1fap Citations

Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP.

Science 273 239-42 (1996)
Cited: 511 times
EuropePMC logo PMID: 8662507

Abstract

Rapamycin, a potent immunosuppressive agent, binds two proteins: the FK506-binding protein (FKBP12) and the FKBP-rapamycin-associated protein (FRAP). A crystal structure of the ternary complex of human FKBP12, rapamycin, and the FKBP12-rapamycin-binding (FRB) domain of human FRAP at a resolution of 2.7 angstroms revealed the two proteins bound together as a result of the ability of rapamycin to occupy two different hydrophobic binding pockets simultaneously. The structure shows extensive interactions between rapamycin and both proteins, but fewer interactions between the proteins. The structure of the FRB domain of FRAP clarifies both rapamycin-independent and -dependent effects observed for mutants of FRAP and its homologs in the family of proteins related to the ataxia-telangiectasia mutant gene product, and it illustrates how a small cell-permeable molecule can mediate protein dimerization.

Reviews - 1fap mentioned but not cited (12)

  1. Modulators of 14-3-3 Protein-Protein Interactions. Stevers LM, Sijbesma E, Botta M, MacKintosh C, Obsil T, Landrieu I, Cau Y, Wilson AJ, Karawajczyk A, Eickhoff J, Davis J, Hann M, O'Mahony G, Doveston RG, Brunsveld L, Ottmann C. J Med Chem 61 3755-3778 (2018)
  2. Peptidyl-Proline Isomerases (PPIases): Targets for Natural Products and Natural Product-Inspired Compounds. Dunyak BM, Gestwicki JE. J Med Chem 59 9622-9644 (2016)
  3. Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities. Hubbard PA, Moody CL, Murali R. Front Physiol 5 478 (2014)
  4. Current Challenges and Opportunities in Designing Protein-Protein Interaction Targeted Drugs. Shin WH, Kumazawa K, Imai K, Hirokawa T, Kihara D. Adv Appl Bioinform Chem 13 11-25 (2020)
  5. SPLINTS: small-molecule protein ligand interface stabilizers. Fischer ES, Park E, Eck MJ, Thomä NH. Curr Opin Struct Biol 37 115-122 (2016)
  6. Structural Insights into TOR Signaling. Tafur L, Kefauver J, Loewith R. Genes (Basel) 11 E885 (2020)
  7. Therapeutic strategies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds. Liu H, Qiu W, Sun T, Wang L, Du C, Hu Y, Liu W, Feng F, Chen Y, Sun H. Acta Pharm Sin B 12 1781-1804 (2022)
  8. Chemical strategies to overcome resistance against targeted anticancer therapeutics. Pisa R, Kapoor TM. Nat Chem Biol 16 817-825 (2020)
  9. Overview of Research into mTOR Inhibitors. Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P. Molecules 27 5295 (2022)
  10. Everolimus for the treatment of advanced pancreatic ductal adenocarcinoma (PDAC). Babiker HM, Karass M, Recio-Boiles A, Chandana SR, McBride A, Mahadevan D. Expert Opin Investig Drugs 28 583-592 (2019)
  11. Discovering new biology with drug-resistance alleles. Freedy AM, Liau BB. Nat Chem Biol 17 1219-1229 (2021)
  12. Protein-protein interfaces in molecular glue-induced ternary complexes: classification, characterization, and prediction. Rui H, Ashton KS, Min J, Wang C, Potts PR. RSC Chem Biol 4 192-215 (2023)

Articles - 1fap mentioned but not cited (29)

  1. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Yang H, Jiang X, Li B, Yang HJ, Miller M, Yang A, Dhar A, Pavletich NP. Nature 552 368-373 (2017)
  2. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, Banaji A, Won H, Wong W, Berger M, de Stanchina E, Barratt DG, Cosulich S, Klinowska T, Rosen N, Shokat KM. Nature 534 272-276 (2016)
  3. Response and acquired resistance to everolimus in anaplastic thyroid cancer. Wagle N, Grabiner BC, Van Allen EM, Amin-Mansour A, Taylor-Weiner A, Rosenberg M, Gray N, Barletta JA, Guo Y, Swanson SJ, Ruan DT, Hanna GJ, Haddad RI, Getz G, Kwiatkowski DJ, Carter SL, Sabatini DM, Jänne PA, Garraway LA, Lorch JH. N Engl J Med 371 1426-1433 (2014)
  4. Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells. Ge D, Han L, Huang S, Peng N, Wang P, Jiang Z, Zhao J, Su L, Zhang S, Zhang Y, Kung H, Zhao B, Miao J. Autophagy 10 957-971 (2014)
  5. Rational design of a ligand-controlled protein conformational switch. Dagliyan O, Shirvanyants D, Karginov AV, Ding F, Fee L, Chandrasekaran SN, Freisinger CM, Smolen GA, Huttenlocher A, Hahn KM, Dokholyan NV. Proc Natl Acad Sci U S A 110 6800-6804 (2013)
  6. Cryo-EM structure of human mTOR complex 2. Chen X, Liu M, Tian Y, Li J, Qi Y, Zhao D, Wu Z, Huang M, Wong CCL, Wang HW, Wang J, Yang H, Xu Y. Cell Res 28 518-528 (2018)
  7. Imaging protein-protein interactions inside living cells via interaction-dependent fluorophore ligation. Slavoff SA, Liu DS, Cohen JD, Ting AY. J Am Chem Soc 133 19769-19776 (2011)
  8. Cooperativity basis for small-molecule stabilization of protein-protein interactions. de Vink PJ, Andrei SA, Higuchi Y, Ottmann C, Milroy LG, Brunsveld L. Chem Sci 10 2869-2874 (2019)
  9. Convenient method for resolving degeneracies due to symmetry of the magnetic susceptibility tensor and its application to pseudo contact shift-based protein-protein complex structure determination. Kobashigawa Y, Saio T, Ushio M, Sekiguchi M, Yokochi M, Ogura K, Inagaki F. J Biomol NMR 53 53-63 (2012)
  10. Protein-protein binding site identification by enumerating the configurations. Guo F, Li SC, Wang L, Zhu D. BMC Bioinformatics 13 158 (2012)
  11. Rational design and implementation of a chemically inducible heterotrimerization system. Wu HD, Kikuchi M, Dagliyan O, Aragaki AK, Nakamura H, Dokholyan NV, Umehara T, Inoue T. Nat Methods 17 928-936 (2020)
  12. Detecting protein-protein interactions based on kinase-mediated growth induction of mammalian cells. Mabe S, Nagamune T, Kawahara M. Sci Rep 4 6127 (2014)
  13. Integrative Protein Modeling in RosettaNMR from Sparse Paramagnetic Restraints. Kuenze G, Bonneau R, Leman JK, Meiler J. Structure 27 1721-1734.e5 (2019)
  14. Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment. Balderas E, Eberhardt DR, Lee S, Pleinis JM, Sommakia S, Balynas AM, Yin X, Parker MC, Maguire CT, Cho S, Szulik MW, Bakhtina A, Bia RD, Friederich MW, Locke TM, Van Hove JLK, Drakos SG, Sancak Y, Tristani-Firouzi M, Franklin S, Rodan AR, Chaudhuri D. Nat Commun 13 2769 (2022)
  15. New Mammalian Target of Rapamycin (mTOR) Modulators Derived from Natural Product Databases and Marine Extracts by Using Molecular Docking Techniques. Ruiz-Torres V, Losada-Echeberría M, Herranz-López M, Barrajón-Catalán E, Galiano V, Micol V, Encinar JA. Mar Drugs 16 E385 (2018)
  16. Design, synthesis and pharmaco-toxicological assessment of 5-mercapto-1,2,4-triazole derivatives with antibacterial and antiproliferative activity. Mioc M, Soica C, Bercean V, Avram S, Balan-Porcarasu M, Coricovac D, Ghiulai R, Muntean D, Andrica F, Dehelean C, Spandidos DA, Tsatsakis AM, Kurunczi L. Int J Oncol 50 1175-1183 (2017)
  17. Rapamycin and FK506 derivative TH2849 could ameliorate neurodegenerative diseases through autophagy with low immunosuppressive effect. Ding L, Ding L, Nan WH, Zhu XB, Li XM, Zhou LY, Chen HJ, Yu L, Ullah Khan F, Zhong HB, Shi XJ. CNS Neurosci Ther 25 452-464 (2019)
  18. Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae. Hu K, Guo S, Yan G, Yuan W, Zheng Y, Jiang Y. Mol Microbiol 100 303-314 (2016)
  19. A signal-on fluorosensor based on quench-release principle for sensitive detection of antibiotic rapamycin. Jeong HJ, Itayama S, Ueda H. Biosensors (Basel) 5 131-140 (2015)
  20. In Silico Strategy for Targeting the mTOR Kinase at Rapamycin Binding Site by Small Molecules. Vittorio S, Gitto R, Adornato I, Russo E, De Luca L. Molecules 26 1103 (2021)
  21. Predicting Protein-Protein Interaction Sites Using Sequence Descriptors and Site Propensity of Neighboring Amino Acids. Kuo TH, Li KB. Int J Mol Sci 17 E1788 (2016)
  22. S-Series Coelenterazine-Driven Combinatorial Bioluminescence Imaging Systems for Mammalian Cells. Kamiya G, Kitada N, Furuta T, Hirano T, Maki SA, Kim SB. Int J Mol Sci 24 1420 (2023)
  23. Anti-Cancer Effects of an Optimised Combination of Ginsenoside Rg3 Epimers on Triple Negative Breast Cancer Models. Nakhjavani M, Smith E, Palethorpe HM, Tomita Y, Yeo K, Price TJ, Townsend AR, Hardingham JE. Pharmaceuticals (Basel) 14 633 (2021)
  24. Network Pharmacology and Bioinformatics Approach Reveals the Multi-Target Pharmacological Mechanism of Fumaria indica in the Treatment of Liver Cancer. Batool S, Javed MR, Aslam S, Noor F, Javed HMF, Seemab R, Rehman A, Aslam MF, Paray BA, Gulnaz A. Pharmaceuticals (Basel) 15 654 (2022)
  25. A Drug-Target Network-Based Approach to Evaluate the Efficacy of Medicinal Plants for Type II Diabetes Mellitus. Gu J, Chen L, Yuan G, Xu X. Evid Based Complement Alternat Med 2013 203614 (2013)
  26. Target Of Rapamycin pathway in the white-rot fungus Phanerochaete chrysosporium. Nguyen DV, Roret T, Fernandez-Gonzalez A, Kohler A, Morel-Rouhier M, Gelhaye E, Sormani R. PLoS One 15 e0224776 (2020)
  27. A general method for chemogenetic control of peptide function. Shen J, Geng L, Li X, Emery C, Kroning K, Shingles G, Lee K, Heyden M, Li P, Wang W. Nat Methods 20 112-122 (2023)
  28. Bright Molecular Strain Probe Templates for Reporting Protein-Protein Interactions. Kim SB, Furuta T, Kamiya G, Kitada N, Paulmurugan R, Maki SA. Sensors (Basel) 23 3498 (2023)
  29. Green synthesis, structure optimization and biological evalution of Rhopaladins' analog 2-styryl-5-oxopyrrolidine-2- carboxamide RPDPRH on CaSki cells. Ke LN, Kong LQ, Zhu XL, Wu FX, Chen QH, Li B, Dong Y, Wang HM, Zeng XH. Front Chem 10 975559 (2022)


Reviews citing this publication (171)

  1. mTOR: from growth signal integration to cancer, diabetes and ageing. Zoncu R, Efeyan A, Sabatini DM. Nat Rev Mol Cell Biol 12 21-35 (2011)
  2. TOR, a central controller of cell growth. Schmelzle T, Hall MN. Cell 103 253-262 (2000)
  3. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Fingar DC, Blenis J. Oncogene 23 3151-3171 (2004)
  4. Rapamycin passes the torch: a new generation of mTOR inhibitors. Benjamin D, Colombi M, Moroni C, Hall MN. Nat Rev Drug Discov 10 868-880 (2011)
  5. Target of rapamycin (TOR) in nutrient signaling and growth control. Loewith R, Hall MN. Genetics 189 1177-1201 (2011)
  6. The exploration of macrocycles for drug discovery--an underexploited structural class. Driggers EM, Hale SP, Lee J, Terrett NK. Nat Rev Drug Discov 7 608-624 (2008)
  7. Oncogenic PI3K deregulates transcription and translation. Bader AG, Kang S, Zhao L, Vogt PK. Nat Rev Cancer 5 921-929 (2005)
  8. Lessons from natural molecules. Clardy J, Walsh C. Nature 432 829-837 (2004)
  9. Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Sehgal SN. Clin Biochem 31 335-340 (1998)
  10. Features of selective kinase inhibitors. Knight ZA, Shokat KM. Chem Biol 12 621-637 (2005)
  11. mTOR and cancer therapy. Easton JB, Houghton PJ. Oncogene 25 6436-6446 (2006)
  12. Autophagy: pathways for self-eating in plant cells. Liu Y, Bassham DC. Annu Rev Plant Biol 63 215-237 (2012)
  13. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Tsang CK, Qi H, Liu LF, Zheng XF. Drug Discov Today 12 112-124 (2007)
  14. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Fumarola C, Bonelli MA, Petronini PG, Alfieri RR. Biochem Pharmacol 90 197-207 (2014)
  15. Amino acid regulation of TOR complex 1. Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Am J Physiol Endocrinol Metab 296 E592-602 (2009)
  16. The TOR pathway comes of age. Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK. Biochim Biophys Acta 1790 1067-1074 (2009)
  17. Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Crespo JL, Hall MN. Microbiol Mol Biol Rev 66 579-91, table of contents (2002)
  18. New approaches to molecular cancer therapeutics. Collins I, Workman P. Nat Chem Biol 2 689-700 (2006)
  19. Emerging common themes in regulation of PIKKs and PI3Ks. Lempiäinen H, Halazonetis TD. EMBO J 28 3067-3073 (2009)
  20. mTOR in Brain Physiology and Pathologies. Bockaert J, Marin P. Physiol Rev 95 1157-1187 (2015)
  21. Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Dunlop EA, Tee AR. Cell Signal 21 827-835 (2009)
  22. The structures of type I polyketide synthases. Keatinge-Clay AT. Nat Prod Rep 29 1050-1073 (2012)
  23. Role of mTOR signaling in tumor cell motility, invasion and metastasis. Zhou H, Huang S. Curr Protein Pept Sci 12 30-42 (2011)
  24. Aggresome formation and neurodegenerative diseases: therapeutic implications. Olzmann JA, Li L, Chin LS. Curr Med Chem 15 47-60 (2008)
  25. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Gibbons JJ, Abraham RT, Yu K. Semin Oncol 36 Suppl 3 S3-S17 (2009)
  26. ATM, a central controller of cellular responses to DNA damage. Khanna KK, Lavin MF, Jackson SP, Mulhern TD. Cell Death Differ 8 1052-1065 (2001)
  27. Identification of direct protein targets of small molecules. Lomenick B, Olsen RW, Huang J. ACS Chem Biol 6 34-46 (2011)
  28. Protein kinase inhibitors: contributions from structure to clinical compounds. Johnson LN. Q Rev Biophys 42 1-40 (2009)
  29. Interfacial inhibitors: targeting macromolecular complexes. Pommier Y, Marchand C. Nat Rev Drug Discov 11 25-36 (2011)
  30. Organ size control by Hippo and TOR pathways. Tumaneng K, Russell RC, Guan KL. Curr Biol 22 R368-79 (2012)
  31. Adaptor protein interactions: modulators of amyloid precursor protein metabolism and Alzheimer's disease risk? King GD, Scott Turner R. Exp Neurol 185 208-219 (2004)
  32. Targeting the phosphatidylinositol 3-kinase signaling pathway in breast cancer. Hernandez-Aya LF, Gonzalez-Angulo AM. Oncologist 16 404-414 (2011)
  33. Updates of mTOR inhibitors. Zhou H, Luo Y, Huang S. Anticancer Agents Med Chem 10 571-581 (2010)
  34. TOR Complexes and the Maintenance of Cellular Homeostasis. Eltschinger S, Loewith R. Trends Cell Biol 26 148-159 (2016)
  35. Mechanisms of mTOR inhibitor resistance in cancer therapy. Carew JS, Kelly KR, Nawrocki ST. Target Oncol 6 17-27 (2011)
  36. Targeting protein-protein interaction by small molecules. Jin L, Wang W, Fang G. Annu Rev Pharmacol Toxicol 54 435-456 (2014)
  37. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Bruntz RC, Lindsley CW, Brown HA. Pharmacol Rev 66 1033-1079 (2014)
  38. Protein translocation as a tool: The current rapamycin story. Putyrski M, Schultz C. FEBS Lett 586 2097-2105 (2012)
  39. Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. Hyttinen JM, Amadio M, Viiri J, Pascale A, Salminen A, Kaarniranta K. Ageing Res Rev 18 16-28 (2014)
  40. Pushing the envelope in the mTOR pathway: the second generation of inhibitors. Vilar E, Perez-Garcia J, Tabernero J. Mol Cancer Ther 10 395-403 (2011)
  41. Industrial natural product chemistry for drug discovery and development. Bauer A, Brönstrup M. Nat Prod Rep 31 35-60 (2014)
  42. The complexes of mammalian target of rapamycin. Zhou H, Huang S. Curr Protein Pept Sci 11 409-424 (2010)
  43. An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Russell RC, Fang C, Guan KL. Development 138 3343-3356 (2011)
  44. Nutrient sensing and metabolic decisions. Lindsley JE, Rutter J. Comp Biochem Physiol B Biochem Mol Biol 139 543-559 (2004)
  45. mTOR inhibitors in the treatment of cancer. Fasolo A, Sessa C. Expert Opin Investig Drugs 17 1717-1734 (2008)
  46. Interfacial inhibition of macromolecular interactions: nature's paradigm for drug discovery. Pommier Y, Cherfils J. Trends Pharmacol Sci 26 138-145 (2005)
  47. Differentiating the mTOR inhibitors everolimus and sirolimus in the treatment of tuberous sclerosis complex. MacKeigan JP, Krueger DA. Neuro Oncol 17 1550-1559 (2015)
  48. Small-molecule stabilization of protein-protein interactions: an underestimated concept in drug discovery? Thiel P, Kaiser M, Ottmann C. Angew Chem Int Ed Engl 51 2012-2018 (2012)
  49. Insights into the mechanisms of eukaryotic translation gained with ribosome profiling. Andreev DE, O'Connor PB, Loughran G, Dmitriev SE, Baranov PV, Shatsky IN. Nucleic Acids Res 45 513-526 (2017)
  50. Current development of the second generation of mTOR inhibitors as anticancer agents. Zhou HY, Huang SL. Chin J Cancer 31 8-18 (2012)
  51. Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. Hughes SJ, Ciulli A. Essays Biochem 61 505-516 (2017)
  52. A novel pathway regulating the mammalian target of rapamycin (mTOR) signaling. Chen J, Fang Y. Biochem Pharmacol 64 1071-1077 (2002)
  53. Immunophilins: switched on protein binding domains? Ivery MT. Med Res Rev 20 452-484 (2000)
  54. Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Chapuis N, Tamburini J, Green AS, Willems L, Bardet V, Park S, Lacombe C, Mayeux P, Bouscary D. Leukemia 24 1686-1699 (2010)
  55. mTOR function and therapeutic targeting in breast cancer. Hare SH, Harvey AJ. Am J Cancer Res 7 383-404 (2017)
  56. Judicious Toggling of mTOR Activity to Combat Insulin Resistance and Cancer: Current Evidence and Perspectives. Ong PS, Wang LZ, Dai X, Tseng SH, Loo SJ, Sethi G. Front Pharmacol 7 395 (2016)
  57. Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action. Cardenas ME, Cruz MC, Del Poeta M, Chung N, Perfect JR, Heitman J. Clin Microbiol Rev 12 583-611 (1999)
  58. Current state of imaging protein-protein interactions in vivo with genetically encoded reporters. Villalobos V, Naik S, Piwnica-Worms D. Annu Rev Biomed Eng 9 321-349 (2007)
  59. Mammalian target of rapamycin as a therapeutic target in oncology. Abraham RT, Eng CH. Expert Opin Ther Targets 12 209-222 (2008)
  60. Conditional Degrons for Controlling Protein Expression at the Protein Level. Natsume T, Kanemaki MT. Annu Rev Genet 51 83-102 (2017)
  61. Influence of mTOR in energy and metabolic homeostasis. Haissaguerre M, Saucisse N, Cota D. Mol Cell Endocrinol 397 67-77 (2014)
  62. Tailoring mTOR-based therapy: molecular evidence and clinical challenges. Santulli G, Totary-Jain H. Pharmacogenomics 14 1517-1526 (2013)
  63. Therapeutic potential of target of rapamycin inhibitors. Easton JB, Houghton PJ. Expert Opin Ther Targets 8 551-564 (2004)
  64. Biophysical and computational fragment-based approaches to targeting protein-protein interactions: applications in structure-guided drug discovery. Winter A, Higueruelo AP, Marsh M, Sigurdardottir A, Pitt WR, Blundell TL. Q Rev Biophys 45 383-426 (2012)
  65. Allosteric and ATP-competitive kinase inhibitors of mTOR for cancer treatment. García-Echeverría C. Bioorg Med Chem Lett 20 4308-4312 (2010)
  66. Cancer and mTOR Inhibitors in Transplant Recipients. de Fijter JW. Transplantation 101 45-55 (2017)
  67. Mammalian target of rapamycin and the kidney. I. The signaling pathway. Lieberthal W, Levine JS. Am J Physiol Renal Physiol 303 F1-10 (2012)
  68. mTOR signaling in cancer cell motility and tumor metastasis. Zhou H, Huang S. Crit Rev Eukaryot Gene Expr 20 1-16 (2010)
  69. Pipecolic acid in microbes: biosynthetic routes and enzymes. He M. J Ind Microbiol Biotechnol 33 401-407 (2006)
  70. mTOR signaling in autophagy regulation in the kidney. Inoki K. Semin Nephrol 34 2-8 (2014)
  71. mTOR-Dependent Cell Proliferation in the Brain. Ryskalin L, Lazzeri G, Flaibani M, Biagioni F, Gambardella S, Frati A, Fornai F. Biomed Res Int 2017 7082696 (2017)
  72. DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Caron A, Briscoe DM, Richard D, Laplante M. Physiol Rev 98 1765-1803 (2018)
  73. mTOR signalling in human cancer. Albanell J, Dalmases A, Rovira A, Rojo F. Clin Transl Oncol 9 484-493 (2007)
  74. Sorafenib-based combined molecule targeting in treatment of hepatocellular carcinoma. Gao JJ, Shi ZY, Xia JF, Inagaki Y, Tang W. World J Gastroenterol 21 12059-12070 (2015)
  75. The PIK-related kinases intercept conventional signaling pathways. Kuruvilla FG, Schreiber SL. Chem Biol 6 R129-36 (1999)
  76. Current and future directions in mammalian target of rapamycin inhibitors development. Fasolo A, Sessa C. Expert Opin Investig Drugs 20 381-394 (2011)
  77. mTOR Inhibition: From Aging to Autism and Beyond. Kaeberlein M. Scientifica (Cairo) 2013 849186 (2013)
  78. mTOR in health and in sickness. Liko D, Hall MN. J Mol Med (Berl) 93 1061-1073 (2015)
  79. Deconstructing mTOR complexes in regulation of Glioblastoma Multiforme and its stem cells. Jhanwar-Uniyal M, Jeevan D, Neil J, Shannon C, Albert L, Murali R. Adv Biol Regul 53 202-210 (2013)
  80. m-TOR inhibitors and their potential role in haematological malignancies. Calimeri T, Ferreri AJM. Br J Haematol 177 684-702 (2017)
  81. mTOR Inhibitors in Castration-Resistant Prostate Cancer: A Systematic Review. Statz CM, Patterson SE, Mockus SM. Target Oncol 12 47-59 (2017)
  82. Current status and challenges associated with targeting mTOR for cancer therapy. Dowling RJ, Pollak M, Sonenberg N. BioDrugs 23 77-91 (2009)
  83. Natural product-like chemical space: search for chemical dissectors of macromolecular interactions. Reayi A, Arya P. Curr Opin Chem Biol 9 240-247 (2005)
  84. Lysosomal Regulation of mTORC1 by Amino Acids in Mammalian Cells. Yao Y, Jones E, Inoki K. Biomolecules 7 E51 (2017)
  85. Recent advances in the chemistry, biosynthesis and pharmacology of rapamycin analogs. Graziani EI. Nat Prod Rep 26 602-609 (2009)
  86. Metabolic Reprogramming of Non-Hodgkin's B-Cell Lymphomas and Potential Therapeutic Strategies. Ricci JE, Chiche J. Front Oncol 8 556 (2018)
  87. The structural basis for mTOR function. Baretić D, Williams RL. Semin Cell Dev Biol 36 91-101 (2014)
  88. Genetic and genomic approaches to identify and study the targets of bioactive small molecules. Zheng XS, Chan TF, Zhou HH. Chem Biol 11 609-618 (2004)
  89. Targeted therapies for advanced non-small cell lung cancer. Ai X, Guo X, Wang J, Stancu AL, Joslin PMN, Zhang D, Zhu S. Oncotarget 9 37589-37607 (2018)
  90. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii. Pérez-Pérez ME, Couso I, Crespo JL. Biomolecules 7 E54 (2017)
  91. Current models of mammalian target of rapamycin complex 1 (mTORC1) activation by growth factors and amino acids. Zheng X, Liang Y, He Q, Yao R, Bao W, Bao L, Wang Y, Wang Z. Int J Mol Sci 15 20753-20769 (2014)
  92. Mammalian target of rapamycin signaling in the podocyte. Inoki K, Huber TB. Curr Opin Nephrol Hypertens 21 251-257 (2012)
  93. Role of mTOR inhibitors in epilepsy treatment. Sadowski K, Kotulska-Jóźwiak K, Jóźwiak S. Pharmacol Rep 67 636-646 (2015)
  94. Auxin Signaling in Regulation of Plant Translation Reinitiation. Schepetilnikov M, Ryabova LA. Front Plant Sci 8 1014 (2017)
  95. Current Approaches and Future Directions for the Treatment of mTORopathies. Karalis V, Bateup HS. Dev Neurosci 43 143-158 (2021)
  96. Drug Inducible CRISPR/Cas Systems. Zhang J, Chen L, Zhang J, Wang Y. Comput Struct Biotechnol J 17 1171-1177 (2019)
  97. Inhibiting 4EBP1 in Glioblastoma. Fan QW, Nicolaides TP, Weiss WA. Clin Cancer Res 24 14-21 (2018)
  98. Critical Assessment of Targeted Protein Degradation as a Research Tool and Pharmacological Modality. Kostic M, Jones LH. Trends Pharmacol Sci 41 305-317 (2020)
  99. Evolution of TOR-SnRK dynamics in green plants and its integration with phytohormone signaling networks. Jamsheer K M, Jindal S, Laxmi A. J Exp Bot 70 2239-2259 (2019)
  100. Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Galat A. Cell Mol Life Sci 70 3243-3275 (2013)
  101. High-throughput screening for modulators of protein-protein interactions: use of photonic crystal biosensors and complementary technologies. Heeres JT, Hergenrother PJ. Chem Soc Rev 40 4398-4410 (2011)
  102. Targeting mTOR for the treatment of B cell malignancies. Lee JS, Vo TT, Fruman DA. Br J Clin Pharmacol 82 1213-1228 (2016)
  103. The chemical biology of phosphoinositide 3-kinases. Wymann MP, Schultz C. Chembiochem 13 2022-2035 (2012)
  104. Resistance to targeted therapies in pancreatic neuroendocrine tumors (PNETs): molecular basis, preclinical data, and counteracting strategies. Tijeras-Raballand A, Neuzillet C, Couvelard A, Serova M, de Gramont A, Hammel P, Raymond E, Faivre S. Target Oncol 7 173-181 (2012)
  105. Everolimus in combination with exemestane: a review of its use in the treatment of patients with postmenopausal hormone receptor-positive, HER2-negative advanced breast cancer. Dhillon S. Drugs 73 475-485 (2013)
  106. Switchable inteins for conditional protein splicing. Di Ventura B, Mootz HD. Biol Chem 400 467-475 (2019)
  107. The role of mTOR in age-related diseases. Chrienova Z, Nepovimova E, Kuca K. J Enzyme Inhib Med Chem 36 1679-1693 (2021)
  108. Proximity labeling: an emerging tool for probing in planta molecular interactions. Yang X, Wen Z, Zhang D, Li Z, Li D, Nagalakshmi U, Dinesh-Kumar SP, Zhang Y. Plant Commun 2 100137 (2021)
  109. The Rapamune era of immunosuppression 2003: the journey from the laboratory to clinical transplantation. Camardo J. Transplant Proc 35 18S-24S (2003)
  110. DEPDC5 as a potential therapeutic target for epilepsy. Myers KA, Scheffer IE. Expert Opin Ther Targets 21 591-600 (2017)
  111. Stabilization of protein-protein interactions by small molecules. Giordanetto F, Schäfer A, Ottmann C. Drug Discov Today 19 1812-1821 (2014)
  112. The emerging role of large immunophilin FK506 binding protein 51 in cancer. Romano S, Sorrentino A, Di Pace AL, Nappo G, Mercogliano C, Romano MF. Curr Med Chem 18 5424-5429 (2011)
  113. Blocking the mTOR pathway: a drug discovery perspective. Garcia-Echeverria C. Biochem Soc Trans 39 451-455 (2011)
  114. Spatial regulation of the mTORC1 system in amino acids sensing pathway. Suzuki T, Inoki K. Acta Biochim Biophys Sin (Shanghai) 43 671-679 (2011)
  115. mTOR Inhibitors in Advanced Biliary Tract Cancers. Wu CE, Chen MH, Yeh CN. Int J Mol Sci 20 E500 (2019)
  116. Amino acid sensing and regulation of mTORC1. Yan L, Lamb RF. Semin Cell Dev Biol 23 621-625 (2012)
  117. Target of Rapamycin in Control of Autophagy: Puppet Master and Signal Integrator. Mugume Y, Kazibwe Z, Bassham DC. Int J Mol Sci 21 E8259 (2020)
  118. Ligand-directed tosyl chemistry for in situ native protein labeling and engineering in living systems: from basic properties to applications. Tsukiji S, Hamachi I. Curr Opin Chem Biol 21 136-143 (2014)
  119. Resistance to targeted treatment of gastroenteropancreatic neuroendocrine tumors Beyens M, Vandamme T, Peeters M, Van Camp G, Op de Beeck K. Endocr Relat Cancer 26 R109-R130 (2019)
  120. Targeting mTOR and Glycolysis in HER2-Positive Breast Cancer. Holloway RW, Marignani PA. Cancers (Basel) 13 2922 (2021)
  121. Protein tango: the toolbox to capture interacting partners. Rutkowska A, Schultz C. Angew Chem Int Ed Engl 51 8166-8176 (2012)
  122. Some conditions apply: Systems for studying Plasmodium falciparum protein function. Kudyba HM, Cobb DW, Vega-Rodríguez J, Muralidharan V. PLoS Pathog 17 e1009442 (2021)
  123. mTOR signaling in lymphangioleiomyomatosis. Kristof AS. Lymphat Res Biol 8 33-42 (2010)
  124. Calcineurin-immunosuppressor complexes. Stoddard BL, Flick KE. Curr Opin Struct Biol 6 770-775 (1996)
  125. FK506-binding protein 12 ligands: a patent review. Liu F, Wang YQ, Meng L, Gu M, Tan RY. Expert Opin Ther Pat 23 1435-1449 (2013)
  126. Overcoming resistance to rapalogs in gliomas by combinatory therapies. Grzmil M, Hemmings BA. Biochim Biophys Acta 1834 1371-1380 (2013)
  127. TNF superfamily protein-protein interactions: feasibility of small- molecule modulation. Song Y, Buchwald P. Curr Drug Targets 16 393-408 (2015)
  128. Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. Bakshi A, Moin M, Madhav MS, Kirti PB. Plant Biol (Stuttg) 21 190-205 (2019)
  129. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Benn CL, Dawson LA. Front Aging Neurosci 12 242 (2020)
  130. Compounds that extend longevity are protective in neurodegenerative diseases and provide a novel treatment strategy for these devastating disorders. Soo SK, Rudich PD, Traa A, Harris-Gauthier N, Shields HJ, Van Raamsdonk JM. Mech Ageing Dev 190 111297 (2020)
  131. Resveratrol and its oligomers: modulation of sphingolipid metabolism and signaling in disease. Lim KG, Gray AI, Anthony NG, Mackay SP, Pyne S, Pyne NJ. Arch Toxicol 88 2213-2232 (2014)
  132. TOR inhibitors: from mammalian outcomes to pharmacogenetics in plants and algae. Montané MH, Menand B. J Exp Bot 70 2297-2312 (2019)
  133. Modulation of nociceptive ion channels and receptors via protein-protein interactions: implications for pain relief. Rouwette T, Avenali L, Sondermann J, Narayanan P, Gomez-Varela D, Schmidt M. Channels (Austin) 9 175-185 (2015)
  134. Regulation of the Target of Rapamycin and Other Phosphatidylinositol 3-Kinase-Related Kinases by Membrane Targeting. De Cicco M, Rahim MS, Dames SA. Membranes (Basel) 5 553-575 (2015)
  135. Small molecules, peptides and natural products: getting a grip on 14-3-3 protein-protein modulation. Bartel M, Schäfer A, Stevers LM, Ottmann C. Future Med Chem 6 903-921 (2014)
  136. Three-dimensional structural labeling microscopy of cilia and flagella. Oda T. Microscopy (Oxf) 66 234-244 (2017)
  137. Targeting protein function: the expanding toolkit for conditional disruption. Campbell AE, Bennett D. Biochem J 473 2573-2589 (2016)
  138. The Inositide Signaling Pathway As a Target for Treating Gastric Cancer and Colorectal Cancer. Kim HJ, Lee SY, Oh SC. Front Physiol 7 168 (2016)
  139. Unraveling the multifaceted nature of the nuclear function of mTOR. Torres AS, Holz MK. Biochim Biophys Acta Mol Cell Res 1868 118907 (2021)
  140. An overview of kinase downregulators and recent advances in discovery approaches. Wang B, Wu H, Hu C, Wang H, Liu J, Wang W, Liu Q. Signal Transduct Target Ther 6 423 (2021)
  141. Synthesis and biological evaluation of rapamycin-derived, next generation small molecules. Guduru SKR, Arya P. Medchemcomm 9 27-43 (2018)
  142. The role of mechanistic target of rapamycin in maintenance of glomerular epithelial cells. Yao Y, Inoki K. Curr Opin Nephrol Hypertens 25 28-34 (2016)
  143. Points of View on the Tools for Genome/Gene Editing. Chuang CK, Lin WM. Int J Mol Sci 22 9872 (2021)
  144. Protein-drug complexes important for immunoregulation and organ transplantation. Navia MA. Curr Opin Struct Biol 6 838-847 (1996)
  145. Drosophila as a Model Organism to Study Basic Mechanisms of Longevity. Ogienko AA, Omelina ES, Bylino OV, Batin MA, Georgiev PG, Pindyurin AV. Int J Mol Sci 23 11244 (2022)
  146. Heat-Shock Protein 90-Targeted Nano Anticancer Therapy. Rochani AK, Ravindran Girija A, Borah A, Maekawa T, Sakthi Kumar D. J Pharm Sci 105 1454-1466 (2016)
  147. Influenza antivirals and animal models. Caceres CJ, Seibert B, Cargnin Faccin F, Cardenas-Garcia S, Rajao DS, Perez DR. FEBS Open Bio 12 1142-1165 (2022)
  148. Novel benzopyran derivatives and their therapeutic applications: a patent review (2009-2016). Xiu C, Hua Z, Xiao BS, Tang WJ, Zhou HP, Liu XH. Expert Opin Ther Pat 27 1031-1045 (2017)
  149. Regulation of Hematopoietic Stem Cell Fate and Malignancy. Cho HJ, Lee J, Yoon SR, Lee HG, Jung H. Int J Mol Sci 21 E4780 (2020)
  150. mTOR inhibitors in pancreas transplant: adverse effects and drug-drug interactions. Fernandes-Silva G, Ivani de Paula M, Rangel ÉB. Expert Opin Drug Metab Toxicol 13 367-385 (2017)
  151. David and Goliath: chemical perturbation of eukaryotes by bacteria. Ho LK, Nodwell JR. J Ind Microbiol Biotechnol 43 233-248 (2016)
  152. New experimental trends for phosphoinositides research on ion transporter/channel regulation. Mori MX, Inoue R. J Pharmacol Sci 126 186-197 (2014)
  153. Targeted therapy in sarcomas: mammalian target of rapamycin inhibitors from bench to bedside. Vincenzi B, Napolitano A, D'Onofrio L, Frezza AM, Silletta M, Venditti O, Santini D, Tonini G. Expert Opin Investig Drugs 20 1685-1705 (2011)
  154. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. Goul C, Peruzzo R, Zoncu R. Nat Rev Mol Cell Biol 24 857-875 (2023)
  155. Chemical and Structural Strategies to Selectively Target mTOR Kinase. Borsari C, De Pascale M, Wymann MP. ChemMedChem 16 2744-2759 (2021)
  156. Chemical tools for dissecting cell division. Chen GY, Lampson MA. Nat Chem Biol 17 632-640 (2021)
  157. Chemogenetics of cell surface receptors: beyond genetic and pharmacological approaches. Miura Y, Senoo A, Doura T, Kiyonaka S. RSC Chem Biol 3 269-287 (2022)
  158. Molecular and therapeutic insights of rapamycin: a multi-faceted drug from Streptomyces hygroscopicus. Ganesh SK, Subathra Devi C. Mol Biol Rep 50 3815-3833 (2023)
  159. Utilization of kinase inhibitors as novel therapeutic drug targets: A review. Nishal S, Jhawat V, Gupta S, Phaugat P. Oncol Res 30 221-230 (2022)
  160. Analysis of the Selective Antagonist SAFit2 as a Chemical Probe for the FK506-Binding Protein 51. Buffa V, Knaup FH, Heymann T, Springer M, Schmidt MV, Hausch F. ACS Pharmacol Transl Sci 6 361-371 (2023)
  161. Molecular Approaches to Protein Dimerization: Opportunities for Supramolecular Chemistry. Dang DT. Front Chem 10 829312 (2022)
  162. Peptidylprolyl Isomerases as In Vivo Carriers for Drugs That Target Various Intracellular Entities. Galat A. Biomolecules 7 E72 (2017)
  163. Rational design of small-molecule responsive protein switches. Shui S, Buckley S, Scheller L, Correia BE. Protein Sci 32 e4774 (2023)
  164. Regulation of mTOR by phosphatidic acid. Frias MA, Hatipoglu A, Foster DA. Trends Endocrinol Metab 34 170-180 (2023)
  165. Substrate-selective small-molecule modulators of enzymes: Mechanisms and opportunities. Lin H. Curr Opin Chem Biol 72 102231 (2023)
  166. Localised interventions in cellular processes. Peel N, Larijani B, Parker PJ. Biochim Biophys Acta 1834 1364-1370 (2013)
  167. Molecular chameleons in drug discovery. Poongavanam V, Wieske LHE, Peintner S, Erdélyi M, Kihlberg J. Nat Rev Chem 8 45-60 (2024)
  168. Reverse-ChIP Techniques for Identifying Locus-Specific Proteomes: A Key Tool in Unlocking the Cancer Regulome. MacKenzie TMG, Cisneros R, Maynard RD, Snyder MP. Cells 12 1860 (2023)
  169. Sirolimus therapy following early cyclosporine withdrawal in transplant patients: mechanisms of action and clinical results. Thervet E. Int J Nanomedicine 1 269-281 (2006)
  170. The medicinal chemistry of mitochondrial dysfunction: a critical overview of efforts to modulate mitochondrial health. Lee MTW, Mahy W, Rackham MD. RSC Med Chem 12 1281-1311 (2021)
  171. Yeast Crf1p: An activator in need is an activator indeed. Kumar S, Mashkoor M, Grove A. Comput Struct Biotechnol J 20 107-116 (2022)

Articles citing this publication (299)

  1. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. J Biol Chem 284 8023-8032 (2009)
  2. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Genes Dev 16 1472-1487 (2002)
  3. mTOR kinase structure, mechanism and regulation. Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP. Nature 497 217-223 (2013)
  4. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Wu CY, Roybal KT, Puchner EM, Onuffer J, Lim WA. Science 350 aab4077 (2015)
  5. Long-range directional movement of an interphase chromosome site. Chuang CH, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P, Belmont AS. Curr Biol 16 825-831 (2006)
  6. A humanized system for pharmacologic control of gene expression. Rivera VM, Clackson T, Natesan S, Pollock R, Amara JF, Keenan T, Magari SR, Phillips T, Courage NL, Cerasoli F, Holt DA, Gilman M. Nat Med 2 1028-1032 (1996)
  7. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, Poulikakos PI, Scaltriti M, Moskatel E, Baselga J, Guichard S, Rosen N. Cancer Discov 1 248-259 (2011)
  8. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Kang SA, Pacold ME, Cervantes CL, Lim D, Lou HJ, Ottina K, Gray NS, Turk BE, Yaffe MB, Sabatini DM. Science 341 1236566 (2013)
  9. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Yip CK, Murata K, Walz T, Sabatini DM, Kang SA. Mol Cell 38 768-774 (2010)
  10. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C. Proc Natl Acad Sci U S A 99 6422-6427 (2002)
  11. An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Inoue T, Heo WD, Grimley JS, Wandless TJ, Meyer T. Nat Methods 2 415-418 (2005)
  12. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ. FASEB J 16 771-780 (2002)
  13. Rapamycin and mTOR kinase inhibitors. Ballou LM, Lin RZ. J Chem Biol 1 27-36 (2008)
  14. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Pelletier JN, Campbell-Valois FX, Michnick SW. Proc Natl Acad Sci U S A 95 12141-12146 (1998)
  15. Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Renault L, Guibert B, Cherfils J. Nature 426 525-530 (2003)
  16. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Oshiro N, Yoshino K, Hidayat S, Tokunaga C, Hara K, Eguchi S, Avruch J, Yonezawa K. Genes Cells 9 359-366 (2004)
  17. Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. Würtele M, Jelich-Ottmann C, Wittinghofer A, Oecking C. EMBO J 22 987-994 (2003)
  18. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Wagle N, Grabiner BC, Van Allen EM, Hodis E, Jacobus S, Supko JG, Stewart M, Choueiri TK, Gandhi L, Cleary JM, Elfiky AA, Taplin ME, Stack EC, Signoretti S, Loda M, Shapiro GI, Sabatini DM, Lander ES, Gabriel SB, Kantoff PW, Garraway LA, Rosenberg JE. Cancer Discov 4 546-553 (2014)
  19. Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Rossi F, Charlton CA, Blau HM. Proc Natl Acad Sci U S A 94 8405-8410 (1997)
  20. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Slep KC, Vale RD. Mol Cell 27 976-991 (2007)
  21. Letter The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Perry J, Kleckner N. Cell 112 151-155 (2003)
  22. Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Shamji AF, Kuruvilla FG, Schreiber SL. Curr Biol 10 1574-1581 (2000)
  23. The evolution of gene collectives: How natural selection drives chemical innovation. Fischbach MA, Walsh CT, Clardy J. Proc Natl Acad Sci U S A 105 4601-4608 (2008)
  24. Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Liu B, Han Y, Qian SB. Mol Cell 49 453-463 (2013)
  25. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. Soliman GA, Acosta-Jaquez HA, Dunlop EA, Ekim B, Maj NE, Tee AR, Fingar DC. J Biol Chem 285 7866-7879 (2010)
  26. BMPs signal alternately through a SMAD or FRAP-STAT pathway to regulate fate choice in CNS stem cells. Rajan P, Panchision DM, Newell LF, McKay RD. J Cell Biol 161 911-921 (2003)
  27. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. Xiong Y, Sheen J. J Biol Chem 287 2836-2842 (2012)
  28. Supersites within superfolds. Binding site similarity in the absence of homology. Russell RB, Russell RB, Sasieni PD, Sternberg MJ. J Mol Biol 282 903-918 (1998)
  29. Specific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel. Levin AD, Vukmirovic N, Hwang CW, Edelman ER. Proc Natl Acad Sci U S A 101 9463-9467 (2004)
  30. Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. Bayle JH, Grimley JS, Stankunas K, Gestwicki JE, Wandless TJ, Crabtree GR. Chem Biol 13 99-107 (2006)
  31. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle. Collins CR, Das S, Wong EH, Andenmatten N, Stallmach R, Hackett F, Herman JP, Müller S, Meissner M, Blackman MJ. Mol Microbiol 88 687-701 (2013)
  32. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. So CW, Lin M, Ayton PM, Chen EH, Cleary ML. Cancer Cell 4 99-110 (2003)
  33. Inducible gene expression and protein translocation using nontoxic ligands identified by a mammalian three-hybrid screen. Liberles SD, Diver ST, Austin DJ, Schreiber SL. Proc Natl Acad Sci U S A 94 7825-7830 (1997)
  34. Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Remy I, Michnick SW. Proc Natl Acad Sci U S A 96 5394-5399 (1999)
  35. Protein-protein interactions monitored in mammalian cells via complementation of beta -lactamase enzyme fragments. Wehrman T, Kleaveland B, Her JH, Balint RF, Blau HM. Proc Natl Acad Sci U S A 99 3469-3474 (2002)
  36. Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR. Liu Q, Xu C, Kirubakaran S, Zhang X, Hur W, Liu Y, Kwiatkowski NP, Wang J, Westover KD, Gao P, Ercan D, Niepel M, Thoreen CC, Kang SA, Patricelli MP, Wang Y, Tupper T, Altabef A, Kawamura H, Held KD, Chou DM, Elledge SJ, Janne PA, Wong KK, Sabatini DM, Gray NS. Cancer Res 73 2574-2586 (2013)
  37. Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling. Fonseca BD, Diering GH, Bidinosti MA, Dalal K, Alain T, Balgi AD, Forestieri R, Nodwell M, Rajadurai CV, Gunaratnam C, Tee AR, Duong F, Andersen RJ, Orlowski J, Numata M, Sonenberg N, Roberge M. J Biol Chem 287 17530-17545 (2012)
  38. Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth. Acosta-Jaquez HA, Keller JA, Foster KG, Ekim B, Soliman GA, Feener EP, Ballif BA, Fingar DC. Mol Cell Biol 29 4308-4324 (2009)
  39. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Crespo JL, Díaz-Troya S, Florencio FJ. Plant Physiol 139 1736-1749 (2005)
  40. Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR. Veverka V, Crabbe T, Bird I, Lennie G, Muskett FW, Taylor RJ, Carr MD. Oncogene 27 585-595 (2008)
  41. Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Cruz MC, Cavallo LM, Görlach JM, Cox G, Perfect JR, Cardenas ME, Heitman J. Mol Cell Biol 19 4101-4112 (1999)
  42. A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma. Fan Q, Aksoy O, Wong RA, Ilkhanizadeh S, Novotny CJ, Gustafson WC, Truong AY, Cayanan G, Simonds EF, Haas-Kogan D, Phillips JJ, Nicolaides T, Okaniwa M, Shokat KM, Weiss WA. Cancer Cell 31 424-435 (2017)
  43. RTK and TGF-beta signaling pathways genes in the sea urchin genome. Lapraz F, Röttinger E, Duboc V, Range R, Duloquin L, Walton K, Wu SY, Bradham C, Loza MA, Hibino T, Wilson K, Poustka A, McClay D, Angerer L, Gache C, Lepage T. Dev Biol 300 132-152 (2006)
  44. Conditional protein alleles using knockin mice and a chemical inducer of dimerization. Stankunas K, Bayle JH, Gestwicki JE, Lin YM, Wandless TJ, Crabtree GR. Mol Cell 12 1615-1624 (2003)
  45. One pathway, many products. Fischbach MA, Clardy J. Nat Chem Biol 3 353-355 (2007)
  46. Rapamycin-resistant mTORC1 kinase activity is required for herpesvirus replication. Moorman NJ, Shenk T. J Virol 84 5260-5269 (2010)
  47. Chemical modification of rapamycin: the discovery of SDZ RAD. Sedrani R, Cottens S, Kallen J, Schuler W. Transplant Proc 30 2192-2194 (1998)
  48. Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Cruz MC, Goldstein AL, Blankenship J, Del Poeta M, Perfect JR, McCusker JH, Bennani YL, Cardenas ME, Heitman J. Antimicrob Agents Chemother 45 3162-3170 (2001)
  49. A split horseradish peroxidase for the detection of intercellular protein-protein interactions and sensitive visualization of synapses. Martell JD, Yamagata M, Deerinck TJ, Phan S, Kwa CG, Ellisman MH, Sanes JR, Ting AY. Nat Biotechnol 34 774-780 (2016)
  50. Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility. Sormani R, Yao L, Menand B, Ennar N, Lecampion C, Meyer C, Robaglia C. BMC Plant Biol 7 26 (2007)
  51. Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus. Carlson ES, Stead JD, Neal CR, Petryk A, Georgieff MK. Hippocampus 17 679-691 (2007)
  52. Feeding stimulates protein synthesis in muscle and liver of neonatal pigs through an mTOR-dependent process. Kimball SR, Jefferson LS, Nguyen HV, Suryawan A, Bush JA, Davis TA. Am J Physiol Endocrinol Metab 279 E1080-7 (2000)
  53. A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. Lechler T, Jonsdottir GA, Klee SK, Pellman D, Li R. J Cell Biol 155 261-270 (2001)
  54. Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP. Karginov AV, Zou Y, Shirvanyants D, Kota P, Dokholyan NV, Young DD, Hahn KM, Deiters A. J Am Chem Soc 133 420-423 (2011)
  55. Structural characterization of the RyR1-FKBP12 interaction. Samsó M, Shen X, Allen PD. J Mol Biol 356 917-927 (2006)
  56. Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi. Jiang X, Peery A, Hall AB, Sharma A, Chen XG, Waterhouse RM, Komissarov A, Riehle MM, Shouche Y, Sharakhova MV, Lawson D, Pakpour N, Arensburger P, Davidson VL, Eiglmeier K, Emrich S, George P, Kennedy RC, Mane SP, Maslen G, Oringanje C, Qi Y, Settlage R, Tojo M, Tubio JM, Unger MF, Wang B, Vernick KD, Ribeiro JM, James AA, Michel K, Riehle MA, Luckhart S, Sharakhov IV, Tu Z. Genome Biol 15 459 (2014)
  57. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Peeples W, Rosen MK. Nat Chem Biol 17 693-702 (2021)
  58. Protein-protein interaction detection in vitro and in cells by proximity biotinylation. Fernández-Suárez M, Chen TS, Ting AY. J Am Chem Soc 130 9251-9253 (2008)
  59. Relieving autophagy and 4EBP1 from rapamycin resistance. Nyfeler B, Bergman P, Triantafellow E, Wilson CJ, Zhu Y, Radetich B, Finan PM, Klionsky DJ, Murphy LO. Mol Cell Biol 31 2867-2876 (2011)
  60. A novel norindenoisoquinoline structure reveals a common interfacial inhibitor paradigm for ternary trapping of the topoisomerase I-DNA covalent complex. Marchand C, Antony S, Kohn KW, Cushman M, Ioanoviciu A, Staker BL, Burgin AB, Stewart L, Pommier Y. Mol Cancer Ther 5 287-295 (2006)
  61. Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Ruan B, Pong K, Jow F, Bowlby M, Crozier RA, Liu D, Liang S, Chen Y, Mercado ML, Feng X, Bennett F, von Schack D, McDonald L, Zaleska MM, Wood A, Reinhart PH, Magolda RL, Skotnicki J, Pangalos MN, Koehn FE, Carter GT, Abou-Gharbia M, Graziani EI. Proc Natl Acad Sci U S A 105 33-38 (2008)
  62. Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. Wu L, Feng Z, Cui S, Hou K, Tang L, Zhou J, Cai G, Xie Y, Hong Q, Fu B, Chen X. PLoS One 8 e63799 (2013)
  63. Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation. Kwak C, Shin S, Park JS, Jung M, Nhung TTM, Kang MG, Lee C, Kwon TH, Park SK, Mun JY, Kim JS, Rhee HW. Proc Natl Acad Sci U S A 117 12109-12120 (2020)
  64. K-ras4B and prenylated proteins lacking "second signals" associate dynamically with cellular membranes. Silvius JR, Bhagatji P, Leventis R, Terrone D. Mol Biol Cell 17 192-202 (2006)
  65. Rapid mitogenic regulation of the mTORC1 inhibitor, DEPTOR, by phosphatidic acid. Yoon MS, Rosenberger CL, Wu C, Truong N, Sweedler JV, Chen J. Mol Cell 58 549-556 (2015)
  66. Rapamycin inhibits GM-CSF-induced neutrophil migration. Gomez-Cambronero J. FEBS Lett 550 94-100 (2003)
  67. Small-molecule-mediated rescue of protein function by an inducible proteolytic shunt. Pratt MR, Schwartz EC, Muir TW. Proc Natl Acad Sci U S A 104 11209-11214 (2007)
  68. Exposure-response relationships and drug interactions of sirolimus. Zimmerman JJ. AAPS J 6 e28 (2004)
  69. The composition of EphB2 clusters determines the strength in the cellular repulsion response. Schaupp A, Sabet O, Dudanova I, Ponserre M, Bastiaens P, Klein R. J Cell Biol 204 409-422 (2014)
  70. A semisynthetic fusicoccane stabilizes a protein-protein interaction and enhances the expression of K+ channels at the cell surface. Anders C, Higuchi Y, Koschinsky K, Bartel M, Schumacher B, Thiel P, Nitta H, Preisig-Müller R, Schlichthörl G, Renigunta V, Ohkanda J, Daut J, Kato N, Ottmann C. Chem Biol 20 583-593 (2013)
  71. Identification and structure of small-molecule stabilizers of 14-3-3 protein-protein interactions. Rose R, Erdmann S, Bovens S, Wolf A, Rose M, Hennig S, Waldmann H, Ottmann C. Angew Chem Int Ed Engl 49 4129-4132 (2010)
  72. Relevance of the mTOR signaling pathway in the pathophysiology of splenomegaly in rats with chronic portal hypertension. Mejias M, Garcia-Pras E, Gallego J, Mendez R, Bosch J, Fernandez M. J Hepatol 52 529-539 (2010)
  73. Regulation of constitutive cargo transport from the trans-Golgi network to plasma membrane by Golgi-localized G protein betagamma subunits. Irannejad R, Wedegaertner PB. J Biol Chem 285 32393-32404 (2010)
  74. Structure of TOR and its complex with KOG1. Adami A, García-Alvarez B, Arias-Palomo E, Barford D, Llorca O. Mol Cell 27 509-516 (2007)
  75. Tor forms a dimer through an N-terminal helical solenoid with a complex topology. Baretić D, Berndt A, Ohashi Y, Johnson CM, Williams RL. Nat Commun 7 11016 (2016)
  76. Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast. Alarcon CM, Heitman J, Cardenas ME. Mol Biol Cell 10 2531-2546 (1999)
  77. The impact of host diet on Wolbachia titer in Drosophila. Serbus LR, White PM, Silva JP, Rabe A, Teixeira L, Albertson R, Sullivan W. PLoS Pathog 11 e1004777 (2015)
  78. Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity. Madeira da Silva L, Beverley SM. Proc Natl Acad Sci U S A 107 11965-11970 (2010)
  79. Molecular determinants of ER-Golgi contacts identified through a new FRET-FLIM system. Venditti R, Rega LR, Masone MC, Santoro M, Polishchuk E, Sarnataro D, Paladino S, D'Auria S, Varriale A, Olkkonen VM, Di Tullio G, Polishchuk R, De Matteis MA. J Cell Biol 218 1055-1065 (2019)
  80. Expression of an activated mammalian target of rapamycin (mTOR) in gastroenteropancreatic neuroendocrine tumors. Shida T, Kishimoto T, Furuya M, Nikaido T, Koda K, Takano S, Kimura F, Shimizu H, Yoshidome H, Ohtsuka M, Tanizawa T, Nakatani Y, Miyazaki M. Cancer Chemother Pharmacol 65 889-893 (2010)
  81. Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism. Teichert S, Wottawa M, Schönig B, Tudzynski B. Eukaryot Cell 5 1807-1819 (2006)
  82. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Hou X, Rooklin D, Fang H, Zhang Y. Sci Rep 6 38186 (2016)
  83. Rapamycin exerts antifungal activity in vitro and in vivo against Mucor circinelloides via FKBP12-dependent inhibition of Tor. Bastidas RJ, Shertz CA, Lee SC, Heitman J, Cardenas ME. Eukaryot Cell 11 270-281 (2012)
  84. Integration of transcriptomics and metabolomics data specifies the metabolic response of Chlamydomonas to rapamycin treatment. Kleessen S, Irgang S, Klie S, Giavalisco P, Nikoloski Z. Plant J 81 822-835 (2015)
  85. Dual Inhibition of PI3K/Akt and mTOR by the Dietary Antioxidant, Delphinidin, Ameliorates Psoriatic Features In Vitro and in an Imiquimod-Induced Psoriasis-Like Disease in Mice. Chamcheu JC, Adhami VM, Esnault S, Sechi M, Siddiqui IA, Satyshur KA, Syed DN, Dodwad SM, Chaves-Rodriquez MI, Longley BJ, Wood GS, Mukhtar H. Antioxid Redox Signal 26 49-69 (2017)
  86. Monitoring cotranslational protein folding in mammalian cells at codon resolution. Han Y, David A, Liu B, Magadán JG, Bennink JR, Yewdell JW, Qian SB. Proc Natl Acad Sci U S A 109 12467-12472 (2012)
  87. 4.4 Å Resolution Cryo-EM structure of human mTOR Complex 1. Yang H, Wang J, Liu M, Chen X, Huang M, Tan D, Dong MQ, Wong CC, Wang J, Xu Y, Wang HW. Protein Cell 7 878-887 (2016)
  88. Computational design of a modular protein sense-response system. Glasgow AA, Huang YM, Mandell DJ, Thompson M, Ritterson R, Loshbaugh AL, Pellegrino J, Krivacic C, Pache RA, Barlow KA, Ollikainen N, Jeon D, Kelly MJS, Fraser JS, Kortemme T. Science 366 1024-1028 (2019)
  89. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes. Jhanwar-Uniyal M, Gillick JL, Neil J, Tobias M, Thwing ZE, Murali R. Adv Biol Regul 57 64-74 (2015)
  90. Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 associates with insulin receptor substrate-1 and enhances insulin actions and adipogenesis. Nakatsu Y, Sakoda H, Kushiyama A, Zhang J, Ono H, Fujishiro M, Kikuchi T, Fukushima T, Yoneda M, Ohno H, Horike N, Kanna M, Tsuchiya Y, Kamata H, Nishimura F, Isobe T, Ogihara T, Katagiri H, Oka Y, Takahashi S, Kurihara H, Uchida T, Asano T. J Biol Chem 286 20812-20822 (2011)
  91. Zotarolimus, a novel sirolimus analogue with potent anti-proliferative activity on coronary smooth muscle cells and reduced potential for systemic immunosuppression. Chen YW, Smith ML, Sheets M, Ballaron S, Trevillyan JM, Burke SE, Rosenberg T, Henry C, Wagner R, Bauch J, Marsh K, Fey TA, Hsieh G, Gauvin D, Mollison KW, Carter GW, Djuric SW. J Cardiovasc Pharmacol 49 228-235 (2007)
  92. A functional variomics tool for discovering drug-resistance genes and drug targets. Huang Z, Chen K, Zhang J, Li Y, Wang H, Cui D, Tang J, Liu Y, Shi X, Li W, Liu D, Chen R, Sucgang RS, Pan X. Cell Rep 3 577-585 (2013)
  93. Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom. Shertz CA, Bastidas RJ, Li W, Heitman J, Cardenas ME. BMC Genomics 11 510 (2010)
  94. Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Wlodek A, Kendrew SG, Coates NJ, Hold A, Pogwizd J, Rudder S, Sheehan LS, Higginbotham SJ, Stanley-Smith AE, Warneck T, Nur-E-Alam M, Radzom M, Martin CJ, Overvoorde L, Samborskyy M, Alt S, Heine D, Carter GT, Graziani EI, Koehn FE, McDonald L, Alanine A, Rodríguez Sarmiento RM, Chao SK, Ratni H, Steward L, Norville IH, Sarkar-Tyson M, Moss SJ, Leadlay PF, Wilkinson B, Gregory MA. Nat Commun 8 1206 (2017)
  95. Tuning ITAM multiplicity on T cell receptors can control potency and selectivity to ligand density. James JR. Sci Signal 11 eaan1088 (2018)
  96. Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro. Jordan NJ, Dutkowski CM, Barrow D, Mottram HJ, Hutcheson IR, Nicholson RI, Guichard SM, Gee JM. Breast Cancer Res 16 R12 (2014)
  97. Proximity and orientation underlie signaling by the non-receptor tyrosine kinase ZAP70. Graef IA, Holsinger LJ, Diver S, Schreiber SL, Crabtree GR. EMBO J 16 5618-5628 (1997)
  98. Target of Rapamycin Is a Key Player for Auxin Signaling Transduction in Arabidopsis. Deng K, Yu L, Zheng X, Zhang K, Wang W, Dong P, Zhang J, Ren M. Front Plant Sci 7 291 (2016)
  99. Cooperation of mitochondrial and ER factors in quality control of tail-anchored proteins. Dederer V, Khmelinskii A, Huhn AG, Okreglak V, Knop M, Lemberg MK. Elife 8 e45506 (2019)
  100. The enterococcal cytolysin synthetase has an unanticipated lipid kinase fold. Dong SH, Tang W, Lukk T, Yu Y, Nair SK, van der Donk WA. Elife 4 (2015)
  101. An engineered aryl azide ligase for site-specific mapping of protein-protein interactions through photo-cross-linking. Baruah H, Puthenveetil S, Choi YA, Shah S, Ting AY. Angew Chem Int Ed Engl 47 7018-7021 (2008)
  102. Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. Pemberton JG, Kim YJ, Humpolickova J, Eisenreichova A, Sengupta N, Toth DJ, Boura E, Balla T. J Cell Biol 219 (2020)
  103. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling. Syed DN, Chamcheu JC, Khan MI, Sechi M, Lall RK, Adhami VM, Mukhtar H. Biochem Pharmacol 89 349-360 (2014)
  104. The susceptibility of trypanosomatid pathogens to PI3/mTOR kinase inhibitors affords a new opportunity for drug repurposing. Diaz-Gonzalez R, Kuhlmann FM, Galan-Rodriguez C, Madeira da Silva L, Saldivia M, Karver CE, Rodriguez A, Beverley SM, Navarro M, Pollastri MP. PLoS Negl Trop Dis 5 e1297 (2011)
  105. A novel conditional Akt 'survival switch' reversibly protects cells from apoptosis. Li B, Desai SA, MacCorkle-Chosnek RA, Fan L, Spencer DM. Gene Ther 9 233-244 (2002)
  106. Concurrent inhibition of PI3K and mTORC1/mTORC2 overcomes resistance to rapamycin induced apoptosis by down-regulation of Mcl-1 in mantle cell lymphoma. Müller A, Zang C, Chumduri C, Dörken B, Daniel PT, Scholz CW. Int J Cancer 133 1813-1824 (2013)
  107. Ectopic expression of Arabidopsis Target of Rapamycin (AtTOR) improves water-use efficiency and yield potential in rice. Bakshi A, Moin M, Kumar MU, Reddy AB, Ren M, Datla R, Siddiq EA, Kirti PB. Sci Rep 7 42835 (2017)
  108. Conditional glycosylation in eukaryotic cells using a biocompatible chemical inducer of dimerization. Czlapinski JL, Schelle MW, Miller LW, Laughlin ST, Kohler JJ, Cornish VW, Bertozzi CR. J Am Chem Soc 130 13186-13187 (2008)
  109. Resveratrol dimers are novel sphingosine kinase 1 inhibitors and affect sphingosine kinase 1 expression and cancer cell growth and survival. Lim KG, Gray AI, Pyne S, Pyne NJ. Br J Pharmacol 166 1605-1616 (2012)
  110. ANG II activates effectors of mTOR via PI3-K signaling in human coronary smooth muscle cells. Hafizi S, Wang X, Chester AH, Yacoub MH, Proud CG. Am J Physiol Heart Circ Physiol 287 H1232-8 (2004)
  111. Rapamycin antagonizes NF-kappaB nuclear translocation activated by TNF-alpha in primary vascular smooth muscle cells and enhances apoptosis. Giordano A, Avellino R, Ferraro P, Romano S, Corcione N, Romano MF. Am J Physiol Heart Circ Physiol 290 H2459-65 (2006)
  112. SENP1 and SENP2 affect spatial and temporal control of sumoylation in mitosis. Cubeñas-Potts C, Goeres JD, Matunis MJ. Mol Biol Cell 24 3483-3495 (2013)
  113. Screening of small molecule interactor library by using in-cell NMR spectroscopy (SMILI-NMR). Xie J, Thapa R, Reverdatto S, Burz DS, Shekhtman A. J Med Chem 52 3516-3522 (2009)
  114. Target of rapamycin (TOR)-like 1 kinase is involved in the control of polyphosphate levels and acidocalcisome maintenance in Trypanosoma brucei. de Jesus TC, Tonelli RR, Nardelli SC, da Silva Augusto L, Motta MC, Girard-Dias W, Miranda K, Ulrich P, Jimenez V, Barquilla A, Navarro M, Docampo R, Schenkman S. J Biol Chem 285 24131-24140 (2010)
  115. Affinity modulation of small-molecule ligands by borrowing endogenous protein surfaces. Briesewitz R, Ray GT, Wandless TJ, Crabtree GR. Proc Natl Acad Sci U S A 96 1953-1958 (1999)
  116. ER trapping reveals Golgi enzymes continually revisit the ER through a recycling pathway that controls Golgi organization. Sengupta P, Satpute-Krishnan P, Seo AY, Burnette DT, Patterson GH, Lippincott-Schwartz J. Proc Natl Acad Sci U S A 112 E6752-61 (2015)
  117. Chemically induced and light-independent cryptochrome photoreceptor activation. Rosenfeldt G, Viana RM, Mootz HD, von Arnim AG, Batschauer A. Mol Plant 1 4-14 (2008)
  118. Disruption of an hTERT-mTOR-RAPTOR protein complex by a phytochemical perillyl alcohol and rapamycin. Sundin T, Peffley DM, Hentosh P. Mol Cell Biochem 375 97-104 (2013)
  119. Sensitive and adaptable pharmacological control of CAR T cells through extracellular receptor dimerization. Leung WH, Gay J, Martin U, Garrett TE, Horton HM, Certo MT, Blazar BR, Morgan RA, Gregory PD, Jarjour J, Astrakhan A. JCI Insight 5 124430 (2019)
  120. X-ray structures of small ligand-FKBP complexes provide an estimate for hydrophobic interaction energies. Burkhard P, Taylor P, Walkinshaw MD. J Mol Biol 295 953-962 (2000)
  121. Rapamycin retards epigenetic ageing of keratinocytes independently of its effects on replicative senescence, proliferation and differentiation. Horvath S, Lu AT, Cohen H, Raj K. Aging (Albany NY) 11 3238-3249 (2019)
  122. Vac8 spatially confines autophagosome formation at the vacuole in S. cerevisiae. Hollenstein DM, Gómez-Sánchez R, Ciftci A, Kriegenburg F, Mari M, Torggler R, Licheva M, Reggiori F, Kraft C. J Cell Sci 132 jcs235002 (2019)
  123. Chemical Inhibitors and microRNAs (miRNA) Targeting the Mammalian Target of Rapamycin (mTOR) Pathway: Potential for Novel Anticancer Therapeutics. Alqurashi N, Hashimi SM, Wei MQ. Int J Mol Sci 14 3874-3900 (2013)
  124. Mammalian target of rapamycin is required for thrombopoietin-induced proliferation of megakaryocyte progenitors. Drayer AL, Olthof SG, Vellenga E. Stem Cells 24 105-114 (2006)
  125. Modulating protein-protein interactions with small molecules: the importance of binding hotspots. Thangudu RR, Bryant SH, Panchenko AR, Madej T. J Mol Biol 415 443-453 (2012)
  126. Production of novel rapamycin analogs by precursor-directed biosynthesis. Ritacco FV, Graziani EI, Summers MY, Zabriskie TM, Yu K, Bernan VS, Carter GT, Greenstein M. Appl Environ Microbiol 71 1971-1976 (2005)
  127. Insights into the domain and repeat architecture of target of rapamycin. Knutson BA. J Struct Biol 170 354-363 (2010)
  128. Regulating cell surface glycosylation by small molecule control of enzyme localization. Kohler JJ, Bertozzi CR. Chem Biol 10 1303-1311 (2003)
  129. The TOR Pathway Is Involved in Adventitious Root Formation in Arabidopsis and Potato. Deng K, Dong P, Wang W, Feng L, Xiong F, Wang K, Zhang S, Feng S, Wang B, Zhang J, Ren M. Front Plant Sci 8 784 (2017)
  130. Bone morphogenetic protein-mediated modulation of lineage diversification during neural differentiation of embryonic stem cells. Gossrau G, Thiele J, Konang R, Schmandt T, Brüstle O. Stem Cells 25 939-949 (2007)
  131. Distinctive expression and functional regulation of the maize (Zea mays L.) TOR kinase ortholog. Agredano-Moreno LT, Reyes de la Cruz H, Martínez-Castilla LP, Sánchez de Jiménez E. Mol Biosyst 3 794-802 (2007)
  132. Genomic discovery of an evolutionarily programmed modality for small-molecule targeting of an intractable protein surface. Shigdel UK, Lee SJ, Sowa ME, Bowman BR, Robison K, Zhou M, Pua KH, Stiles DT, Blodgett JAV, Udwary DW, Rajczewski AT, Mann AS, Mostafavi S, Hardy T, Arya S, Weng Z, Stewart M, Kenyon K, Morgenstern JP, Pan E, Gray DC, Pollock RM, Fry AM, Klausner RD, Townson SA, Verdine GL. Proc Natl Acad Sci U S A 117 17195-17203 (2020)
  133. Strategies to search and design stabilizers of protein-protein interactions: a feasibility study. Block P, Weskamp N, Wolf A, Klebe G. Proteins 68 170-186 (2007)
  134. The mTOR signaling pathway regulates pain-related synaptic plasticity in rat entorhinal-hippocampal pathways. Lyu D, Yu W, Tang N, Wang R, Zhao Z, Xie F, He Y, Du H, Chen J. Mol Pain 9 64 (2013)
  135. Trypanosoma cruzi macrophage infectivity potentiator has a rotamase core and a highly exposed alpha-helix. Pereira PJ, Vega MC, González-Rey E, Fernández-Carazo R, Macedo-Ribeiro S, Gomis-Rüth FX, González A, Coll M. EMBO Rep 3 88-94 (2002)
  136. ARL8 Relieves SKIP Autoinhibition to Enable Coupling of Lysosomes to Kinesin-1. Keren-Kaplan T, Bonifacino JS. Curr Biol 31 540-554.e5 (2021)
  137. Computational analysis of an autophagy/translation switch based on mutual inhibition of MTORC1 and ULK1. Szymańska P, Martin KR, MacKeigan JP, Hlavacek WS, Lipniacki T. PLoS One 10 e0116550 (2015)
  138. Distinct repression of translation by wortmannin and rapamycin. Pedersen S, Celis JE, Nielsen J, Christiansen J, Nielsen FC. Eur J Biochem 247 449-456 (1997)
  139. Molecular imaging with activatable reporter systems. Niu G, Chen X. Theranostics 2 413-423 (2012)
  140. Optimizing the fragment complementation of APEX2 for detection of specific protein-protein interactions in live cells. Xue M, Hou J, Wang L, Cheng D, Lu J, Zheng L, Xu T. Sci Rep 7 12039 (2017)
  141. Rescue of degradation-prone mutants of the FK506-rapamycin binding (FRB) protein with chemical ligands. Stankunas K, Bayle JH, Havranek JJ, Wandless TJ, Baker D, Crabtree GR, Gestwicki JE. Chembiochem 8 1162-1169 (2007)
  142. Differential responses of the backbone and side-chain conformational dynamics in FKBP12 upon binding the transition-state analog FK506: implications for transition-state stabilization and target protein recognition. Brath U, Akke M. J Mol Biol 387 233-244 (2009)
  143. An EB1-kinesin complex is sufficient to steer microtubule growth in vitro. Chen Y, Rolls MM, Hancock WO. Curr Biol 24 316-321 (2014)
  144. Characterization of the Rheb-mTOR signaling pathway in mammalian cells: constitutive active mutants of Rheb and mTOR. Sato T, Umetsu A, Tamanoi F. Methods Enzymol 438 307-320 (2008)
  145. Characterization of the cloned full-length and a truncated human target of rapamycin: activity, specificity, and enzyme inhibition as studied by a high capacity assay. Toral-Barza L, Zhang WG, Lamison C, Larocque J, Gibbons J, Yu K. Biochem Biophys Res Commun 332 304-310 (2005)
  146. Identifying modulators of protein-protein interactions using photonic crystal biosensors. Heeres JT, Kim SH, Leslie BJ, Lidstone EA, Cunningham BT, Hergenrother PJ. J Am Chem Soc 131 18202-18203 (2009)
  147. Multi-timescale dynamics study of FKBP12 along the rapamycin-mTOR binding coordinate. Sapienza PJ, Mauldin RV, Lee AL. J Mol Biol 405 378-394 (2011)
  148. Mutually exclusive STAT1 modifications identified by Ubc9/substrate dimerization-dependent SUMOylation. Zimnik S, Gaestel M, Niedenthal R. Nucleic Acids Res 37 e30 (2009)
  149. Selective inhibitors of mTORC1 activate 4EBP1 and suppress tumor growth. Lee BJ, Boyer JA, Burnett GL, Thottumkara AP, Tibrewal N, Wilson SL, Hsieh T, Marquez A, Lorenzana EG, Evans JW, Hulea L, Kiss G, Liu H, Lee D, Larsson O, McLaughlan S, Topisirovic I, Wang Z, Wang Z, Zhao Y, Wildes D, Aggen JB, Singh M, Gill AL, Smith JAM, Rosen N. Nat Chem Biol 17 1065-1074 (2021)
  150. Autophagy modulates articular cartilage vesicle formation in primary articular chondrocytes. Rosenthal AK, Gohr CM, Mitton-Fitzgerald E, Grewal R, Ninomiya J, Coyne CB, Jackson WT. J Biol Chem 290 13028-13038 (2015)
  151. Distinct changes in endosomal composition promote NLRP3 inflammasome activation. Zhang Z, Venditti R, Ran L, Liu Z, Vivot K, Schürmann A, Bonifacino JS, De Matteis MA, Ricci R. Nat Immunol 24 30-41 (2023)
  152. M-Track: detecting short-lived protein-protein interactions in vivo. Zuzuarregui A, Kupka T, Bhatt B, Dohnal I, Mudrak I, Friedmann C, Schüchner S, Frohner IE, Ammerer G, Ogris E. Nat Methods 9 594-596 (2012)
  153. Proximity-Directed Labeling Reveals a New Rapamycin-Induced Heterodimer of FKBP25 and FRB in Live Cells. Lee SY, Lee H, Lee HK, Lee SW, Ha SC, Kwon T, Seo JK, Lee C, Rhee HW. ACS Cent Sci 2 506-516 (2016)
  154. An intein-cassette integration approach used for the generation of a split TEV protease activated by conditional protein splicing. Sonntag T, Mootz HD. Mol Biosyst 7 2031-2039 (2011)
  155. Identification of functional FKB protein in Echinococcus granulosus: its involvement in the protoscolicidal action of rapamycin derivates and in calcium homeostasis. Cumino AC, Lamenza P, Denegri GM. Int J Parasitol 40 651-661 (2010)
  156. Modulation of translation-initiation in CHO-K1 cells by rapamycin-induced heterodimerization of engineered eIF4G fusion proteins. Schlatter S, Senn C, Fussenegger M. Biotechnol Bioeng 83 210-225 (2003)
  157. Contribution of natural inhibitors to the understanding of the PI3K/PDK1/PKB pathway in the insulin-mediated intracellular signaling cascade. Cho JY, Park J. Int J Mol Sci 9 2217-2230 (2008)
  158. Design and structure-based study of new potential FKBP12 inhibitors. Sun F, Li P, Ding Y, Wang L, Bartlam M, Shu C, Shen B, Jiang H, Li S, Rao Z. Biophys J 85 3194-3201 (2003)
  159. Minimal model for collective kinetochore-microtubule dynamics. Banigan EJ, Chiou KK, Ballister ER, Mayo AM, Lampson MA, Liu AJ. Proc Natl Acad Sci U S A 112 12699-12704 (2015)
  160. Minimization of a protein-DNA dimerizer. Stafford RL, Arndt HD, Brezinski ML, Ansari AZ, Dervan PB. J Am Chem Soc 129 2660-2668 (2007)
  161. Tomato FK506 Binding Protein 12KD (FKBP12) Mediates the Interaction between Rapamycin and Target of Rapamycin (TOR). Xiong F, Dong P, Liu M, Xie G, Wang K, Zhuo F, Feng L, Yang L, Li Z, Ren M. Front Plant Sci 7 1746 (2016)
  162. A FlAsH-based cross-linker to study protein interactions in living cells. Rutkowska A, Haering CH, Schultz C. Angew Chem Int Ed Engl 50 12655-12658 (2011)
  163. Engineering synthetic adaptors and substrates for controlled ClpXP degradation. Davis JH, Baker TA, Sauer RT. J Biol Chem 284 21848-21855 (2009)
  164. Local and systemic drug competition in drug-eluting stent tissue deposition properties. Levin AD, Jonas M, Hwang CW, Edelman ER. J Control Release 109 236-243 (2005)
  165. Simplified cyclic analogues of bastadin-5. Structure-activity relationships for modulation of the RyR1/FKBP12 Ca2+ channel complex. Masuno MN, Pessah IN, Olmstead MM, Molinski TF. J Med Chem 49 4497-4511 (2006)
  166. Creating diverse target-binding surfaces on FKBP12: synthesis and evaluation of a rapamycin analogue library. Wu X, Wang L, Han Y, Regan N, Li PK, Villalona MA, Hu X, Briesewitz R, Pei D. ACS Comb Sci 13 486-495 (2011)
  167. Expression of budding yeast FKBP12 confers rapamycin susceptibility to the unicellular red alga Cyanidioschyzon merolae. Imamura S, Ishiwata A, Watanabe S, Yoshikawa H, Tanaka K. Biochem Biophys Res Commun 439 264-269 (2013)
  168. An Anti-Cancer Drug Candidate OSI-027 and its Analog as Inhibitors of mTOR: Computational Insights Into the Inhibitory Mechanisms. Rehan M. J Cell Biochem 118 4558-4567 (2017)
  169. Development and application of in vivo molecular traps reveals that dynein light chain occupancy differentially affects dynein-mediated processes. Varma D, Dawn A, Ghosh-Roy A, Weil SJ, Ori-McKenney KM, Zhao Y, Keen J, Vallee RB, Williams JC. Proc Natl Acad Sci U S A 107 3493-3498 (2010)
  170. Enhanced multiple stress tolerance in Arabidopsis by overexpression of the polar moss peptidyl prolyl isomerase FKBP12 gene. Alavilli H, Lee H, Park M, Yun DJ, Lee BH. Plant Cell Rep 37 453-465 (2018)
  171. HID-1 is a peripheral membrane protein primarily associated with the medial- and trans- Golgi apparatus. Wang L, Zhan Y, Song E, Yu Y, Jiu Y, Du W, Lu J, Liu P, Xu P, Xu T. Protein Cell 2 74-85 (2011)
  172. Light-cleavable rapamycin dimer as an optical trigger for protein dimerization. Brown KA, Zou Y, Shirvanyants D, Zhang J, Samanta S, Mantravadi PK, Dokholyan NV, Deiters A. Chem Commun (Camb) 51 5702-5705 (2015)
  173. Phosphatidylinositol 4,5-bisphosphate is regenerated by speeding of the PI 4-kinase pathway during long PLC activation. Myeong J, de la Cruz L, Jung SR, Yeon JH, Suh BC, Koh DS, Hille B. J Gen Physiol 152 e202012627 (2020)
  174. Split Intein-Mediated Protein Ligation for detecting protein-protein interactions and their inhibition. Yao Z, Aboualizadeh F, Kroll J, Akula I, Snider J, Lyakisheva A, Tang P, Kotlyar M, Jurisica I, Boxem M, Stagljar I. Nat Commun 11 2440 (2020)
  175. Virtual screening of naphthoquinone analogs for potent inhibitors against the cancer-signaling PI3K/AKT/mTOR pathway. Rehan M, Bajouh OS. J Cell Biochem 120 1328-1339 (2019)
  176. Direct monitoring of the inhibition of protein-protein interactions in cells by translocation of PKCδ fusion proteins. Lee KB, Hwang JM, Choi IS, Rho J, Choi JS, Kim GH, Kim SI, Kim S, Lee ZW. Angew Chem Int Ed Engl 50 1314-1317 (2011)
  177. Evolution of Cereblon-Mediated Protein Degradation as a Therapeutic Modality. Chamberlain PP, D'Agostino LA, Ellis JM, Hansen JD, Matyskiela ME, McDonald JJ, Riggs JR, Hamann LG. ACS Med Chem Lett 10 1592-1602 (2019)
  178. Identification and pharmacological induction of autophagy in the larval stages of Echinococcus granulosus: an active catabolic process in calcareous corpuscles. Loos JA, Caparros PA, Nicolao MC, Denegri GM, Cumino AC. Int J Parasitol 44 415-427 (2014)
  179. Identification of mammalian target of rapamycin as a direct target of fenretinide both in vitro and in vivo. Xie H, Zhu F, Huang Z, Lee MH, Kim DJ, Li X, Lim DY, Jung SK, Kang S, Li H, Reddy K, Wang L, Ma W, Lubet RA, Bode AM, Dong Z. Carcinogenesis 33 1814-1821 (2012)
  180. Structure and function of outer dynein arm intermediate and light chain complex. Oda T, Abe T, Yanagisawa H, Kikkawa M. Mol Biol Cell 27 1051-1059 (2016)
  181. An Inducible System for Rapid Degradation of Specific Cellular Proteins Using Proteasome Adaptors. Wilmington SR, Matouschek A. PLoS One 11 e0152679 (2016)
  182. Anticancer compound XL765 as PI3K/mTOR dual inhibitor: A structural insight into the inhibitory mechanism using computational approaches. Rehan M. PLoS One 14 e0219180 (2019)
  183. Development of a Split Esterase for Protein-Protein Interaction-Dependent Small-Molecule Activation. Jones KA, Kentala K, Beck MW, An W, Lippert AR, Lewis JC, Dickinson BC. ACS Cent Sci 5 1768-1776 (2019)
  184. Manipulation of the C(22)-C(27) region of rapamycin: stability issues and biological implications. Nelson FC, Stachel SJ, Eng CP, Sehgal SN. Bioorg Med Chem Lett 9 295-300 (1999)
  185. Mechanistic and Structural Features of PROTAC Ternary Complexes. Casement R, Bond A, Craigon C, Ciulli A. Methods Mol Biol 2365 79-113 (2021)
  186. Rapamycin reduces fibroblast proliferation without causing quiescence and induces STAT5A/B-mediated cytokine production. Gillespie ZE, MacKay K, Sander M, Trost B, Dawicki W, Wickramarathna A, Gordon J, Eramian M, Kill IR, Bridger JM, Kusalik A, Mitchell JA, Eskiw CH. Nucleus 6 490-506 (2015)
  187. SUMO modification through rapamycin-mediated heterodimerization reveals a dual role for Ubc9 in targeting RanGAP1 to nuclear pore complexes. Zhu S, Zhang H, Matunis MJ. Exp Cell Res 312 1042-1049 (2006)
  188. Total synthesis of rapamycin. Ley SV, Tackett MN, Maddess ML, Anderson JC, Brennan PE, Cappi MW, Heer JP, Helgen C, Kori M, Kouklovsky C, Marsden SP, Norman J, Osborn DP, Palomero MA, Pavey JB, Pinel C, Robinson LA, Schnaubelt J, Scott JS, Spilling CD, Watanabe H, Wesson KE, Willis MC. Chemistry 15 2874-2914 (2009)
  189. A MultiSite Gateway Toolkit for Rapid Cloning of Vertebrate Expression Constructs with Diverse Research Applications. Fowler DK, Stewart S, Seredick S, Eisen JS, Stankunas K, Washbourne P. PLoS One 11 e0159277 (2016)
  190. A collection of caged compounds for probing roles of local translation in neurobiology. Sadovski O, Jaikaran AS, Samanta S, Fabian MR, Dowling RJ, Sonenberg N, Woolley GA. Bioorg Med Chem 18 7746-7752 (2010)
  191. Everolimus: the first approved product for patients with advanced renal cell cancer after sunitinib and/or sorafenib. Coppin C. Biologics 4 91-101 (2010)
  192. Forced engagement of a RNA/protein complex by a chemical inducer of dimerization to modulate gene expression. Harvey I, Garneau P, Pelletier J. Proc Natl Acad Sci U S A 99 1882-1887 (2002)
  193. Functional consequences of chemically-induced β-arrestin binding to chemokine receptors CXCR4 and CCR5 in the absence of ligand stimulation. Liebick M, Henze S, Vogt V, Oppermann M. Cell Signal 38 201-211 (2017)
  194. Mammalian target of rapamycin activity is required for expansion of CD34+ hematopoietic progenitor cells. Geest CR, Zwartkruis FJ, Vellenga E, Coffer PJ, Buitenhuis M. Haematologica 94 901-910 (2009)
  195. T-CrAsH: a heterologous chemical crosslinker. Rutkowska A, Plass T, Hoffmann JE, Yushchenko DA, Feng S, Schultz C. Chembiochem 15 1765-1768 (2014)
  196. Mean field analysis of FKBP12 complexes with FK506 and rapamycin: implications for a role of crystallographic water molecules in molecular recognition and specificity. Rejto PA, Verkhivker GM. Proteins 28 313-324 (1997)
  197. Mitochondrial-encoded MOTS-c prevents pancreatic islet destruction in autoimmune diabetes. Kong BS, Min SH, Lee C, Cho YM. Cell Rep 36 109447 (2021)
  198. The molecular and functional interaction between ICln and HSPC038 proteins modulates the regulation of cell volume. Dossena S, Gandini R, Tamma G, Vezzoli V, Nofziger C, Tamplenizza M, Salvioni E, Bernardinelli E, Meyer G, Valenti G, Wolf-Watz M, Fürst J, Paulmichl M. J Biol Chem 286 40659-40670 (2011)
  199. Crystal structure of the three FK506 binding protein domains of wheat FKBP73: evidence for a unique wFK73_2 domain. Unger T, Dym O, Albeck S, Jacobovitch Y, Bernehim R, Marom D, Pisanty O, Breiman A. J Struct Funct Genomics 11 113-123 (2010)
  200. Hypomorph mutation-directed small-molecule protein-protein interaction inducers to restore mutant SMAD4-suppressed TGF-β signaling. Tang C, Mo X, Niu Q, Wahafu A, Yang X, Qui M, Ivanov AA, Du Y, Fu H. Cell Chem Biol 28 636-647.e5 (2021)
  201. Mandipropamid as a chemical inducer of proximity for in vivo applications. Ziegler MJ, Yserentant K, Dunsing V, Middel V, Gralak AJ, Pakari K, Bargstedt J, Kern C, Petrich A, Chiantia S, Strähle U, Herten DP, Wombacher R. Nat Chem Biol 18 64-69 (2022)
  202. Podospora anserina target of rapamycin. Pinan-Lucarré B, Iraqui I, Clavé C. Curr Genet 50 23-31 (2006)
  203. Role of mammalian target of rapamycin signaling in autophagy and the neurodegenerative process using a senescence accelerated mouse-prone 8 model. Wang Y, Ma Q, Ma X, Zhang Z, Liu N, Wang M. Exp Ther Med 14 1051-1057 (2017)
  204. The Resurrection of Phenotypic Drug Discovery. Childers WE, Elokely KM, Abou-Gharbia M. ACS Med Chem Lett 11 1820-1828 (2020)
  205. A screen to identify small molecule inhibitors of protein-protein interactions in mycobacteria. Mai D, Jones J, Rodgers JW, Hartman JL, Kutsch O, Steyn AJ. Assay Drug Dev Technol 9 299-310 (2011)
  206. A technique for delineating the unfolding requirements for substrate entry into retrotranslocons during endoplasmic reticulum-associated degradation. Shi J, Hu X, Guo Y, Wang L, Ji J, Li J, Zhang ZR. J Biol Chem 294 20084-20096 (2019)
  207. Analysis of mTOR inhibition-involved pathway in ovarian clear cell adenocarcinoma. Harasawa M, Yasuda M, Hirasawa T, Miyazawa M, Shida M, Muramatsu T, Douguchi K, Matsui N, Takekoshi S, Kajiwara H, Yoshiyuki Osamura R, Mikami M. Acta Histochem Cytochem 44 113-118 (2011)
  208. Characterization of pomiferin triacetate as a novel mTOR and translation inhibitor. Bajer MM, Kunze MM, Blees JS, Bokesch HR, Chen H, Brauss TF, Dong Z, Gustafson KR, Biondi RM, Henrich CJ, McMahon JB, Colburn NH, Schmid T, Brüne B. Biochem Pharmacol 88 313-321 (2014)
  209. Exploiting protein destruction for constructive use. Stankunas K, Crabtree GR. Proc Natl Acad Sci U S A 104 11511-11512 (2007)
  210. Feedback loops blockade potentiates apoptosis induction and antitumor activity of a novel AKT inhibitor DC120 in human liver cancer. Yang F, Deng R, Qian XJ, Chang SH, Wu XQ, Qin J, Feng GK, Ding K, Zhu XF. Cell Death Dis 5 e1114 (2014)
  211. In Vitro and in Vivo Activity of mTOR Kinase and PI3K Inhibitors Against Leishmania donovani and Trypanosoma brucei. Phan TN, Baek KH, Lee N, Byun SY, Shum D, No JH. Molecules 25 E1980 (2020)
  212. Mammalian FKBP-25 and its associated proteins. Leclercq M, Vinci F, Galat A. Arch Biochem Biophys 380 20-28 (2000)
  213. Precise control of protein concentration in living cells. Lau HD, Yaegashi J, Zaro BW, Pratt MR. Angew Chem Int Ed Engl 49 8458-8461 (2010)
  214. Rapamycin insensitivity in Schistosoma mansoni is not due to FKBP12 functionality. Rossi A, Pica-Mattoccia L, Cioli D, Klinkert MQ. Mol Biochem Parasitol 125 1-9 (2002)
  215. Regulation of human mTOR complexes by DEPTOR. Wälchli M, Berneiser K, Mangia F, Imseng S, Craigie LM, Stuttfeld E, Hall MN, Maier T. Elife 10 e70871 (2021)
  216. The excretory/secretory products of fifth-stage larval Angiostrongylus cantonensis induces autophagy via the Sonic hedgehog pathway in mouse brain astrocytes. Chen KY, Cheng CJ, Cheng CC, Jhan KY, Chen YJ, Wang LC. PLoS Negl Trop Dis 14 e0008290 (2020)
  217. mTOR and mTOR phosphorylation status in primary and metastatic renal cell carcinoma tissue: differential expression and clinical relevance. Rausch S, Schollenberger D, Hennenlotter J, Stühler V, Kruck S, Stenzl A, Bedke J. J Cancer Res Clin Oncol 145 153-163 (2019)
  218. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria. Cui B, Wang Y, Song Y, Wang T, Li C, Wei Y, Luo ZQ, Shen X. mBio 5 e01050-14 (2014)
  219. Fabrication of Nanoreaction Clusters with Dual-Functionalized Protein Cage Nanobuilding Blocks. Choi H, Choi B, Kim GJ, Kim HU, Kim H, Jung HS, Kang S. Small 14 e1801488 (2018)
  220. Generation and evaluation of putative neuroregenerative drugs. Part 1: virtual point mutations to the polyketide rapamycin. Adalsteinsson H, Bruice TC. Bioorg Med Chem 8 617-624 (2000)
  221. Impact on Autophagy and Ultraviolet B Induced Responses of Treatment with the MTOR Inhibitors Rapamycin, Everolimus, Torin 1, and pp242 in Human Keratinocytes. Xu S, Li L, Li M, Zhang M, Ju M, Chen X, Gu H. Oxid Med Cell Longev 2017 5930639 (2017)
  222. In vitro Cas9-assisted editing of modular polyketide synthase genes to produce desired natural product derivatives. Kudo K, Hashimoto T, Hashimoto J, Kozone I, Kagaya N, Ueoka R, Nishimura T, Komatsu M, Suenaga H, Ikeda H, Shin-Ya K. Nat Commun 11 4022 (2020)
  223. Selective ligand purification using high-performance affinity beads. Ohtsu Y, Ohba R, Imamura Y, Kobayashi M, Hatori H, Zenkoh T, Hatakeyama M, Manabe T, Hino M, Yamaguchi Y, Kataoka K, Kawaguchi H, Watanabe H, Handa H. Anal Biochem 338 245-252 (2005)
  224. A chemical switch for controlling viral infectivity. Hörner M, Kaufmann B, Cotugno G, Wiedtke E, Büning H, Grimm D, Weber W. Chem Commun (Camb) 50 10319-10322 (2014)
  225. Discovery of the novel mTOR inhibitor and its antitumor activities in vitro and in vivo. Xie H, Lee MH, Zhu F, Reddy K, Huang Z, Kim DJ, Li Y, Peng C, Lim DY, Kang S, Jung SK, Li X, Li H, Ma W, Lubet RA, Ding J, Bode AM, Dong Z. Mol Cancer Ther 12 950-958 (2013)
  226. Human DNA-dependent protein kinase activation mechanism. Liang S, Blundell TL. Nat Struct Mol Biol 30 140-147 (2023)
  227. Molecular Approaches to Safe and Controlled Engineered T-cell Therapy. Kalinin RS, Petukhov AV, Knorre VD, Maschan MA, Stepanov AV, Gabibov AG. Acta Naturae 10 16-23 (2018)
  228. Raptor downregulation rescues neuronal phenotypes in mouse models of Tuberous Sclerosis Complex. Karalis V, Caval-Holme F, Bateup HS. Nat Commun 13 4665 (2022)
  229. The evaluation of potential pharmacokinetic interaction between sirolimus and tacrolimus in healthy volunteers. Tortorici MA, Parks V, Matschke K, Korth-Bradley J, Patat A. Eur J Clin Pharmacol 69 835-842 (2013)
  230. A new model system identifies epidermal growth factor receptor-human epidermal growth factor receptor 2 (HER2) and HER2-human epidermal growth factor receptor 3 heterodimers as potent inducers of oesophageal epithelial cell invasion. Fichter CD, Przypadlo CM, Buck A, Herbener N, Riedel B, Schäfer L, Nakagawa H, Walch A, Reinheckel T, Werner M, Lassmann S. J Pathol 243 481-495 (2017)
  231. An evaluation tool for FKBP12-dependent and -independent mTOR inhibitors using a combination of FKBP-mTOR fusion protein, DSC and NMR. Sekiguchi M, Kobashigawa Y, Kawasaki M, Yokochi M, Kiso T, Suzumura K, Mori K, Teramura T, Inagaki F. Protein Eng Des Sel 24 811-817 (2011)
  232. Cellular antiseizure mechanisms of everolimus in pediatric tuberous sclerosis complex, cortical dysplasia, and non-mTOR-mediated etiologies. Cepeda C, Levinson S, Yazon VW, Barry J, Mathern GW, Fallah A, Vinters HV, Levine MS, Wu JY. Epilepsia Open 3 180-190 (2018)
  233. Characterization of residue-dependent differences in the peripheral membrane association of the FATC domain of the kinase 'target of rapamycin' by NMR and CD spectroscopy. Sommer LA, Dames SA. FEBS Lett 588 1755-1766 (2014)
  234. Comparing pharmacophore models derived from crystal structures and from molecular dynamics simulations. Wieder M, Perricone U, Seidel T, Boresch S, Langer T. Monatsh Chem 147 553-563 (2016)
  235. Conserved sequence motifs and the structure of the mTOR kinase domain. Sauer E, Imseng S, Maier T, Hall MN. Biochem Soc Trans 41 889-895 (2013)
  236. Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy. Parada CA, de Oliveira IP, Gewehr MCF, Machado-Neto JA, Lima K, Eichler RAS, Lopes LR, Bechara LRG, Ferreira JCB, Festuccia WT, Censoni L, Tersariol ILS, Ferro ES. Cells 11 385 (2022)
  237. Inferring protein function from genomic sequence: Giardia lamblia expresses a phosphatidylinositol kinase-related kinase similar to yeast and mammalian TOR. Morrison HG, Zamora G, Campbell RK, Sogin ML. Comp Biochem Physiol B Biochem Mol Biol 133 477-491 (2002)
  238. Ligand-regulated peptide aptamers that inhibit the 5'-AMP-activated protein kinase. Miller RA, Binkowski BF, Belshaw PJ. J Mol Biol 365 945-957 (2007)
  239. Molecular tools for cell and systems biology. Schultz C. HFSP J 1 230-248 (2007)
  240. New potential inhibitors of mTOR: a computational investigation integrating molecular docking, virtual screening and molecular dynamics simulation. Kist R, Caceres RA. J Biomol Struct Dyn 35 3555-3568 (2017)
  241. Phosphoramide mustard induces autophagy markers and mTOR inhibition prevents follicle loss due to phosphoramide mustard exposure. Madden JA, Thomas PQ, Keating AF. Reprod Toxicol 67 65-78 (2017)
  242. Rags connect mTOR and autophagy. Narita M, Inoki K. Small GTPases 3 111-114 (2012)
  243. Shedding Light on the Dynamic Role of the "Target of Rapamycin" Kinase in the Fast-Growing C4 Species Setaria viridis, a Suitable Model for Biomass Crops. da Silva VCH, Martins MCM, Calderan-Rodrigues MJ, Artins A, Monte Bello CC, Gupta S, Sobreira TJP, Riaño-Pachón DM, Mafra V, Caldana C. Front Plant Sci 12 637508 (2021)
  244. The effects of TORC signal interference on lipogenesis in the oleaginous yeast Trichosporon oleaginosus. Bracharz F, Redai V, Bach K, Qoura F, Brück T. BMC Biotechnol 17 27 (2017)
  245. Activation of the unfolded protein response in sarcoma cells treated with rapamycin or temsirolimus. Briggs JW, Ren L, Chakrabarti KR, Tsai YC, Weissman AM, Hansen RJ, Gustafson DL, Khan YA, Dinman JD, Khanna C. PLoS One 12 e0185089 (2017)
  246. Biomolecular engineering of intracellular switches in eukaryotes. Pastuszka MK, Mackay JA. J Drug Deliv Sci Technol 20 163-169 (2010)
  247. Functional characterization of the PI3K/AKT/MTOR signaling pathway for targeted therapy in B-precursor acute lymphoblastic leukemia. Grüninger PK, Uhl F, Herzog H, Gentile G, Andrade-Martinez M, Schmidt T, Han K, Morgens DW, Bassik MC, Cleary ML, Gorka O, Zeiser R, Groß O, Duque-Afonso J. Cancer Gene Ther 29 1751-1760 (2022)
  248. Identification of STAU1 as a regulator of HBV replication by TurboID-based proximity labeling. Wei XF, Fan SY, Wang YW, Li S, Long SY, Gan CY, Li J, Sun YX, Guo L, Wang PY, Yang X, Wang JL, Cui J, Zhang WL, Huang AL, Hu JL. iScience 25 104416 (2022)
  249. Mechanistic target of rapamycin in common carp: cDNA cloning, characterization, and tissue expression. Jiang J, Feng L, Liu Y, Jiang WD, Hu K, Li SH, Zhou XQ. Gene 512 566-572 (2013)
  250. Pentapeptide Protects INS-1 Cells From hIAPP-Mediated Apoptosis by Enhancing Autophagy Through mTOR Pathway. Lin J, Jiao A, Lv W, Zhang C, Shi Y, Yang Z, Sun N, Li X, Zhang J. Front Pharmacol 10 896 (2019)
  251. Potential natural mTOR inhibitors screened by in silico approach and suppress hepatic stellate cells activation. Thiyagarajan V, Lee KW, Leong MK, Weng CF. J Biomol Struct Dyn 36 4220-4234 (2018)
  252. Wheat Germination Is Dependent on Plant Target of Rapamycin Signaling. Smailov B, Alybayev S, Smekenov I, Mursalimov A, Saparbaev M, Sarbassov D, Bissenbaev A. Front Cell Dev Biol 8 606685 (2020)
  253. A simple and efficient route to the FKBP-binding domain from rapamycin. Li W, Bhat S, Liu JO. Tetrahedron Lett 52 5070-5072 (2011)
  254. Acute manipulation of phosphoinositide levels in cells. Chang-Ileto B, Frere SG, Di Paolo G. Methods Cell Biol 108 187-207 (2012)
  255. Cleavage of the cyclohexyl-subunit of rapamycin results in loss of immunosuppressive activity. Sedrani R, Jones LH, Jutzi-Eme AM, Schuler W, Cottens S. Bioorg Med Chem Lett 9 459-462 (1999)
  256. Construction of unnatural heterodimeric receptors based on IL-2 and IL-6 receptor subunits. Ogawa K, Kawahara M, Nagamune T. Biotechnol Prog 29 1512-1518 (2013)
  257. Echinomycin, a potential binder of FKBP12, shows minor effect on calcineurin activity. Singh V, Singh V, Nand A, Chen C, Li Z, Li SJ, Wang S, Yang M, Merino A, Zhang L, Zhu J. J Biomol Screen 19 1275-1281 (2014)
  258. Glucose oxidase assisted homogeneous electrochemical receptor binding assay for drug screening. Funabashi H, Tanaka Y, Imamura Y, Mie M, Manabe T, Tanaka H, Takahashi T, Handa H, Aizawa M, Kobatake E. Biosens Bioelectron 21 1675-1683 (2006)
  259. Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules. Binkowski BF, Miller RA, Belshaw PJ. Chem Biol 12 847-855 (2005)
  260. METTL3 stabilization by PIN1 promotes breast tumorigenesis via enhanced m6A-dependent translation. Bhattarai PY, Kim G, Lim SC, Mariappan R, Ohn T, Choi HS. Oncogene 42 1010-1023 (2023)
  261. Nanoparticle mediated delivery and small molecule triggered activation of proteins in the nucleus. Chiu HY, Bates JA, Helma J, Engelke H, Harz H, Bein T, Leonhardt H. Nucleus 9 530-542 (2018)
  262. Protein Proximity Observed Using Fluorogen Activating Protein and Dye Activated by Proximal Anchoring (FAP-DAPA) System. Carpenter MA, Wang Y, Telmer CA, Schmidt BF, Yang Z, Bruchez MP. ACS Chem Biol 15 2433-2443 (2020)
  263. Reversible Dual-Covalent Molecular Locking of the 14-3-3/ERRγ Protein-Protein Interaction as a Molecular Glue Drug Discovery Approach. Somsen BA, Schellekens RJC, Verhoef CJA, Arkin MR, Ottmann C, Cossar PJ, Brunsveld L. J Am Chem Soc 145 6741-6752 (2023)
  264. Weighing in on a Timeless controversy. Perry J. Proteins 61 699-703 (2005)
  265. A System for the Evolution of Protein-Protein Interaction Inducers. Dewey JA, Azizi SA, Lu V, Dickinson BC. ACS Synth Biol 10 2096-2110 (2021)
  266. A fast and simple method to prepare the FKBP-rapamycin binding domain of human target of rapamycin for NMR binding assays. Dames SA. Protein Expr Purif 59 31-37 (2008)
  267. Acute depletion of plasma membrane phospholipids-dissecting the roles of PtdIns(4)P and PtdIns(4,5)P2. Jethwa N, Fili N, Larijani B. J Chem Biol 5 137-139 (2012)
  268. Expanding the Chemogenetic Toolbox by Circular Permutation. Lee YT, He L, Zhou Y. J Mol Biol 432 3127-3136 (2020)
  269. Highly diastereoselective desymmetrisation of cyclic meso-anhydrides and derivatisation for use in natural product synthesis. Evans AC, Longbottom DA, Matsuoka M, Davies JE, Turner R, Franckevicius V, Ley SV. Org Biomol Chem 7 747-760 (2009)
  270. Molecular docking study of macrocycles as Fk506-binding protein inhibitors. MacDonald CA, Boyd RJ. J Mol Graph Model 59 117-122 (2015)
  271. Rapamycin Improved Retinal Function and Morphology in a Mouse Model of Retinal Degeneration. Zhao M, Lv H, Yang N, Peng GH. Front Neurosci 16 846584 (2022)
  272. The Bumpy Road towards mTOR Inhibition in Glioblastoma: Quo Vadis? Papavassiliou KA, Papavassiliou AG. Biomedicines 9 1809 (2021)
  273. A Curvilinear-Path Umbrella Sampling Approach to Characterizing the Interactions Between Rapamycin and Three FKBP12 Variants. Joshi DC, Gosse C, Huang SY, Lin JH. Front Mol Biosci 9 879000 (2022)
  274. A Rice Immunophilin Homolog, OsFKBP12, Is a Negative Regulator of Both Biotic and Abiotic Stress Responses. Cheung MY, Auyeung WK, Li KP, Lam HM. Int J Mol Sci 21 E8791 (2020)
  275. Affinity and cooperativity modulate ternary complex formation to drive targeted protein degradation. Wurz RP, Rui H, Dellamaggiore K, Ghimire-Rijal S, Choi K, Smither K, Amegadzie A, Chen N, Li X, Banerjee A, Chen Q, Mohl D, Vaish A. Nat Commun 14 4177 (2023)
  276. Analogous conformations of both binding and effector regions in cyclosporin A, FK506 and rapamycin. Denesyuk AI, Denessiouk KA, Zav'yalov VP, Lundell J, Korpela T. Comput Chem 22 339-344 (1998)
  277. Berunda Polypeptides Carrying Rapalogues Inhibit Tumor mTORC1 Better than Oral Everolimus. Peddi S, MacKay JA. Biomacromolecules 21 3038-3046 (2020)
  278. Bioinformatic Analysis of Two TOR (Target of Rapamycin)-Like Proteins Encoded by Entamoeba histolytica Revealed Structural Similarities with Functional Homologs. Muñoz-Muñoz PLA, Mares-Alejandre RE, Meléndez-López SG, Ramos-Ibarra MA. Genes (Basel) 12 1139 (2021)
  279. Bypassing GPCRs with chemical dimerizers. Goedhart J, Gadella TW. Chem Biol 18 1067-1068 (2011)
  280. Cloning, expression, purification, and characterisation of the HEAT-repeat domain of TOR from the thermophilic eukaryote Chaetomium thermophilum. Robinson GC, Vegunta Y, Gabus C, Gaubitz C, Thore S. Protein Expr Purif 133 90-95 (2017)
  281. FK506-binding protein, FKBP12, promotes serine utilization and negatively regulates threonine deaminase in fission yeast. Sasaki M, Nishimura S, Yashiroda Y, Matsuyama A, Kakeya H, Yoshida M. iScience 25 105659 (2022)
  282. Induction of apoptosis by rewiring the signal transduction of Epstein-Barr virus oncoprotein LMP1 toward caspase activation. Hatzivassiliou EG, Tsichritzis T, Mosialos G. J Virol 79 5215-5219 (2005)
  283. Influence of stereochemistry on the activity of rapadocin, an isoform-specific inhibitor of the nucleoside transporter ENT1. Wang Y, Peng H, Guo Z, Ullman BR, Yamamoto K, Hong SY, Liu JO. Chem Sci 12 11484-11489 (2021)
  284. Monitoring molecular-specific pharmacodynamics of rapamycin in vivo with inducible Gal4->Fluc transgenic reporter mice. Pan MH, Lin J, Prior JL, Piwnica-Worms D. Mol Cancer Ther 9 2752-2760 (2010)
  285. Natural product ligands of FKBP12: Immunosuppressive antifungal agents FK506, rapamycin, and beyond. Rivera A, Heitman J. PLoS Pathog 19 e1011056 (2023)
  286. Radical scavenging and antiproliferative effect of novel phenolic derivatives isolated from Nerium indicum against human breast cancer cell line (MCF-7)-an in silico and in vitro approach. Arunachalam T, Khader SZA, Syed Zameer Ahmed S, Vetrivel M, Syed Ameen ST, Ameer Khadharu IS, Prabhu P, Jayachandran PR, Sabu DM. Environ Sci Pollut Res Int 27 9038-9057 (2020)
  287. Split aminoacyl-tRNA synthetases for proximity-induced stop codon suppression. Jiang HK, Ambrose NL, Chung CZ, Wang YS, Söll D, Tharp JM. Proc Natl Acad Sci U S A 120 e2219758120 (2023)
  288. Target of Rapamycin Regulates Photosynthesis and Cell Growth in Auxenochlorella pyrenoidosa. Zhu T, Li L, Chang H, Zhan J, Ren M. Int J Mol Sci 23 11309 (2022)
  289. Unbiased evaluation of rapamycin's specificity as an mTOR inhibitor. Artoni F, Grützmacher N, Demetriades C. Aging Cell 22 e13888 (2023)
  290. Allosteric regulation of kinase activity in living cells. Godbole SS, Dokholyan NV. Elife 12 RP90574 (2023)
  291. Congress Chemical biology: innovative solutions for diverse challenges. Kritzer JA, Luedtke NW. Chem Biol 12 617-620 (2005)
  292. Combined Deep Learning and Molecular Modeling Techniques on the Virtual Screening of New mTOR Inhibitors from the Thai Mushroom Database. Posansee K, Liangruksa M, Termsaithong T, Saparpakorn P, Hannongbua S, Laomettachit T, Sutthibutpong T. ACS Omega 8 38373-38385 (2023)
  293. Combining DNA scaffolds and acoustic force spectroscopy to characterize individual protein bonds. Wang YJ, Valotteau C, Aimard A, Villanueva L, Kostrz D, Follenfant M, Strick T, Chames P, Rico F, Gosse C, Limozin L. Biophys J 122 2518-2530 (2023)
  294. Deciphering neuroprotective mechanism of nitroxoline in cerebral ischemia: network pharmacology and molecular modeling-based investigations. Vadak N, Borkar MR, Bhatt LK. Mol Divers (2024)
  295. Engineered Extracellular Vesicles with Compound-Induced Cargo Delivery to Solid Tumors. Kim R, Kim JH. Int J Mol Sci 24 9368 (2023)
  296. Formulation of cost-effective medium and optimization studies for enhanced production of rapamycin. K Ganesh S, C SD. Microb Cell Fact 22 189 (2023)
  297. Protein interface remodeling in a chemically induced protein dimer. White BR, Carlson JC, Kerns JL, Wagner CR. J Mol Recognit 25 393-403 (2012)
  298. Structural Insights into the Giardia lamblia Target of Rapamycin Homolog: A Bioinformatics Approach. Muñoz-Muñoz PLA, Mares-Alejandre RE, Meléndez-López SG, Ramos-Ibarra MA. Int J Mol Sci 24 11992 (2023)
  299. Structural features of chloroplast trigger factor determined at 2.6 Å resolution. Carius Y, Ries F, Gries K, Trentmann O, Lancaster CRD, Willmund F. Acta Crystallogr D Struct Biol 78 1259-1272 (2022)