1gw0 Citations

Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site.

Nat Struct Biol 9 601-5 (2002)
Cited: 137 times
EuropePMC logo PMID: 12118243

Abstract

We have crystallized the ascomycete laccase from Melanocarpus albomyces with all four coppers present and determined the crystal structure at 2.4 A resolution. The enzyme is heavily glycosylated and consists of three cupredoxin-like domains, similar to those found in the Cu-depleted basidiomycete laccase from Coprinus cinereus. However, there are significant differences in the loops forming the substrate-binding pocket. In addition, the crystal structure of the M. albomyces laccase revealed elongated electron density between all three coppers in the trinuclear copper site, suggesting that an oxygen molecule binds with a novel geometry. This oxygen, required in the reaction, may enter the trinuclear site through the tunnel, which is open in the structure of the C. cinereus laccase. In contrast, the C-terminus on the M. albomyces laccase forms a plug that blocks this access.

Reviews - 1gw0 mentioned but not cited (2)

  1. Three-dimensional structures of laccases. Hakulinen N, Rouvinen J. Cell Mol Life Sci 72 857-868 (2015)
  2. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Chem Rev 122 11974-12045 (2022)

Articles - 1gw0 mentioned but not cited (9)

  1. The copper-iron connection in biology: structure of the metallo-oxidase Fet3p. Taylor AB, Stoj CS, Ziegler L, Kosman DJ, Hart PJ. Proc Natl Acad Sci U S A 102 15459-15464 (2005)
  2. A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Larrondo LF, Salas L, Melo F, Vicuña R, Cullen D. Appl Environ Microbiol 69 6257-6263 (2003)
  3. Crystal structure of a two-domain multicopper oxidase: implications for the evolution of multicopper blue proteins. Lawton TJ, Sayavedra-Soto LA, Arp DJ, Rosenzweig AC. J Biol Chem 284 10174-10180 (2009)
  4. Structural analysis and biochemical properties of laccase enzymes from two Pediococcus species. Olmeda I, Casino P, Collins RE, Sendra R, Callejón S, Huesa J, Soares AS, Ferrer S, Pardo I. Microb Biotechnol 14 1026-1043 (2021)
  5. Evolving stability and pH-dependent activity of the high redox potential Botrytis aclada laccase for enzymatic fuel cells. Scheiblbrandner S, Breslmayr E, Csarman F, Paukner R, Führer J, Herzog PL, Shleev SV, Osipov EM, Tikhonova TV, Popov VO, Haltrich D, Ludwig R, Kittl R. Sci Rep 7 13688 (2017)
  6. Identification and characterization of laccase-type multicopper oxidases involved in dye-decolorization by the fungus Leptosphaerulina sp. Copete LS, Chanagá X, Barriuso J, López-Lucendo MF, Martínez MJ, Camarero S. BMC Biotechnol 15 74 (2015)
  7. Analysis of laccase-like enzymes secreted by fungi isolated from a cave in northern Spain. Fernández-Remacha D, González-Riancho C, Lastra Osua M, González Arce A, Montánchez I, García-Lobo JM, Estrada-Tejedor R, Kaberdin VR. Microbiologyopen 11 e1279 (2022)
  8. A novel starch-binding laccase from the wheat pathogen Zymoseptoria tritici highlights the functional diversity of ascomycete laccases. Haddad Momeni M, Bollella P, Ortiz R, Thormann E, Gorton L, Abou Hachem M. BMC Biotechnol 19 61 (2019)
  9. Structure-function studies of a novel laccase-like multicopper oxidase from Thermothelomyces thermophila provide insights into its biological role. Kosinas C, Zerva A, Topakas E, Dimarogona M. Acta Crystallogr D Struct Biol 79 641-654 (2023)


Reviews citing this publication (23)

  1. Copper active sites in biology. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Chem Rev 114 3659-3853 (2014)
  2. Laccases: a never-ending story. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. Cell Mol Life Sci 67 369-385 (2010)
  3. Structure and action mechanism of ligninolytic enzymes. Wong DW. Appl Biochem Biotechnol 157 174-209 (2009)
  4. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review. Lundell TK, Mäkelä MR, Hildén K. J Basic Microbiol 50 5-20 (2010)
  5. Direct electron transfer between copper-containing proteins and electrodes. Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov AI, Whittaker JW, Gorton L. Biosens Bioelectron 20 2517-2554 (2005)
  6. "Blue" laccases. Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI. Biochemistry (Mosc) 72 1136-1150 (2007)
  7. Electron transfer and reaction mechanism of laccases. Jones SM, Solomon EI. Cell Mol Life Sci 72 869-883 (2015)
  8. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Sakurai T, Kataoka K. Chem Rec 7 220-229 (2007)
  9. Thermotolerant and thermostable laccases. Hildén K, Hakala TK, Lundell T. Biotechnol Lett 31 1117-1128 (2009)
  10. Structural insights into dioxygen-activating copper enzymes. Rosenzweig AC, Sazinsky MH. Curr Opin Struct Biol 16 729-735 (2006)
  11. Crosslinking food proteins for improved functionality. Buchert J, Ercili Cura D, Ma H, Gasparetti C, Monogioudi E, Faccio G, Mattinen M, Boer H, Partanen R, Selinheimo E, Lantto R, Kruus K. Annu Rev Food Sci Technol 1 113-138 (2010)
  12. Lignin engineering through laccase modification: a promising field for energy plant improvement. Wang J, Feng J, Jia W, Chang S, Li S, Li Y. Biotechnol Biofuels 8 145 (2015)
  13. Laccase immobilization and insolubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment. Ba S, Arsenault A, Hassani T, Jones JP, Cabana H. Crit Rev Biotechnol 33 404-418 (2013)
  14. Laccases: complex architectures for one-electron oxidations. Mot AC, Silaghi-Dumitrescu R. Biochemistry (Mosc) 77 1395-1407 (2012)
  15. Reduction of dioxygen by enzymes containing copper. Bento I, Carrondo MA, Lindley PF. J Biol Inorg Chem 11 539-547 (2006)
  16. Structural insights into the O2 reduction mechanism of multicopper oxidase. Komori H, Higuchi Y. J Biochem 158 293-298 (2015)
  17. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications. Sitarz AK, Mikkelsen JD, Meyer AS. Crit Rev Biotechnol 36 70-86 (2016)
  18. Ligninolytic enzymes from Ganoderma spp: current status and potential applications. Zhou XW, Cong WR, Su KQ, Zhang YM. Crit Rev Microbiol 39 416-426 (2013)
  19. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. Blaschek L, Pesquet E. Front Plant Sci 12 754601 (2021)
  20. Laccases: Versatile Biocatalysts for the Synthesis of Heterocyclic Cores. Sousa AC, Martins LO, Robalo MP. Molecules 26 3719 (2021)
  21. The role of ligand-containing loops at copper sites in proteins. Dennison C. Nat Prod Rep 25 15-24 (2008)
  22. Challenges in Elucidating the Free Energy Scheme of the Laccase Catalyzed Reduction of Oxygen. den Boer D, de Heer HC, Buda F, Hetterscheid DGH. ChemCatChem 15 e202200878 (2023)
  23. Fungal Laccases: Fundamentals, Engineering and Classification Update. Aza P, Camarero S. Biomolecules 13 1716 (2023)

Articles citing this publication (103)

  1. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U. FEBS J 273 2308-2326 (2006)
  2. Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH. Appl Environ Microbiol 69 987-995 (2003)
  3. Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Machczynski MC, Vijgenboom E, Samyn B, Canters GW. Protein Sci 13 2388-2397 (2004)
  4. Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. Durão P, Bento I, Fernandes AT, Melo EP, Lindley PF, Martins LO. J Biol Inorg Chem 11 514-526 (2006)
  5. Multiple multi-copper oxidase gene families in basidiomycetes - what for? Kües U, Rühl M. Curr Genomics 12 72-94 (2011)
  6. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. Shleev SV, Morozova OV, Nikitina OV, Gorshina ES, Rusinova TV, Serezhenkov VA, Burbaev DS, Gazaryan IG, Yaropolov AI. Biochimie 86 693-703 (2004)
  7. Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. Courty PE, Hoegger PJ, Kilaru S, Kohler A, Buée M, Garbaye J, Martin F, Kües U. New Phytol 182 736-750 (2009)
  8. The structure of the small laccase from Streptomyces coelicolor reveals a link between laccases and nitrite reductases. Skálová T, Dohnálek J, Østergaard LH, Østergaard PR, Kolenko P, Dusková J, Stepánková A, Hasek J. J Mol Biol 385 1165-1178 (2009)
  9. Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Dubé E, Shareck F, Hurtubise Y, Daneault C, Beauregard M. Appl Microbiol Biotechnol 79 597-603 (2008)
  10. Crystal structure of nitrous oxide reductase from Paracoccus denitrificans at 1.6 A resolution. Haltia T, Brown K, Tegoni M, Cambillau C, Saraste M, Mattila K, Djinovic-Carugo K. Biochem J 369 77-88 (2003)
  11. Dioxygen reduction by multi-copper oxidases; a structural perspective. Bento I, Martins LO, Gato Lopes G, Arménia Carrondo M, Lindley PF. Dalton Trans 3507-3513 (2005)
  12. In vitro evolution of a fungal laccase in high concentrations of organic cosolvents. Zumárraga M, Bulter T, Shleev S, Polaina J, Martínez-Arias A, Plou FJ, Ballesteros A, Alcalde M. Chem Biol 14 1052-1064 (2007)
  13. Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. Kallio JP, Auer S, Jänis J, Andberg M, Kruus K, Rouvinen J, Koivula A, Hakulinen N. J Mol Biol 392 895-909 (2009)
  14. The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members. Pezzella C, Autore F, Giardina P, Piscitelli A, Sannia G, Faraco V. Curr Genet 55 45-57 (2009)
  15. Heterologous production of a laccase from the basidiomycete Pycnoporus cinnabarinus in the dimorphic yeast Yarrowia lipolytica. Madzak C, Otterbein L, Chamkha M, Moukha S, Asther M, Gaillardin C, Beckerich JM. FEMS Yeast Res 5 635-646 (2005)
  16. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Tadesse MA, D'Annibale A, Galli C, Gentili P, Sergi F. Org Biomol Chem 6 868-878 (2008)
  17. Molecular cloning and expression in Saccharomyces cerevisiae of a laccase gene from the ascomycete Melanocarpus albomyces. Kiiskinen LL, Saloheimo M. Appl Environ Microbiol 70 137-144 (2004)
  18. Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. Ferraroni M, Myasoedova NM, Schmatchenko V, Leontievsky AA, Golovleva LA, Scozzafava A, Briganti F. BMC Struct Biol 7 60 (2007)
  19. Development of new laccases by directed evolution: functional and computational analyses. Festa G, Autore F, Fraternali F, Giardina P, Sannia G. Proteins 72 25-34 (2008)
  20. Structure and function of the engineered multicopper oxidase CueO from Escherichia coli--deletion of the methionine-rich helical region covering the substrate-binding site. Kataoka K, Komori H, Ueki Y, Konno Y, Kamitaka Y, Kurose S, Tsujimura S, Higuchi Y, Kano K, Seo D, Sakurai T. J Mol Biol 373 141-152 (2007)
  21. Crystal structures of multicopper oxidase CueO bound to copper(I) and silver(I): functional role of a methionine-rich sequence. Singh SK, Roberts SA, McDevitt SF, Weichsel A, Wildner GF, Grass GB, Rensing C, Montfort WR. J Biol Chem 286 37849-37857 (2011)
  22. Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode. Shleev S, Christenson A, Serezhenkov V, Burbaev D, Yaropolov A, Gorton L, Ruzgas T. Biochem J 385 745-754 (2005)
  23. Essential role of the C-terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure. Andberg M, Hakulinen N, Auer S, Saloheimo M, Koivula A, Rouvinen J, Kruus K. FEBS J 276 6285-6300 (2009)
  24. Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases: insights into the reductive cleavage of the o-o bond. Yoon J, Solomon EI. J Am Chem Soc 129 13127-13136 (2007)
  25. Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Piscitelli A, Giardina P, Mazzoni C, Sannia G. Appl Microbiol Biotechnol 69 428-439 (2005)
  26. Crystal structures of E. coli laccase CueO at different copper concentrations. Li X, Wei Z, Zhang M, Peng X, Yu G, Teng M, Gong W. Biochem Biophys Res Commun 354 21-26 (2007)
  27. Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase. Yoon J, Fujii S, Solomon EI. Proc Natl Acad Sci U S A 106 6585-6590 (2009)
  28. Characterization of a low redox potential laccase from the basidiomycete C30. Klonowska A, Gaudin C, Fournel A, Asso M, Le Petit J, Giorgi M, Tron T. Eur J Biochem 269 6119-6125 (2002)
  29. Altering the laccase functionality by in vivo assembly of mutant libraries with different mutational spectra. Zumárraga M, Camarero S, Shleev S, Martínez-Arias A, Ballesteros A, Plou FJ, Alcalde M. Proteins 71 250-260 (2008)
  30. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer. Bento I, Silva CS, Chen Z, Martins LO, Lindley PF, Soares CM. BMC Struct Biol 10 28 (2010)
  31. The laccase gene family in Coprinopsis cinerea (Coprinus cinereus). Hoegger PJ, Navarro-González M, Kilaru S, Hoffmann M, Westbrook ED, Kües U. Curr Genet 45 9-18 (2004)
  32. Widening the pH activity profile of a fungal laccase by directed evolution. Torres-Salas P, Mate DM, Ghazi I, Plou FJ, Ballesteros AO, Alcalde M. Chembiochem 14 934-937 (2013)
  33. A near atomic resolution structure of a Melanocarpus albomyces laccase. Hakulinen N, Andberg M, Kallio J, Koivula A, Kruus K, Rouvinen J. J Struct Biol 162 29-39 (2008)
  34. Random mutants of a Pleurotus ostreatus laccase as new biocatalysts for industrial effluents bioremediation. Miele A, Giardina P, Sannia G, Faraco V. J Appl Microbiol 108 998-1006 (2010)
  35. Crystal structure of an ascomycete fungal laccase from Thielavia arenaria--common structural features of asco-laccases. Kallio JP, Gasparetti C, Andberg M, Boer H, Koivula A, Kruus K, Rouvinen J, Hakulinen N. FEBS J 278 2283-2295 (2011)
  36. Mutations at Asp112 adjacent to the trinuclear Cu center in CueO as the proton donor in the four-electron reduction of dioxygen. Ueki Y, Inoue M, Kurose S, Kataoka K, Sakurai T. FEBS Lett 580 4069-4072 (2006)
  37. X-ray structural studies of the fungal laccase from Cerrena maxima. Lyashenko AV, Bento I, Zaitsev VN, Zhukhlistova NE, Zhukova YN, Gabdoulkhakov AG, Morgunova EY, Voelter W, Kachalova GS, Stepanova EV, Koroleva OV, Lamzin VS, Tishkov VI, Betzel C, Lindley PF, Mikhailov AM. J Biol Inorg Chem 11 963-973 (2006)
  38. A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Hakulinen N, Kruus K, Koivula A, Rouvinen J. Biochem Biophys Res Commun 350 929-934 (2006)
  39. Structural and phylogenetic analysis of laccases from Trichoderma: a bioinformatic approach. Cázares-García SV, Vázquez-Garcidueñas S, Vázquez-Marrufo G. PLoS One 8 e55295 (2013)
  40. The Aspergillus niger multicopper oxidase family: analysis and overexpression of laccase-like encoding genes. Ramos JA, Barends S, Verhaert RM, de Graaff LH. Microb Cell Fact 10 78 (2011)
  41. Phylogenetic and biochemical characterisation of a recombinant laccase from Trametes versicolor. Necochea R, Valderrama B, Díaz-Sandoval S, Folch-Mallol JL, Vázquez-Duhalt R, Iturriaga G. FEMS Microbiol Lett 244 235-241 (2005)
  42. Effective mutations in a high redox potential laccase from Pleurotus ostreatus. Macellaro G, Baratto MC, Piscitelli A, Pezzella C, Fabrizi de Biani F, Palmese A, Piumi F, Record E, Basosi R, Sannia G. Appl Microbiol Biotechnol 98 4949-4961 (2014)
  43. Molecular evolution of Fome lignosus laccase by ethyl methane sulfonate-based random mutagenesis in vitro. Hu MR, Chao YP, Zhang GQ, Yang XQ, Xue ZQ, Qian SJ. Biomol Eng 24 619-624 (2007)
  44. Systematic Analysis of the Pleurotus ostreatus Laccase Gene (PoLac) Family and Functional Characterization of PoLac2 Involved in the Degradation of Cotton-Straw Lignin. Jiao X, Li G, Wang Y, Nie F, Cheng X, Abdullah M, Lin Y, Cai Y. Molecules 23 E880 (2018)
  45. Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuni CGUG11284: characterization of a metallo-oxidase. Silva CS, Durão P, Fillat A, Lindley PF, Martins LO, Bento I. Metallomics 4 37-47 (2012)
  46. Iodide oxidation by a novel multicopper oxidase from the alphaproteobacterium strain Q-1. Suzuki M, Eda Y, Ohsawa S, Kanesaki Y, Yoshikawa H, Tanaka K, Muramatsu Y, Yoshikawa J, Sato I, Fujii T, Amachi S. Appl Environ Microbiol 78 3941-3949 (2012)
  47. KnowVolution of a Fungal Laccase toward Alkaline pH. Novoa C, Dhoke GV, Mate DM, Martínez R, Haarmann T, Schreiter M, Eidner J, Schwerdtfeger R, Lorenz P, Davari MD, Jakob F, Schwaneberg U. Chembiochem 20 1458-1466 (2019)
  48. Sequential reconstitution of copper sites in the multicopper oxidase CueO. Galli I, Musci G, Bonaccorsi di Patti MC. J Biol Inorg Chem 9 90-95 (2004)
  49. A gene that underwent adaptive evolution, LAC2 (LACCASE), in Populus euphratica improves drought tolerance by improving water transport capacity. Niu Z, Li G, Hu H, Lv J, Zheng Q, Liu J, Wan D. Hortic Res 8 88 (2021)
  50. Kinetic studies on the reaction between Trametes villosa laccase and dioxygen. Bukh C, Lund M, Bjerrum MJ. J Inorg Biochem 100 1547-1557 (2006)
  51. Molecular dynamics of a thermostable multicopper oxidase from Thermus thermophilus HB27: structural differences between the apo and holo forms. Bello M, Valderrama B, Serrano-Posada H, Rudiño-Piñera E. PLoS One 7 e40700 (2012)
  52. Nitric oxide activation by distal redox modulation in tetranuclear iron nitrosyl complexes. de Ruiter G, Thompson NB, Lionetti D, Agapie T. J Am Chem Soc 137 14094-14106 (2015)
  53. A 24.7-kDa copper-containing oxidase, secreted by Thermobifida fusca, significantly increasing the xylanase/cellulase-catalyzed hydrolysis of sugarcane bagasse. Chen CY, Hsieh ZS, Cheepudom J, Yang CH, Meng M. Appl Microbiol Biotechnol 97 8977-8986 (2013)
  54. Characterization of two new multiforms of Trametes pubescens laccase. Shleev S, Nikitina O, Christenson A, Reimann CT, Yaropolov AI, Ruzgas T, Gorton L. Bioorg Chem 35 35-49 (2007)
  55. A semi-rational approach to engineering laccase enzymes. Miele A, Giardina P, Notomista E, Piscitelli A, Sannia G, Faraco V. Mol Biotechnol 46 149-156 (2010)
  56. Autoreduction and aggregation of fungal laccase in solution phase: possible correlation with a resting form of laccase. Shleev S, Reimann CT, Serezhenkov V, Burbaev D, Yaropolov AI, Gorton L, Ruzgas T. Biochimie 88 1275-1285 (2006)
  57. Construction of a laccase chimerical gene: recombinant protein characterization and gene expression via yeast surface display. Bleve G, Lezzi C, Spagnolo S, Rampino P, Perrotta C, Mita G, Grieco F. Appl Biochem Biotechnol 172 2916-2931 (2014)
  58. Lignin degradation potential and draft genome sequence of Trametes trogii S0301. Liu Y, Wu Y, Zhang Y, Yang X, Yang E, Xu H, Yang Q, Chagan I, Cui X, Chen W, Yan J. Biotechnol Biofuels 12 256 (2019)
  59. Role of the C-terminus of Pleurotus eryngii Ery4 laccase in determining enzyme structure, catalytic properties and stability. Bleve G, Lezzi C, Spagnolo S, Tasco G, Tufariello M, Casadio R, Mita G, Rampino P, Grieco F. Protein Eng Des Sel 26 1-13 (2013)
  60. Decolourization of recalcitrant dyes with a laccase from Streptomyces coelicolor under alkaline conditions. Dubé E, Shareck F, Hurtubise Y, Beauregard M, Daneault C. J Ind Microbiol Biotechnol 35 1123-1129 (2008)
  61. Evaluation of performance and stability of biocatalytic redox films constructed with different copper oxygenases and osmium-based redox polymers. Jenkins PA, Boland S, Kavanagh P, Leech D. Bioelectrochemistry 76 162-168 (2009)
  62. Laccase-catalyzed mediated oxidation of benzyl alcohol: the role of TEMPO and formation of products including benzonitrile studied by nanoelectrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Marjasvaara A, Torvinen M, Vainiotalo P. J Mass Spectrom 39 1139-1146 (2004)
  63. Ligand and loop variations at type 1 copper sites: influence on structure and reactivity. Dennison C. Dalton Trans 3436-3442 (2005)
  64. Phylogenomic analyses reveal the diversity of laccase-coding genes in Fonsecaea genomes. Moreno LF, Feng P, Weiss VA, Vicente VA, Stielow JB, de Hoog S. PLoS One 12 e0171291 (2017)
  65. High performance thylakoid bio-solar cell using laccase enzymatic biocathodes. Rasmussen M, Shrier A, Minteer SD. Phys Chem Chem Phys 15 9062-9065 (2013)
  66. Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation. Sosna M, Chrétien JM, Kilburn JD, Bartlett PN. Phys Chem Chem Phys 12 10018-10026 (2010)
  67. Probing the location of the substrate binding site of ascorbate oxidase near type 1 copper: an investigation through spectroscopic, inhibition and docking studies. Santagostini L, Gullotti M, De Gioia L, Fantucci P, Franzini E, Marchesini A, Monzani E, Casella L. Int J Biochem Cell Biol 36 881-892 (2004)
  68. Structure and molecular evolution of multicopper blue proteins. Komori H, Higuchi Y. Biomol Concepts 1 31-40 (2010)
  69. A comparative structural analysis of the surface properties of asco-laccases. Ernst HA, Jørgensen LJ, Bukh C, Piontek K, Plattner DA, Østergaard LH, Larsen S, Bjerrum MJ. PLoS One 13 e0206589 (2018)
  70. Laccase Gene Family in Cerrena sp. HYB07: Sequences, Heterologous Expression and Transcriptional Analysis. Yang J, Xu X, Ng TB, Lin J, Ye X. Molecules 21 E1017 (2016)
  71. The first mu(6)-peroxide transition-metal complex: [Ni(8)(L)(12)(O(2))](2+). Brown EJ, Duhme-Klair AK, Elliott MI, Thomas-Oates JE, Timmins PL, Walton PH. Angew Chem Int Ed Engl 44 1392-1395 (2005)
  72. Diversity of laccase-coding genes in Fusarium oxysporum genomes. Kwiatos N, Ryngajłło M, Bielecki S. Front Microbiol 6 933 (2015)
  73. Investigations of Accessibility of T2/T3 Copper Center of Two-Domain Laccase from Streptomyces griseoflavus Ac-993. Gabdulkhakov A, Kolyadenko I, Kostareva O, Mikhaylina A, Oliveira P, Tamagnini P, Lisov A, Tishchenko S. Int J Mol Sci 20 E3184 (2019)
  74. Laccase from Melanocarpus albomyces binds effectively to cellulose. Kiiskinen LL, Palonen H, Linder M, Viikari L, Kruus K. FEBS Lett 576 251-255 (2004)
  75. Physiological evaluation of the filamentous fungus Trichoderma reesei in production processes by marker gene expression analysis. Rautio JJ, Bailey M, Kivioja T, Söderlund H, Penttilä M, Saloheimo M. BMC Biotechnol 7 28 (2007)
  76. Purification, crystallization and preliminary X-ray study of the fungal laccase from Cerrena maxima. Lyashenko AV, Zhukhlistova NE, Gabdoulkhakov AG, Zhukova YN, Voelter W, Zaitsev VN, Bento I, Stepanova EV, Kachalova GS, Koroleva OV, Cherkashyn EA, Tishkov VI, Lamzin VS, Schirwitz K, Morgunova EY, Betzel C, Lindley PF, Mikhailov AM. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 954-957 (2006)
  77. Variants of PpuLcc, a multi-dye decolorizing laccase from Pleurotus pulmonarius expressed in Pichia pastoris. Behrens CJ, Linke D, Allister AB, Zelena K, Berger RG. Protein Expr Purif 137 34-42 (2017)
  78. Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding. Fujieda N, Schätti J, Stuttfeld E, Ohkubo K, Maier T, Fukuzumi S, Ward TR. Chem Sci 6 4060-4065 (2015)
  79. Functional characterization of a yellow laccase from Leucoagaricus gongylophorus. Ike PT, Moreira AC, de Almeida FG, Ferreira D, Birolli WG, Porto AL, Souza DH. Springerplus 4 654 (2015)
  80. Mesosilica-coated ultrafine fibers for highly efficient laccase encapsulation. Wang S, Chen W, He S, Zhao Q, Li X, Sun J, Jiang X. Nanoscale 6 6468-6472 (2014)
  81. NMR study of the exchange coupling in the trinuclear cluster of the multicopper oxidase Fet3p. Zaballa ME, Ziegler L, Kosman DJ, Vila AJ. J Am Chem Soc 132 11191-11196 (2010)
  82. Mechanism of salt-induced activity enhancement of a marine-derived laccase, Lac15. Li J, Xie Y, Wang R, Fang Z, Fang W, Zhang X, Xiao Y. Eur Biophys J 47 225-236 (2018)
  83. Optimisation of the Production and Bleaching Process for a New Laccase from Madurella mycetomatis, Expressed in Pichia pastoris: from Secretion to Yielding Prominent. Tülek A, Karataş E, Çakar MM, Aydın D, Yılmazcan Ö, Binay B. Mol Biotechnol 63 24-39 (2021)
  84. Authentic and recombinant bilirubin oxidases are in different resting forms. Sakurai T, Zhan L, Fujita T, Kataoka K, Shimizu A, Samejima T, Yamaguchi S. Biosci Biotechnol Biochem 67 1157-1159 (2003)
  85. Directed Evolution of a Homodimeric Laccase from Cerrena unicolor BBP6 by Random Mutagenesis and In Vivo Assembly. Zhang J, Ma F, Zhang X, Geng A. Int J Mol Sci 19 E2989 (2018)
  86. Genes Identification, Molecular Docking and Dynamics Simulation Analysis of Laccases from Amylostereum areolatum Provides Molecular Basis of Laccase Bound to Lignin. Fu N, Li J, Wang M, Ren L, Luo Y. Int J Mol Sci 21 E8845 (2020)
  87. Genome-wide study of Cerrena unicolor 87613 laccase gene family and their mode prediction in association with substrate oxidation. Zhang LB, Yang WW, Qiu TT. BMC Genomics 24 504 (2023)
  88. Modeling the 3-D structure of a recombinant laccase from Trametes trogii active at a pH close to neutrality. Colao MC, Caporale C, Silvestri F, Ruzzi M, Buonocore V. Protein J 28 375-383 (2009)
  89. In silico analysis of Pycnoporus cinnabarinus laccase active site with toxic industrial dyes. Prasad NK, Vindal V, Narayana SL, Ramakrishna V, Kunal SP, Srinivas M. J Mol Model 18 2013-2019 (2012)
  90. Crystal structures of multicopper oxidase CueO G304K mutant: structural basis of the increased laccase activity. Wang H, Liu X, Zhao J, Yue Q, Yan Y, Gao Z, Dong Y, Zhang Z, Fan Y, Tian J, Wu N, Gong Y. Sci Rep 8 14252 (2018)
  91. Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on L-cysteine self-assembled gold electrode. Patil B, Kobayashi Y, Fujikawa S, Okajima T, Mao L, Ohsaka T. Bioelectrochemistry 95 15-22 (2014)
  92. Improvement of Laccase Production by Thielavia terrestris Co3Bag1. Enhancing the Bio-Catalytic Performance of the Native Thermophilic TtLacA via Immobilization in Copper Alginate Gel Beads. Gutiérrez-Antón M, Santiago-Hernández A, Rodríguez-Mendoza J, Cano-Ramírez C, Bustos-Jaimes I, Aguilar-Osorio G, Campos JE, Hidalgo-Lara ME. J Fungi (Basel) 9 308 (2023)
  93. A His-tagged Melanocarpus albomyces laccase and its electrochemistry upon immobilisation on NTA-modified electrodes and in conducting polymer films. Sosna M, Boer H, Bartlett PN. Chemphyschem 14 2225-2231 (2013)
  94. A laccase study by electrospray ionization Fourier transform ion cyclotron resonance MS: copper depletion, glycoforms and stability. Marjasvaara A, Kruus K, Vainiotalo P. J Mass Spectrom 41 91-97 (2006)
  95. Biomimetic modeling of copper complexes: a study of enantioselective catalytic oxidation on d-(+)-catechin and L-( - )-epicatechin with copper complexes. Mutti FG, Pievo R, Sgobba M, Gullotti M, Santagostini L. Bioinorg Chem Appl 762029 (2008)
  96. Characterization and mapping of a putative laccase-like multicopper oxidase gene in the barley (Hordeum vulgare L.). Tomková L, Kučera L, Vaculová K, Milotová J. Plant Sci 183 77-85 (2012)
  97. Laccases as palladium oxidases. Mekmouche Y, Schneider L, Rousselot-Pailley P, Faure B, Simaan AJ, Bochot C, Réglier M, Tron T. Chem Sci 6 1247-1251 (2015)
  98. Mineralogical and Genomic Constraints on the Origin of Microbial Mn Oxide Formation in Complexed Microbial Community at the Terrestrial Hot Spring. Tsukamoto Y, Kakegawa T. Life (Basel) 12 816 (2022)
  99. On Dioxygen Permeation of MaL Laccase from the Thermophilic Fungus Melanocarpus albomyces: An all-Atom Molecular Dynamics Investigation. Pietra F. Chem Biodivers 13 1493-1501 (2016)
  100. Overexpression of a Laccase with Dye Decolorization Activity from Bacillus sp. Induced in Escherichia coli. Guo H, Zheng B, Jiang D, Qin W. J Mol Microbiol Biotechnol 27 217-227 (2017)
  101. N-doped carbon Co/CoOx with laccase-like activity for detection of epinephrine. Zhu J, Cui Q, Long T, Wang Y, Wen W, Tian Z, Zhang X, Wang S. Mikrochim Acta 190 459 (2023)
  102. Preparation of chitosan/Co-Fe-layered double hydroxides and its performance for removing 2,4-dichlorophenol. Yang B, Liu J, Liu Z, Wang Y, Cai J, Peng L. Environ Sci Pollut Res Int 26 3814-3822 (2019)
  103. Unusual Oligomeric Laccase-like Oxidases from Ascomycete Curvularia geniculata VKM F-3561 Polymerizing Phenylpropanoids and Phenolic Compounds under Neutral Environmental Conditions. Renfeld ZV, Chernykh AM, Baskunov BP, Gaidina AS, Myasoedova NM, Egorova AD, Moiseeva OV, Gorina SY, Kolomytseva MP. Microorganisms 11 2698 (2023)