1gl4 Citations

Structural basis for the high-affinity interaction of nidogen-1 with immunoglobulin-like domain 3 of perlecan.

EMBO J 20 5342-6 (2001)
Cited: 48 times
EuropePMC logo PMID: 11574465

Abstract

Nidogen and perlecan are large multifunctional basement membrane (BM) proteins conserved in all metazoa. Their high-affinity interaction, which is likely to contribute to BM assembly and function, is mediated by the central G2 domain in nidogen and the third immunoglobulin (IG)-like domain in perlecan, IG3. We have solved the crystal structure at 2.0 A resolution of the mouse nidogen-1 G2-perlecan IG3 complex. Perlecan IG3 belongs to the I-set of the IG superfamily and binds to the wall of the nidogen-1 G2 beta-barrel using beta-strands C, D and F. Nidogen-1 residues participating in the extensive interface are highly conserved, whereas the corresponding binding site on perlecan is more variable. We hypothesize that a second, as yet unidentified, activity of nidogen overlaps with perlecan binding and accounts for the unusually high degree of surface conservation in the G2 domain.

Reviews - 1gl4 mentioned but not cited (1)

Articles - 1gl4 mentioned but not cited (22)

  1. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Di Costanzo L, Christie C, Dalenberg K, Duarte JM, Dutta S, Feng Z, Ghosh S, Goodsell DS, Green RK, Guranovic V, Guzenko D, Hudson BP, Kalro T, Liang Y, Lowe R, Namkoong H, Peisach E, Periskova I, Prlic A, Randle C, Rose A, Rose P, Sala R, Sekharan M, Shao C, Tan L, Tao YP, Valasatava Y, Voigt M, Westbrook J, Woo J, Yang H, Young J, Zhuravleva M, Zardecki C. Nucleic Acids Res 47 D464-D474 (2019)
  2. Structure of herpes simplex virus glycoprotein D bound to the human receptor nectin-1. Di Giovine P, Settembre EC, Bhargava AK, Luftig MA, Lou H, Cohen GH, Eisenberg RJ, Krummenacher C, Carfi A. PLoS Pathog 7 e1002277 (2011)
  3. Comprehensive Endogenous Tagging of Basement Membrane Components Reveals Dynamic Movement within the Matrix Scaffolding. Keeley DP, Hastie E, Jayadev R, Kelley LC, Chi Q, Payne SG, Jeger JL, Hoffman BD, Sherwood DR. Dev Cell 54 60-74.e7 (2020)
  4. Structure of the three N-terminal immunoglobulin domains of the highly immunogenic outer capsid protein from a T4-like bacteriophage. Fokine A, Islam MZ, Zhang Z, Bowman VD, Rao VB, Rossmann MG. J Virol 85 8141-8148 (2011)
  5. Protein-protein interface hot spots prediction based on a hybrid feature selection strategy. Qiao Y, Xiong Y, Gao H, Zhu X, Chen P. BMC Bioinformatics 19 14 (2018)
  6. Structural basis for the high-affinity interaction of nidogen-1 with immunoglobulin-like domain 3 of perlecan. Kvansakul M, Hopf M, Ries A, Timpl R, Hohenester E. EMBO J 20 5342-5346 (2001)
  7. Analysis of nidogen-1/laminin γ1 interaction by cross-linking, mass spectrometry, and computational modeling reveals multiple binding modes. Lössl P, Kölbel K, Tänzler D, Nannemann D, Ihling CH, Keller MV, Schneider M, Zaucke F, Meiler J, Sinz A. PLoS One 9 e112886 (2014)
  8. Protein subunit interfaces: heterodimers versus homodimers. Zhanhua C, Gan JG, Lei L, Sakharkar MK, Kangueane P. Bioinformation 1 28-39 (2005)
  9. Conformational changes in redox pairs of protein structures. Fan SW, George RA, Haworth NL, Feng LL, Liu JY, Wouters MA. Protein Sci 18 1745-1765 (2009)
  10. PPCheck: A Webserver for the Quantitative Analysis of Protein-Protein Interfaces and Prediction of Residue Hotspots. Sukhwal A, Sowdhamini R. Bioinform Biol Insights 9 141-151 (2015)
  11. The Laminin 511/521-binding site on the Lutheran blood group glycoprotein is located at the flexible junction of Ig domains 2 and 3. Mankelow TJ, Burton N, Stefansdottir FO, Spring FA, Parsons SF, Pedersen JS, Oliveira CL, Lammie D, Wess T, Mohandas N, Chasis JA, Brady RL, Anstee DJ. Blood 110 3398-3406 (2007)
  12. Boosting prediction performance of protein-protein interaction hot spots by using structural neighborhood properties. Deng L, Guan J, Wei X, Yi Y, Zhang QC, Zhou S. J Comput Biol 20 878-891 (2013)
  13. Interface residues of transient protein-protein complexes have extensive intra-protein interactions apart from inter-protein interactions. Jayashree S, Murugavel P, Sowdhamini R, Srinivasan N. Biol Direct 14 1 (2019)
  14. Bacterial protein domains with a novel Ig-like fold target human CEACAM receptors. van Sorge NM, Bonsor DA, Deng L, Lindahl E, Schmitt V, Lyndin M, Schmidt A, Nilsson OR, Brizuela J, Boero E, Sundberg EJ, van Strijp JAG, Doran KS, Singer BB, Lindahl G, McCarthy AJ. EMBO J 40 e106103 (2021)
  15. Secretion of the Intimin Passenger Domain Is Driven by Protein Folding. Leo JC, Oberhettinger P, Yoshimoto S, Udatha DB, Morth JP, Schütz M, Hori K, Linke D. J Biol Chem 291 20096-20112 (2016)
  16. Calculating ensemble averaged descriptions of protein rigidity without sampling. González LC, Wang H, Livesay DR, Jacobs DJ. PLoS One 7 e29176 (2012)
  17. Prediction of hot spots in protein interfaces using extreme learning machines with the information of spatial neighbour residues. Wang L, Zhang W, Gao Q, Xiong C. IET Syst Biol 8 184-190 (2014)
  18. Multiscale modelling of the extracellular matrix. Wong H, Crowet JM, Dauchez M, Ricard-Blum S, Baud S, Belloy N. Matrix Biol Plus 13 100096 (2022)
  19. Analyses of the Sequence and Structural Properties Corresponding to Pentapeptide and Large Palindromes in Proteins. Sridhar S, Nagamruta M, Guruprasad K. PLoS One 10 e0139568 (2015)
  20. Classification of heterodimer interfaces using docking models and construction of scoring functions for the complex structure prediction. Tsuchiya Y, Kanamori E, Nakamura H, Kinoshita K. Adv Appl Bioinform Chem 2 79-100 (2009)
  21. Identification of an ideal-like fingerprint for a protein fold using overlapped conserved residues based approach. Goyal A, Sokalingam S, Hwang KS, Lee SG. Sci Rep 4 5643 (2014)
  22. SEQUENCE SLIDER: integration of structural and genetic data to characterize isoforms from natural sources. Borges RJ, Salvador GHM, Pimenta DC, Dos Santos LD, Fontes MRM, Usón I. Nucleic Acids Res 50 e50 (2022)


Reviews citing this publication (7)

  1. Basement membranes: structure, assembly and role in tumour angiogenesis. Kalluri R. Nat Rev Cancer 3 422-433 (2003)
  2. Fluorescent proteins and their applications in imaging living cells and tissues. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Physiol Rev 90 1103-1163 (2010)
  3. Structure and function of basement membranes. LeBleu VS, Macdonald B, Kalluri R. Exp Biol Med (Maywood) 232 1121-1129 (2007)
  4. Laminin: the crux of basement membrane assembly. Sasaki T, Fässler R, Hohenester E. J Cell Biol 164 959-963 (2004)
  5. Domain structure and organisation in extracellular matrix proteins. Hohenester E, Engel J. Matrix Biol 21 115-128 (2002)
  6. Nidogens-Extracellular matrix linker molecules. Ho MS, Böse K, Mokkapati S, Nischt R, Smyth N. Microsc Res Tech 71 387-395 (2008)
  7. Disorder-to-order conformational transitions in protein structure and its relationship to disease. Mendoza-Espinosa P, García-González V, Moreno A, Castillo R, Mas-Oliva J. Mol Cell Biochem 330 105-120 (2009)

Articles citing this publication (18)

  1. Neurologic defects and selective disruption of basement membranes in mice lacking entactin-1/nidogen-1. Dong L, Chen Y, Lewis M, Hsieh JC, Reing J, Chaillet JR, Howell CY, Melhem M, Inoue S, Kuszak JR, DeGeest K, Chung AE. Lab Invest 82 1617-1630 (2002)
  2. Protein-protein interactions; coupling of structurally conserved residues and of hot spots across interfaces. Implications for docking. Halperin I, Wolfson H, Nussinov R. Structure 12 1027-1038 (2004)
  3. Novel insights into capillary vessel basement membrane damage by snake venom hemorrhagic metalloproteinases: a biochemical and immunohistochemical study. Escalante T, Shannon J, Moura-da-Silva AM, Gutiérrez JM, Fox JW. Arch Biochem Biophys 455 144-153 (2006)
  4. Laminin-6 assembles into multimolecular fibrillar complexes with perlecan and participates in mechanical-signal transduction via a dystroglycan-dependent, integrin-independent mechanism. Jones JC, Lane K, Hopkinson SB, Lecuona E, Geiger RC, Dean DA, Correa-Meyer E, Gonzales M, Campbell K, Sznajder JI, Budinger S. J Cell Sci 118 2557-2566 (2005)
  5. Role of collagens and perlecan in microvascular stability: exploring the mechanism of capillary vessel damage by snake venom metalloproteinases. Escalante T, Ortiz N, Rucavado A, Sanchez EF, Richardson M, Fox JW, Gutiérrez JM. PLoS One 6 e28017 (2011)
  6. Tetanus toxin entry. Nidogens are therapeutic targets for the prevention of tetanus. Bercsenyi K, Schmieg N, Bryson JB, Wallace M, Caccin P, Golding M, Zanotti G, Greensmith L, Nischt R, Schiavo G. Science 346 1118-1123 (2014)
  7. Epithelial basement membrane proteins perlecan and nidogen-2 are up-regulated in stromal cells after epithelial injury in human corneas. Torricelli AA, Marino GK, Santhanam A, Wu J, Singh A, Wilson SE. Exp Eye Res 134 33-38 (2015)
  8. Effect of titanium surface calcium and magnesium on adhesive activity of epithelial-like cells and fibroblasts. Okawachi H, Ayukawa Y, Atsuta I, Furuhashi A, Sakaguchi M, Yamane K, Koyano K. Biointerphases 7 27 (2012)
  9. Structural elucidation of full-length nidogen and the laminin-nidogen complex in solution. Patel TR, Bernards C, Meier M, McEleney K, Winzor DJ, Koch M, Stetefeld J. Matrix Biol 33 60-67 (2014)
  10. Extracellular matrices of the avian ovarian follicle. Molecular characterization of chicken perlecan. Hummel S, Osanger A, Bajari TM, Balasubramani M, Halfter W, Nimpf J, Schneider WJ. J Biol Chem 279 23486-23494 (2004)
  11. Dissection of Nidogen function in Drosophila reveals tissue-specific mechanisms of basement membrane assembly. Dai J, Estrada B, Jacobs S, Sánchez-Sánchez BJ, Tang J, Ma M, Magadán-Corpas P, Pastor-Pareja JC, Martín-Bermudo MD. PLoS Genet 14 e1007483 (2018)
  12. Different domains in nidogen-1 and nidogen-2 drive basement membrane formation in skin organotypic cocultures. Bechtel M, Keller MV, Bloch W, Sasaki T, Boukamp P, Zaucke F, Paulsson M, Nischt R. FASEB J 26 3637-3648 (2012)
  13. A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces. Melo R, Fieldhouse R, Melo A, Correia JD, Cordeiro MN, Gümüş ZH, Costa J, Bonvin AM, Moreira IS. Int J Mol Sci 17 E1215 (2016)
  14. Culture surface protein coatings affect the barrier properties and calcium signalling of hESC-RPE. Viheriälä T, Sorvari J, Ihalainen TO, Mörö A, Grönroos P, Schlie-Wolter S, Chichkov B, Skottman H, Nymark S, Ilmarinen T. Sci Rep 11 933 (2021)
  15. NID1 variant associated with occipital cephaloceles in a family expressing a spectrum of phenotypes. McNiven V, Ito YA, Hartley T, Kernohan K, Miller E, Care4Rare Canada, Armour CM. Am J Med Genet A 179 837-841 (2019)
  16. Proteomic identification of membrane-associated placental protein 4 (MP4) as perlecan and characterization of its placental expression in normal and pathologic pregnancies. Szenasi NL, Toth E, Balogh A, Juhasz K, Karaszi K, Ozohanics O, Gelencser Z, Kiraly P, Hargitai B, Drahos L, Hupuczi P, Kovalszky I, Papp Z, Than NG. PeerJ 7 e6982 (2019)
  17. Novel internal regions of fluorescent proteins undergo divergent evolutionary patterns. Gruber DF, DeSalle R, Lienau EK, Tchernov D, Pieribone VA, Kao HT. Mol Biol Evol 26 2841-2848 (2009)
  18. Recognition of Tumor Nidogen-1 by Neutrophil C-Type Lectin Receptors. Sionov RV, Lamagna C, Granot Z. Biomedicines 10 908 (2022)


Related citations provided by authors (2)

  1. Crystal structure and mutational analysis of a perlecan-binding fragment of nidogen-1.. Hopf M, Göhring W, Ries A, Timpl R, Hohenester E Nat Struct Biol 8 634-40 (2001)
  2. Mapping of binding sites for nidogens, fibulin-2, fibronectin and heparin to different IG modules of perlecan.. Hopf M, Göhring W, Mann K, Timpl R J Mol Biol 311 529-41 (2001)