike S, Hossain MD, Maki Y, Adachi K, Suzuki T, Kohori A, Itoh H, Yoshida M, Kinosita K. Science 319 955-958 (2008)
  41. Oxidative modification of mitochondrial respiratory complexes in response to the stress of Trypanosoma cruzi infection. Wen JJ, Garg N. Free Radic Biol Med 37 2072-2081 (2004)
  42. Structural evidence of a new catalytic intermediate in the pathway of ATP hydrolysis by F1-ATPase from bovine heart mitochondria. Rees DM, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 109 11139-11143 (2012)
  43. Inhibition sites in F1-ATPase from bovine heart mitochondria. Gledhill JR, Walker JE. Biochem J 386 591-598 (2005)
  44. Aqueous access channels in subunit a of rotary ATP synthase. Angevine CM, Fillingame RH. J Biol Chem 278 6066-6074 (2003)
  45. The ATP-waiting conformation of rotating F1-ATPase revealed by single-pair fluorescence resonance energy transfer. Yasuda R, Masaike T, Adachi K, Noji H, Itoh H, Kinosita K. Proc Natl Acad Sci U S A 100 9314-9318 (2003)
  46. Inter-subunit interaction and quaternary rearrangement defined by the central stalk of prokaryotic V1-ATPase. Numoto N, Hasegawa Y, Takeda K, Miki K. EMBO Rep 10 1228-1234 (2009)
  47. Rows of ATP synthase dimers in native mitochondrial inner membranes. Buzhynskyy N, Sens P, Prima V, Sturgis JN, Scheuring S. Biophys J 93 2870-2876 (2007)
  48. ATP synthase: constrained stoichiometry of the transmembrane rotor. Müller DJ, Dencher NA, Meier T, Dimroth P, Suda K, Stahlberg H, Engel A, Seelert H, Matthey U. FEBS Lett 504 219-222 (2001)
  49. Expression, purification, and characterization of subunit E, an essential subunit of the vacuolar ATPase. Grüber G, Godovac-Zimmermann J, Link TA, Coskun U, Rizzo VF, Betz C, Bailer SM. Biochem Biophys Res Commun 298 383-391 (2002)
  50. Structure of a thermophilic F1-ATPase inhibited by an ε-subunit: deeper insight into the ε-inhibition mechanism. Shirakihara Y, Shiratori A, Tanikawa H, Nakasako M, Yoshida M, Suzuki T. FEBS J 282 2895-2913 (2015)
  51. Functional halt positions of rotary FOF1-ATPase correlated with crystal structures. Sielaff H, Rennekamp H, Engelbrecht S, Junge W. Biophys J 95 4979-4987 (2008)
  52. Energy-driven subunit rotation at the interface between subunit a and the c oligomer in the F(O) sector of Escherichia coli ATP synthase. Hutcheon ML, Duncan TM, Ngai H, Cross RL. Proc Natl Acad Sci U S A 98 8519-8524 (2001)
  53. Yeast V1-ATPase: affinity purification and structural features by electron microscopy. Zhang Z, Charsky C, Kane PM, Wilkens S. J Biol Chem 278 47299-47306 (2003)
  54. How release of phosphate from mammalian F1-ATPase generates a rotary substep. Bason JV, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 112 6009-6014 (2015)
  55. Predicting order of conformational changes during protein conformational transitions using an interpolated elastic network model. Tekpinar M, Zheng W. Proteins 78 2469-2481 (2010)
  56. Single molecule measurements of F1-ATPase reveal an interdependence between the power stroke and the dwell duration. Spetzler D, Ishmukhametov R, Hornung T, Day LJ, Martin J, Frasch WD. Biochemistry 48 7979-7985 (2009)
  57. Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit. Carbajo RJ, Kellas FA, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D. J Mol Biol 351 824-838 (2005)
  58. Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus. Ibuki T, Uchida Y, Hironaka Y, Namba K, Imada K, Minamino T. J Bacteriol 195 466-473 (2013)
  59. Self-assembly of ATP synthase subunit c rings. Arechaga I, Butler PJ, Walker JE. FEBS Lett 515 189-193 (2002)
  60. Mitochondrial ATP synthase. Crystal structure of the catalytic F1 unit in a vanadate-induced transition-like state and implications for mechanism. Chen C, Saxena AK, Simcoke WN, Garboczi DN, Pedersen PL, Ko YH. J Biol Chem 281 13777-13783 (2006)
  61. Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the epsilon subunit. Keis S, Stocker A, Dimroth P, Cook GM. J Bacteriol 188 3796-3804 (2006)
  62. The RCSB PDB "Molecule of the Month": Inspiring a Molecular View of Biology. Goodsell DS, Dutta S, Zardecki C, Voigt M, Berman HM, Burley SK. PLoS Biol 13 e1002140 (2015)
  63. Crystal structure of the archaeal A1Ao ATP synthase subunit B from Methanosarcina mazei Gö1: Implications of nucleotide-binding differences in the major A1Ao subunits A and B. Schäfer IB, Bailer SM, Düser MG, Börsch M, Bernal RA, Stock D, Grüber G. J Mol Biol 358 725-740 (2006)
  64. The affinity purification and characterization of ATP synthase complexes from mitochondria. Runswick MJ, Bason JV, Montgomery MG, Robinson GC, Fearnley IM, Walker JE. Open Biol 3 120160 (2013)
  65. The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase. Stocker A, Keis S, Vonck J, Cook GM, Dimroth P. Structure 15 904-914 (2007)
  66. Association of two proteolipids of unknown function with ATP synthase from bovine heart mitochondria. Chen R, Runswick MJ, Carroll J, Fearnley IM, Walker JE. FEBS Lett 581 3145-3148 (2007)
  67. Signal transduction to mitochondrial ATP synthase: evidence that PDGF-dependent phosphorylation of the delta-subunit occurs in several cell lines, involves tyrosine, and is modulated by lysophosphatidic acid. Ko YH, Pan W, Inoue C, Pedersen PL. Mitochondrion 1 339-348 (2002)
  68. Chromatophore vesicles of Rhodobacter capsulatus contain on average one F(O)F(1)-ATP synthase each. Feniouk BA, Cherepanov DA, Voskoboynikova NE, Mulkidjanian AY, Junge W. Biophys J 82 1115-1122 (2002)
  69. 3D-partner: a web server to infer interacting partners and binding models. Chen YC, Lo YS, Hsu WC, Yang JM. Nucleic Acids Res 35 W561-7 (2007)
  70. F1-ATPase of Escherichia coli: the ε- inhibited state forms after ATP hydrolysis, is distinct from the ADP-inhibited state, and responds dynamically to catalytic site ligands. Shah NB, Hutcheon ML, Haarer BK, Duncan TM. J Biol Chem 288 9383-9395 (2013)
  71. Role of the epsilon subunit of thermophilic F1-ATPase as a sensor for ATP. Kato S, Yoshida M, Kato-Yamada Y. J Biol Chem 282 37618-37623 (2007)
  72. Structural comparison of F1-ATPase: interplay among enzyme structures, catalysis, and rotations. Okazaki K, Takada S. Structure 19 588-598 (2011)
  73. The two rotor components of yeast mitochondrial ATP synthase are mechanically coupled by subunit delta. Duvezin-Caubet S, Caron M, Giraud MF, Velours J, di Rago JP. Proc Natl Acad Sci U S A 100 13235-13240 (2003)
  74. Involvement of ATP synthase residues alphaArg-376, betaArg-182, and betaLys-155 in Pi binding. Ahmad Z, Senior AE. FEBS Lett 579 523-528 (2005)
  75. Gamma-epsilon Interactions Regulate the Chloroplast ATP Synthase. Richter ML. Photosynth Res 79 319-329 (2004)
  76. Making ATP. Xing J, Liao JC, Oster G. Proc Natl Acad Sci U S A 102 16539-16546 (2005)
  77. Measurement of the molecular masses of hydrophilic and hydrophobic subunits of ATP synthase and complex I in a single experiment. Carroll J, Fearnley IM, Wang Q, Walker JE. Anal Biochem 395 249-255 (2009)
  78. Low-dose cadmium disrupts mitochondrial citric acid cycle and lipid metabolism in mouse lung. Hu X, Chandler JD, Park S, Liu K, Fernandes J, Orr M, Smith MR, Ma C, Kang SM, Uppal K, Jones DP, Go YM. Free Radic Biol Med 131 209-217 (2019)
  79. Mitochondrial F(0) F(1) -ATP synthase is a molecular target of 3-iodothyronamine, an endogenous metabolite of thyroid hormone. Cumero S, Fogolari F, Domenis R, Zucchi R, Mavelli I, Contessi S. Br J Pharmacol 166 2331-2347 (2012)
  80. Probing conformations of the beta subunit of F0F1-ATP synthase in catalysis. Masaike T, Suzuki T, Tsunoda SP, Konno H, Yoshida M. Biochem Biophys Res Commun 342 800-807 (2006)
  81. The determination of the redox states and phosphorylation potential in living tissues and their relationship to metabolic control of disease phenotypes. Veech RL. Biochem Mol Biol Educ 34 168-179 (2006)
  82. ATP synthase from Saccharomyces cerevisiae: location of subunit h in the peripheral stalk region. Rubinstein JL, Dickson VK, Runswick MJ, Walker JE. J Mol Biol 345 513-520 (2005)
  83. Differential steady-state tyrosine phosphorylation of two oligomeric forms of mitochondrial F0F1ATPsynthase: a structural proteomic analysis. Di Pancrazio F, Bisetto E, Alverdi V, Mavelli I, Esposito G, Lippe G. Proteomics 6 921-926 (2006)
  84. Isolated epsilon subunit of Bacillus subtilis F1-ATPase binds ATP. Kato-Yamada Y. FEBS Lett 579 6875-6878 (2005)
  85. Membrane topography of the coupling ion binding site in Na+-translocating F1F0 ATP synthase. von Ballmoos C, Appoldt Y, Brunner J, Granier T, Vasella A, Dimroth P. J Biol Chem 277 3504-3510 (2002)
  86. Rotor architecture in the yeast and bovine F1-c-ring complexes of F-ATP synthase. Giraud MF, Paumard P, Sanchez C, Brèthes D, Velours J, Dautant A. J Struct Biol 177 490-497 (2012)
  87. Autoantibodies to endothelial cell surface ATP synthase, the endogenous receptor for hsp60, might play a pathogenic role in vasculatides. Alard JE, Hillion S, Guillevin L, Saraux A, Pers JO, Youinou P, Jamin C. PLoS One 6 e14654 (2011)
  88. Deletion of a unique loop in the mycobacterial F-ATP synthase γ subunit sheds light on its inhibitory role in ATP hydrolysis-driven H(+) pumping. Hotra A, Suter M, Biuković G, Ragunathan P, Kundu S, Dick T, Grüber G. FEBS J 283 1947-1961 (2016)
  89. Neither helix in the coiled coil region of the axle of F1-ATPase plays a significant role in torque production. Hossain MD, Furuike S, Maki Y, Adachi K, Suzuki T, Kohori A, Itoh H, Yoshida M, Kinosita K. Biophys J 95 4837-4844 (2008)
  90. Structural and functional analysis of the coupling subunit F in solution and topological arrangement of the stalk domains of the methanogenic A1AO ATP synthase. Schäfer I, Rössle M, Biuković G, Müller V, Grüber G. J Bioenerg Biomembr 38 83-92 (2006)
  91. Novel thylakoid membrane GreenCut protein CPLD38 impacts accumulation of the cytochrome b6f complex and associated regulatory processes. Heinnickel ML, Alric J, Wittkopp T, Yang W, Catalanotti C, Dent R, Niyogi KK, Wollman FA, Grossman AR. J Biol Chem 288 7024-7036 (2013)
  92. Probing the rotor subunit interface of the ATP synthase from Ilyobacter tartaricus. Pogoryelov D, Nikolaev Y, Schlattner U, Pervushin K, Dimroth P, Meier T. FEBS J 275 4850-4862 (2008)
  93. Rotor/Stator interactions of the epsilon subunit in Escherichia coli ATP synthase and implications for enzyme regulation. Bulygin VV, Duncan TM, Cross RL. J Biol Chem 279 35616-35621 (2004)
  94. The structure of the catalytic domain of the ATP synthase from Mycobacterium smegmatis is a target for developing antitubercular drugs. Zhang AT, Montgomery MG, Leslie AGW, Cook GM, Walker JE. Proc Natl Acad Sci U S A 116 4206-4211 (2019)
  95. ATP Synthase K+- and H+-Fluxes Drive ATP Synthesis and Enable Mitochondrial K+-"Uniporter" Function: I. Characterization of Ion Fluxes. Juhaszova M, Kobrinsky E, Zorov DB, Nuss HB, Yaniv Y, Fishbein KW, de Cabo R, Montoliu L, Gabelli SB, Aon MA, Cortassa S, Sollott SJ. Function (Oxf) 3 zqab065 (2022)
  96. Crystallization of the c14-rotor of the chloroplast ATP synthase reveals that it contains pigments. Varco-Merth B, Fromme R, Wang M, Fromme P. Biochim Biophys Acta 1777 605-612 (2008)
  97. Torque generation in F1-ATPase devoid of the entire amino-terminal helix of the rotor that fills half of the stator orifice. Kohori A, Chiwata R, Hossain MD, Furuike S, Shiroguchi K, Adachi K, Yoshida M, Kinosita K. Biophys J 101 188-195 (2011)
  98. Conformational transitions of subunit epsilon in ATP synthase from thermophilic Bacillus PS3. Feniouk BA, Kato-Yamada Y, Yoshida M, Suzuki T. Biophys J 98 434-442 (2010)
  99. Single-molecule analysis of F0F1-ATP synthase inhibited by N,N-dicyclohexylcarbodiimide. Toei M, Noji H. J Biol Chem 288 25717-25726 (2013)
  100. Molecular mechanism of the ATP synthase's F(o) motor probed by mutational analyses of subunit a. Wehrle F, Kaim G, Dimroth P. J Mol Biol 322 369-381 (2002)
  101. Normal-mode-based modeling of allosteric couplings that underlie cyclic conformational transition in F(1) ATPase. Zheng W. Proteins 76 747-762 (2009)
  102. The C-H peripheral stalk base: a novel component in V1-ATPase assembly. Hildenbrand ZL, Molugu SK, Stock D, Bernal RA. PLoS One 5 e12588 (2010)
  103. The cotton ATP synthase δ1 subunit is required to maintain a higher ATP/ADP ratio that facilitates rapid fibre cell elongation. Pang Y, Wang H, Song WQ, Zhu YX. Plant Biol (Stuttg) 12 903-909 (2010)
  104. Aerobic Growth of Escherichia coli Is Reduced, and ATP Synthesis Is Selectively Inhibited when Five C-terminal Residues Are Deleted from the ϵ Subunit of ATP Synthase. Shah NB, Duncan TM. J Biol Chem 290 21032-21041 (2015)
  105. Cross-linking of the endogenous inhibitor protein (IF1) with rotor (gamma, epsilon) and stator (alpha) subunits of the mitochondrial ATP synthase. Minauro-Sanmiguel F, Bravo C, García JJ. J Bioenerg Biomembr 34 433-443 (2002)
  106. Evidence that the C-terminal domain of a type B PutA protein contributes to aldehyde dehydrogenase activity and substrate channeling. Luo M, Christgen S, Sanyal N, Arentson BW, Becker DF, Tanner JJ. Biochemistry 53 5661-5673 (2014)
  107. Effect of epsilon subunit on the rotation of thermophilic Bacillus F1-ATPase. Tsumuraya M, Furuike S, Adachi K, Kinosita K, Yoshida M. FEBS Lett 583 1121-1126 (2009)
  108. ATP synthase with its gamma subunit reduced to the N-terminal helix can still catalyze ATP synthesis. Mnatsakanyan N, Hook JA, Quisenberry L, Weber J. J Biol Chem 284 26519-26525 (2009)
  109. Nucleotide binding states of subunit A of the A-ATP synthase and the implication of P-loop switch in evolution. Kumar A, Manimekalai MS, Balakrishna AM, Jeyakanthan J, Grüber G. J Mol Biol 396 301-320 (2010)
  110. A rotor-stator cross-link in the F1-ATPase blocks the rate-limiting step of rotational catalysis. Scanlon JA, Al-Shawi MK, Nakamoto RK. J Biol Chem 283 26228-26240 (2008)
  111. ATP synthases: insights into their motor functions from sequence and structural analyses. Hong S, Pedersen PL. J Bioenerg Biomembr 35 95-120 (2003)
  112. Changes in intracellular protein expression in cortex, thalamus and hippocampus in a genetic rat model of absence epilepsy. Danış O, Demir S, Günel A, Aker RG, Gülçebi M, Onat F, Ogan A. Brain Res Bull 84 381-388 (2011)
  113. F1F0-ATP synthase. Binding of delta subunit to a 22-residue peptide mimicking the N-terminal region of alpha subunit. Weber J, Muharemagic A, Wilke-Mounts S, Senior AE. J Biol Chem 278 13623-13626 (2003)
  114. Structural fluctuation and concerted motions in F(1)-ATPase: A molecular dynamics study. Ito Y, Ikeguchi M. J Comput Chem 31 2175-2185 (2010)
  115. Cloning, purification, and nucleotide-binding traits of the catalytic subunit A of the V1VO ATPase from Aedes albopictus. Hunke C, Chen WJ, Schäfer HJ, Grüber G. Protein Expr Purif 53 378-383 (2007)
  116. None of the rotor residues of F1-ATPase are essential for torque generation. Chiwata R, Kohori A, Kawakami T, Shiroguchi K, Furuike S, Adachi K, Sutoh K, Yoshida M, Kinosita K. Biophys J 106 2166-2174 (2014)
  117. The purification and characterization of ATP synthase complexes from the mitochondria of four fungal species. Liu S, Charlesworth TJ, Bason JV, Montgomery MG, Harbour ME, Fearnley IM, Walker JE. Biochem J 468 167-175 (2015)
  118. 8-N(3)-3'-biotinyl-ATP, a novel monofunctional reagent: differences in the F(1)- and V(1)-ATPases by means of the ATP analogue. Schäfer HJ, Coskun U, Eger O, Godovac-Zimmermann J, Wieczorek H, Kagawa Y, Grüber G. Biochem Biophys Res Commun 286 1218-1227 (2001)
  119. Flexibility within the rotor and stators of the vacuolar H+-ATPase. Song CF, Papachristos K, Rawson S, Huss M, Wieczorek H, Paci E, Trinick J, Harrison MA, Muench SP. PLoS One 8 e82207 (2013)
  120. NMR structures of α-proteobacterial ATPase-regulating ζ-subunits. Serrano P, Geralt M, Mohanty B, Wüthrich K. J Mol Biol 426 2547-2553 (2014)
  121. Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A1Ao ATP synthase. Kumar A, Manimekalai MS, Balakrishna AM, Hunke C, Weigelt S, Sewald N, Grüber G. Proteins 75 807-819 (2009)
  122. Structural and functional analysis of the intrinsic inhibitor subunit epsilon of F1-ATPase from photosynthetic organisms. Yagi H, Konno H, Murakami-Fuse T, Isu A, Oroguchi T, Akutsu H, Ikeguchi M, Hisabori T. Biochem J 425 85-94 (2009)
  123. Subunit A of the E. coli ATP synthase: reconstitution and high resolution NMR with protein purified in a mixed polarity solvent. Dmitriev OY, Altendorf K, Fillingame RH. FEBS Lett 556 35-38 (2004)
  124. ATP binding to the ϵ subunit of thermophilic ATP synthase is crucial for efficient coupling of ATPase and H+ pump activities. Kadoya F, Kato S, Watanabe K, Kato-Yamada Y. Biochem J 437 135-140 (2011)
  125. Valsartan reverses post-translational modifications of the delta-subunit of ATP synthase during in vivo canine reperfused myocardial infarction. Sawicki G, Jugdutt BI. Proteomics 7 2100-2110 (2007)
  126. Role of Charged Residues in the Catalytic Sites of Escherichia coli ATP Synthase. Ahmad Z, Okafor F, Laughlin TF. J Amino Acids 2011 785741 (2011)
  127. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans. Mohanty S, Jobichen C, Chichili VPR, Velázquez-Campoy A, Low BC, Hogue CWV, Sivaraman J. J Biol Chem 290 27280-27296 (2015)
  128. Thiol oxidation of mitochondrial F0-c subunits: a way to switch off antimicrobial drug targets of the mitochondrial ATP synthase. Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A. Med Hypotheses 83 160-165 (2014)
  129. Dimer formation of subunit G of the yeast V-ATPase. Armbrüster A, Bailer SM, Koch MH, Godovac-Zimmermann J, Grüber G. FEBS Lett 546 395-400 (2003)
  130. Double-lock ratchet mechanism revealing the role of alphaSER-344 in FoF1 ATP synthase. Beke-Somfai T, Lincoln P, Nordén B. Proc Natl Acad Sci U S A 108 4828-4833 (2011)
  131. Identification of critical residues of subunit H in its interaction with subunit E of the A-ATP synthase from Methanocaldococcus jannaschii. Gayen S, Balakrishna AM, Biuković G, Yulei W, Hunke C, Grüber G. FEBS J 275 1803-1812 (2008)
  132. Mussel and mammalian ATP synthase share the same bioenergetic cost of ATP. Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A. J Bioenerg Biomembr 45 289-300 (2013)
  133. Solution structure of subunit γ (γ(1-204)) of the Mycobacterium tuberculosis F-ATP synthase and the unique loop of γ(165-178), representing a novel TB drug target. Priya R, Biuković G, Manimekalai MS, Lim J, Rao SP, Grüber G. J Bioenerg Biomembr 45 121-129 (2013)
  134. Structural characteristics of yeast F1-ATPase before and after 16-degree rotation of the γ subunit: theoretical analysis focused on the water-entropy effect. Yoshidome T, Ito Y, Matubayasi N, Ikeguchi M, Kinoshita M. J Chem Phys 137 035102 (2012)
  135. Structure of the γ-ε complex of cyanobacterial F1-ATPase reveals a suppression mechanism of the γ subunit on ATP hydrolysis in phototrophs. Murakami S, Kondo K, Katayama S, Hara S, Sunamura EI, Yamashita E, Groth G, Hisabori T. Biochem J 475 2925-2939 (2018)
  136. Tributyltin-driven enhancement of the DCCD insensitive Mg-ATPase activity in mussel digestive gland mitochondria. Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A. Biochimie 94 727-733 (2012)
  137. gammaepsilon Sub-complex of thermophilic ATP synthase has the ability to bind ATP. Iizuka S, Kato S, Yoshida M, Kato-Yamada Y. Biochem Biophys Res Commun 349 1368-1371 (2006)
  138. ATP synthase: from single molecule to human bioenergetics. Kagawa Y. Proc Jpn Acad Ser B Phys Biol Sci 86 667-693 (2010)
  139. Application of rigid body mechanics to theoretical description of rotation within F0F1-ATP synthase. Nartsissov YR, Mashkovtseva EV. J Theor Biol 242 300-308 (2006)
  140. Ligand-dependent structural changes in the V(1) ATPase from Manduca sexta. Coskun U, Rizzo VF, Koch MH, Grüber G. J Bioenerg Biomembr 36 249-256 (2004)
  141. The proximal N-terminal amino acid residues are required for the coupling activity of the bovine heart mitochondrial factor B. Belogrudov GI. Arch Biochem Biophys 473 76-87 (2008)
  142. The role of transmembrane span 2 in the structure and function of subunit a of the ATP synthase from Escherichia coli. DeLeon-Rangel J, Zhang D, Vik SB. Arch Biochem Biophys 418 55-62 (2003)
  143. The δ subunit of F1Fo-ATP synthase is required for pathogenicity of Candida albicans. Li S, Zhao Y, Zhang Y, Zhang Y, Zhang Z, Tang C, Weng L, Chen X, Zhang G, Zhang H. Nat Commun 12 6041 (2021)
  144. Activity and NMR structure of synthetic peptides of the bovine ATPase inhibitor protein, IF1. de Chiara C, Nicastro G, Spisni A, Zanotti F, Cocco T, Papa S. Peptides 23 2127-2141 (2002)
  145. Hydrogen/deuterium exchange on yeast ATPase supramolecular protein complex analyzed at high sensitivity by MALDI mass spectrometry. Nazabal A, Laguerre M, Schmitter JM, Vaillier J, Chaignepain S, Velours J. J Am Soc Mass Spectrom 14 471-481 (2003)
  146. Modulation of nucleotide binding to the catalytic sites of thermophilic F(1)-ATPase by the epsilon subunit: implication for the role of the epsilon subunit in ATP synthesis. Yasuno T, Muneyuki E, Yoshida M, Kato-Yamada Y. Biochem Biophys Res Commun 390 230-234 (2009)
  147. N-terminal deletion of the gamma subunit affects the stabilization and activity of chloroplast ATP synthase. Ni ZL, Dong H, Wei JM. FEBS J 272 1379-1385 (2005)
  148. New insights into one of nature's remarkable catalysts, the ATP synthase. Boyer PD. Mol Cell 8 246-247 (2001)
  149. Rate of hydrolysis in ATP synthase is fine-tuned by α-subunit motif controlling active site conformation. Beke-Somfai T, Lincoln P, Nordén B. Proc Natl Acad Sci U S A 110 2117-2122 (2013)
  150. A more robust version of the Arginine 210-switched mutant in subunit a of the Escherichia coli ATP synthase. Bae L, Vik SB. Biochim Biophys Acta 1787 1129-1134 (2009)
  151. Binding affinities and protein ligand complex geometries of nucleotides at the F(1) part of the mitochondrial ATP synthase obtained by ligand docking calculations. Steinbrecher T, Hucke O, Steigmiller S, Börsch M, Labahn A. FEBS Lett 530 99-103 (2002)
  152. Crystallographic structure of the turbine C-ring from spinach chloroplast F-ATP synthase. Balakrishna AM, Seelert H, Marx SH, Dencher NA, Grüber G. Biosci Rep 34 e00102 (2014)
  153. Formation and properties of hybrid photosynthetic F1-ATPases. Demonstration of different structural requirements for stimulation and inhibition by tentoxin. Tucker WC, Du Z, Gromet-Elhanan Z, Richter ML. Eur J Biochem 268 2179-2186 (2001)
  154. Met23Lys mutation in subunit gamma of F(O)F(1)-ATP synthase from Rhodobacter capsulatus impairs the activation of ATP hydrolysis by protonmotive force. Feniouk BA, Rebecchi A, Giovannini D, Anefors S, Mulkidjanian AY, Junge W, Turina P, Melandri BA. Biochim Biophys Acta 1767 1319-1330 (2007)
  155. Phylogenetic Profiling of Mitochondrial Proteins and Integration Analysis of Bacterial Transcription Units Suggest Evolution of F1Fo ATP Synthase from Multiple Modules. Niu Y, Moghimyfiroozabad S, Safaie S, Yang Y, Jonas EA, Alavian KN. J Mol Evol 85 219-233 (2017)
  156. Reconstitution of mitochondrial ATP synthase into lipid bilayers for structural analysis. Arechaga I, Fotiadis D. J Struct Biol 160 287-294 (2007)
  157. Revealing the Regulatory Mechanism of lncRNA-LMEP on Melanin Deposition Based on High-Throughput Sequencing in Xichuan Chicken Skin. Zhang P, Cao Y, Fu Y, Zhu H, Xu S, Zhang Y, Li W, Sun G, Jiang R, Han R, Li H, Li G, Tian Y, Liu X, Kang X, Li D. Genes (Basel) 13 2143 (2022)
  158. Theoretical analysis of the F(1)-ATPase experimental data. Perez-Carrasco R, Sancho JM. Biophys J 98 2591-2600 (2010)
  159. Chemical modification of mono-cysteine mutants allows a more global look at conformations of the epsilon subunit of the ATP synthase from Escherichia coli. Ganti S, Vik SB. J Bioenerg Biomembr 39 99-107 (2007)
  160. Role of gamma-subunit N- and C-termini in assembly of the mitochondrial ATP synthase in yeast. Dian EA, Papatheodorou P, Emmrich K, Randel O, Geissler A, Kölling R, Rassow J, Motz C. J Mol Biol 377 1314-1323 (2008)
  161. Structural characterization of an ATPase active F1-/V1 -ATPase (alpha3beta3EG) hybrid complex. Chaban YL, Coskun U, Keegstra W, Oostergetel GT, Boekema EJ, Grüber G. J Biol Chem 279 47866-47870 (2004)
  162. ATP synthase motor components: proposal and animation of two dynamic models for stator function. Blum DJ, Ko YH, Hong S, Rini DA, Pedersen PL. Biochem Biophys Res Commun 287 801-807 (2001)
  163. Effects of Fe(III) binding to the nucleotide-independent site of F1-ATPase: enzyme thermostability and response to activating anions. Contessi S, Tanfani F, Scirè A, Mavelli I, Lippe G. FEBS Lett 506 221-224 (2001)
  164. Interactions involved in grasping and locking of the inhibitory peptide IF1 by mitochondrial ATP synthase. Wu Q, Andrianaivomananjaona T, Tetaud E, Corvest V, Haraux F. Biochim Biophys Acta 1837 761-772 (2014)
  165. Introduction of the chloroplast redox regulatory region in the yeast ATP synthase impairs cytochrome c oxidase. Shen H, Walters DE, Mueller DM. J Biol Chem 283 32937-32943 (2008)
  166. The regulatory switch of F1-ATPase studied by single-molecule FRET in the ABEL Trap. Bockenhauer SD, Duncan TM, Moerner WE, Börsch M. Proc SPIE Int Soc Opt Eng 8950 89500H (2014)
  167. FliI6-FliJ molecular motor assists with unfolding in the type III secretion export apparatus. Kucera J, Terentjev EM. Sci Rep 10 7127 (2020)
  168. Fluorescence resonance energy transfer between coumarin-derived mitochondrial F(1)-ATPase gamma subunit and pyrenylmaleimide-labelled fragments of IF(1) and c subunit. Baracca A, Barogi S, Paolini S, Lenaz G, Solaini G. Biochem J 362 165-171 (2002)
  169. Introduction of a carboxyl group in the loop of the F0 c-subunit affects the H+/ATP coupling ratio of the ATP synthase from Synechocystis 6803. Van Walraven HS, Scholts MJ, Lill H, Matthijs HC, Dilley RA, Kraayenhof R. J Bioenerg Biomembr 34 445-454 (2002)
  170. Probes of inhibition of Escherichia coli F(1)-ATPase by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole in the presence of MgADP and MgATP support a bi-site mechanism of ATP hydrolysis by the enzyme. Bulygin VV, Milgrom YM. Biochemistry (Mosc) 75 327-335 (2010)
  171. Study of the yeast Saccharomyces cerevisiae F1F0-ATPase epsilon-subunit. Aznar-Derunes C, Manigand C, Picard P, Dautant A, Goetz M, Schmitter JM, Precigoux G. J Pept Sci 8 365-372 (2002)
  172. The a subunit asymmetry dictates the two opposite rotation directions in the synthesis and hydrolysis of ATP by the mitochondrial ATP synthase. Nesci S, Trombetti F, Ventrella V, Pagliarani A. Med Hypotheses 84 53-57 (2015)
  173. Does F1-ATPase subunit gamma turn in the wrong direction? Berzborn RJ, Schlitter J. FEBS Lett 533 1-8 (2003)
  174. The effect of NBD-Cl in nucleotide-binding of the major subunit alpha and B of the motor proteins F1FO ATP synthase and A1AO ATP synthase. Hunke C, Tadwal VS, Manimekalai MS, Roessle M, Grüber G. J Bioenerg Biomembr 42 1-10 (2010)
  175. The nuclear encoded subunits gamma, delta and epsilon from the shrimp mitochondrial F1-ATP synthase, and their transcriptional response during hypoxia. Martinez-Cruz O, Arvizu-Flores A, Sotelo-Mundo RR, Muhlia-Almazan A. J Bioenerg Biomembr 47 223-234 (2015)
  176. The nucleotide-independent Fe(III)-binding site is located on beta subunit of the mitochondrial F(1)-ATPase. Lippe G, Di Pancrazio F, Contessi S, Bortolotti N, Polizio F, Mavelli I. Biochem Biophys Res Commun 297 587-592 (2002)
  177. The structural features of Acetobacterium woodii F-ATP synthase reveal the importance of the unique subunit γ-loop in Na+ translocation and ATP synthesis. Bogdanović N, Trifunović D, Sielaff H, Westphal L, Bhushan S, Müller V, Grüber G. FEBS J 286 1894-1907 (2019)
  178. Congress A feast of membrane protein structures in Madrid. Workshop: Pumps, channels and transporters: structure and function. Tate CG. EMBO Rep 2 476-480 (2001)
  179. ATP hydrolysis-driven H(+) translocation is stimulated by sulfate, a strong inhibitor of mitochondrial ATP synthesis. Lodeyro AF, Castelli MV, Roveri OA. J Bioenerg Biomembr 40 269-279 (2008)
  180. Molecular mechanism and energetics of coupling between substrate binding and product release in the F1-ATPase catalytic cycle. Badocha M, Wieczór M, Marciniak A, Kleist C, Grubmüller H, Czub J. Proc Natl Acad Sci U S A 120 e2215650120 (2023)
  181. Tethering polypeptides through bifunctional PEG cross-linking agents to probe protein function: application to ATP synthase. Cipriano DJ, Dunn SD. Proteins 73 458-467 (2008)


Related citations provided by authors (6)

  1. Molecular architecture of the rotary motor in ATP synthase.. Stock D, Leslie AG, Walker JE Science 286 1700-5 (1999)
  2. ATP Synthesis by Rotary Catalysis (Nobel Lecture). Walker JE Angew. Chem. Int. Ed. Engl. 37 2308- (1998)
  3. Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli.. Uhlin U, Cox GB, Guss JM Structure 5 1219-30 (1997)
  4. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria.. Abrahams JP, Leslie AG, Lutter R, Walker JE Nature 370 621-8 (1994)
  5. Crystallization of F1-ATPase from bovine heart mitochondria.. Lutter R, Abrahams JP, van Raaij MJ, Todd RJ, Lundqvist T, Buchanan SK, Leslie AG, Walker JE J Mol Biol 229 787-90 (1993)
  6. Inactivation of the bovine mitochondrial F1-ATPase with dicyclohexyl[14C]carbodiimide leads to the modification of a specific glutamic acid residue in the beta subunit.. Esch FS, Böhlen P, Otsuka AS, Yoshida M, Allison WS J Biol Chem 256 9084-9 (1981)