1e79 Citations

The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution.

Nat Struct Biol 7 1055-61 (2000)
Related entries: 1aqt, 1bmf, 1qo1, 2xok

Cited: 278 times
EuropePMC logo PMID: 11062563

Abstract

The central stalk in ATP synthase, made of gamma, delta and epsilon subunits in the mitochondrial enzyme, is the key rotary element in the enzyme's catalytic mechanism. The gamma subunit penetrates the catalytic (alpha beta)(3) domain and protrudes beneath it, interacting with a ring of c subunits in the membrane that drives rotation of the stalk during ATP synthesis. In other crystals of F(1)-ATPase, the protrusion was disordered, but with crystals of F(1)-ATPase inhibited with dicyclohexylcarbodiimide, the complete structure was revealed. The delta and epsilon subunits interact with a Rossmann fold in the gamma subunit, forming a foot. In ATP synthase, this foot interacts with the c-ring and couples the transmembrane proton motive force to catalysis in the (alpha beta)(3) domain.

Reviews - 1e79 mentioned but not cited (4)

  1. Catalytic robustness and torque generation of the F1-ATPase. Noji H, Ueno H, McMillan DGG. Biophys Rev 9 103-118 (2017)
  2. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress. Pu X, Lv X, Tan T, Fu F, Qin G, Lin H. Ann Bot 116 583-600 (2015)
  3. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  4. Insight Into Distinct Functional Roles of the Flagellar ATPase Complex for Flagellar Assembly in Salmonella. Minamino T, Kinoshita M, Namba K. Front Microbiol 13 864178 (2022)

Articles - 1e79 mentioned but not cited (46)



Reviews citing this publication (47)

  1. ATP synthase--a marvellous rotary engine of the cell. Yoshida M, Muneyuki E, Hisabori T. Nat Rev Mol Cell Biol 2 669-677 (2001)
  2. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Veech RL. Prostaglandins Leukot Essent Fatty Acids 70 309-319 (2004)
  3. Voltage-gated proton channels and other proton transfer pathways. Decoursey TE. Physiol Rev 83 475-579 (2003)
  4. The ATP synthase: the understood, the uncertain and the unknown. Walker JE. Biochem Soc Trans 41 1-16 (2013)
  5. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Bernardi P, Rasola A, Forte M, Lippe G. Physiol Rev 95 1111-1155 (2015)
  6. Mitochondrial ATP synthase: architecture, function and pathology. Jonckheere AI, Smeitink JA, Rodenburg RJ. J Inherit Metab Dis 35 211-225 (2012)
  7. The complex architecture of oxygenic photosynthesis. Nelson N, Ben-Shem A. Nat Rev Mol Cell Biol 5 971-982 (2004)
  8. The rotary mechanism of ATP synthase. Stock D, Gibbons C, Arechaga I, Leslie AG, Walker JE. Curr Opin Struct Biol 10 672-679 (2000)
  9. Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor. Capaldi RA, Aggeler R. Trends Biochem Sci 27 154-160 (2002)
  10. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Hong S, Pedersen PL. Microbiol Mol Biol Rev 72 590-641, Table of Contents (2008)
  11. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Chung HS, Wang SB, Venkatraman V, Murray CI, Van Eyk JE. Circ Res 112 382-392 (2013)
  12. ATP synthesis driven by proton transport in F1F0-ATP synthase. Weber J, Senior AE. FEBS Lett 545 61-70 (2003)
  13. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. Hüttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW. J Bioenerg Biomembr 40 445-456 (2008)
  14. Regulation of mitochondrial oxidative phosphorylation through cell signaling. Hüttemann M, Lee I, Samavati L, Yu H, Doan JW. Biochim Biophys Acta 1773 1701-1720 (2007)
  15. The rotary mechanism of the ATP synthase. Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK. Arch Biochem Biophys 476 43-50 (2008)
  16. Rotation of F1-ATPase: how an ATP-driven molecular machine may work. Kinosita K, Adachi K, Itoh H. Annu Rev Biophys Biomol Struct 33 245-268 (2004)
  17. Structural divergence of the rotary ATPases. Muench SP, Trinick J, Harrison MA. Q Rev Biophys 44 311-356 (2011)
  18. Co-evolution of primordial membranes and membrane proteins. Mulkidjanian AY, Galperin MY, Koonin EV. Trends Biochem Sci 34 206-215 (2009)
  19. Unraveling the heater: new insights into the structure of the alternative oxidase. Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K. Annu Rev Plant Biol 64 637-663 (2013)
  20. Redox regulation of mitochondrial ATP synthase. Wang SB, Murray CI, Chung HS, Van Eyk JE. Trends Cardiovasc Med 23 14-18 (2013)
  21. A journey from mammals to yeast with vacuolar H+-ATPase (V-ATPase). Nelson N. J Bioenerg Biomembr 35 281-289 (2003)
  22. ATP synthase: subunit-subunit interactions in the stator stalk. Weber J. Biochim Biophys Acta 1757 1162-1170 (2006)
  23. ATP synthase in mycobacteria: special features and implications for a function as drug target. Lu P, Lill H, Bald D. Biochim Biophys Acta 1837 1208-1218 (2014)
  24. The chloroplast ATP synthase features the characteristic redox regulation machinery. Hisabori T, Sunamura E, Kim Y, Konno H. Antioxid Redox Signal 19 1846-1854 (2013)
  25. Rotation, structure, and classification of prokaryotic V-ATPase. Yokoyama K, Imamura H. J Bioenerg Biomembr 37 405-410 (2005)
  26. Assembly of F0 in Saccharomyces cerevisiae. Rak M, Zeng X, Brière JJ, Tzagoloff A. Biochim Biophys Acta 1793 108-116 (2009)
  27. Biomolecular motors: the F1-ATPase paradigm. Karplus M, Gao YQ. Curr Opin Struct Biol 14 250-259 (2004)
  28. ATP synthase: a molecular therapeutic drug target for antimicrobial and antitumor peptides. Ahmad Z, Okafor F, Azim S, Laughlin TF. Curr Med Chem 20 1956-1973 (2013)
  29. Regulation of mitochondrial ATP synthase in cardiac pathophysiology. Long Q, Yang K, Yang Q. Am J Cardiovasc Dis 5 19-32 (2015)
  30. ATP synthase: Evolution, energetics, and membrane interactions. Nirody JA, Budin I, Rangamani P. J Gen Physiol 152 e201912475 (2020)
  31. Medicinal chemistry of ATP synthase: a potential drug target of dietary polyphenols and amphibian antimicrobial peptides. Ahmad Z, Laughlin TF. Curr Med Chem 17 2822-2836 (2010)
  32. ATP synthase--the structure of the stator stalk. Weber J. Trends Biochem Sci 32 53-56 (2007)
  33. The regulatory subunit ε in Escherichia coli FOF1-ATP synthase. Sielaff H, Duncan TM, Börsch M. Biochim Biophys Acta Bioenerg 1859 775-788 (2018)
  34. Molecular mechanism of the P-type ATPases. Scarborough GA. J Bioenerg Biomembr 34 235-250 (2002)
  35. Regulation of the F0F1-ATP synthase: the conformation of subunit epsilon might be determined by directionality of subunit gamma rotation. Feniouk BA, Junge W. FEBS Lett 579 5114-5118 (2005)
  36. The rotor in the membrane of the ATP synthase and relatives. Arechaga I, Jones PC. FEBS Lett 494 1-5 (2001)
  37. Electron cryomicroscopy of membrane proteins: specimen preparation for two-dimensional crystals and single particles. Schmidt-Krey I, Rubinstein JL. Micron 42 107-116 (2011)
  38. Molecular evolution of the modulator of chloroplast ATP synthase: origin of the conformational change dependent regulation. Hisabori T, Ueoka-Nakanishi H, Konno H, Koyama F. FEBS Lett 545 71-75 (2003)
  39. Opposite rotation directions in the synthesis and hydrolysis of ATP by the ATP synthase: hints from a subunit asymmetry. Nesci S, Trombetti F, Ventrella V, Pagliarani A. J Membr Biol 248 163-169 (2015)
  40. Coupling proton movement to ATP synthesis in the chloroplast ATP synthase. Richter ML, Samra HS, He F, Giessel AJ, Kuczera KK. J Bioenerg Biomembr 37 467-473 (2005)
  41. CryoEM Reveals the Complexity and Diversity of ATP Synthases. Courbon GM, Rubinstein JL. Front Microbiol 13 864006 (2022)
  42. Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases. Sielaff H, Yanagisawa S, Frasch WD, Junge W, Börsch M. Molecules 24 E504 (2019)
  43. Rotor subunits adaptations in ATP synthases from photosynthetic organisms. Cheuk A, Meier T. Biochem Soc Trans 49 541-550 (2021)
  44. Chemomechanical coupling in single-molecule F-type ATP synthase. Iino R, Rondelez Y, Yoshida M, Noji H. J Bioenerg Biomembr 37 451-454 (2005)
  45. F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. Zharova TV, Grivennikova VG, Borisov VB. Int J Mol Sci 24 5417 (2023)
  46. Operating principles of rotary molecular motors: differences between F1 and V1 motors. Yamato I, Kakinuma Y, Murata T. Biophys Physicobiol 13 37-44 (2016)
  47. Variants in Human ATP Synthase Mitochondrial Genes: Biochemical Dysfunctions, Associated Diseases, and Therapies. Del Dotto V, Musiani F, Baracca A, Solaini G. Int J Mol Sci 25 2239 (2024)

Articles citing this publication (181)



Related citations provided by authors (6)