1ik9 Citations

Crystal structure of an Xrcc4-DNA ligase IV complex.

Nat Struct Biol 8 1015-9 (2001)
Cited: 160 times
EuropePMC logo PMID: 11702069

Abstract

A complex of two proteins, Xrcc4 and DNA ligase IV, plays a fundamental role in DNA non-homologous end joining (NHEJ), a cellular function required for double-strand break repair and V(D)J recombination. Here we report the crystal structure of human Xrcc4 bound to a polypeptide that corresponds to the DNA ligase IV sequence linking its two BRCA1 C-terminal (BRCT) domains. In the complex, a single ligase chain binds asymmetrically to an Xrcc4 dimer. The helical tails of Xrcc4 undergo a substantial conformational change relative to the uncomplexed protein, forming a coiled coil that unwinds upon ligase binding, leading to a flat interaction surface. A buried network of charged hydrogen bonds surrounded by extensive hydrophobic contacts explains the observed tightness of the interaction. The strong conservation of residues at the interface between the two proteins provides evidence that the observed mode of interaction has been maintained in NHEJ throughout evolution.

Reviews - 1ik9 mentioned but not cited (1)

Articles - 1ik9 mentioned but not cited (16)

  1. Interactome analysis identifies a new paralogue of XRCC4 in non-homologous end joining DNA repair pathway. Xing M, Yang M, Huo W, Feng F, Wei L, Jiang W, Ning S, Yan Z, Li W, Wang Q, Hou M, Dong C, Guo R, Gao G, Ji J, Zha S, Lan L, Liang H, Xu D. Nat Commun 6 6233 (2015)
  2. Mutations in the NHEJ component XRCC4 cause primordial dwarfism. Murray JE, van der Burg M, IJspeert H, Carroll P, Wu Q, Ochi T, Leitch A, Miller ES, Kysela B, Jawad A, Bottani A, Brancati F, Cappa M, Cormier-Daire V, Deshpande C, Faqeih EA, Graham GE, Ranza E, Blundell TL, Jackson AP, Stewart GS, Bicknell LS. Am J Hum Genet 96 412-424 (2015)
  3. The spatial organization of non-homologous end joining: from bridging to end joining. Ochi T, Wu Q, Blundell TL. DNA Repair (Amst) 17 98-109 (2014)
  4. Skip residues modulate the structural properties of the myosin rod and guide thick filament assembly. Taylor KC, Buvoli M, Korkmaz EN, Buvoli A, Zheng Y, Heinze NT, Cui Q, Leinwand LA, Rayment I. Proc Natl Acad Sci U S A 112 E3806-15 (2015)
  5. Ancient and recent adaptive evolution of primate non-homologous end joining genes. Demogines A, East AM, Lee JH, Grossman SR, Sabeti PC, Paull TT, Sawyer SL. PLoS Genet 6 e1001169 (2010)
  6. A composite approach towards a complete model of the myosin rod. Korkmaz EN, Taylor KC, Andreas MP, Ajay G, Heinze NT, Cui Q, Rayment I. Proteins 84 172-189 (2016)
  7. Structural attributes for the recognition of weak and anomalous regions in coiled-coils of myosins and other motor proteins. Sunitha MS, Nair AG, Charya A, Jadhav K, Mukhopadhyay S, Sowdhamini R. BMC Res Notes 5 530 (2012)
  8. Genome-wide screens for sensitivity to ionizing radiation identify the fission yeast nonhomologous end joining factor Xrc4. Li J, Yu Y, Suo F, Sun LL, Zhao D, Du LL. G3 (Bethesda) 4 1297-1306 (2014)
  9. Structural biology of DNA repair: spatial organisation of the multicomponent complexes of nonhomologous end joining. Ochi T, Sibanda BL, Wu Q, Chirgadze DY, Bolanos-Garcia VM, Blundell TL. J Nucleic Acids 2010 621695 (2010)
  10. CCDC61/VFL3 Is a Paralog of SAS6 and Promotes Ciliary Functions. Ochi T, Quarantotti V, Lin H, Jullien J, Rosa E Silva I, Boselli F, Barnabas DD, Johnson CM, McLaughlin SH, Freund SMV, Blackford AN, Kimata Y, Goldstein RE, Jackson SP, Blundell TL, Dutcher SK, Gergely F, van Breugel M. Structure 28 674-689.e11 (2020)
  11. Microarray screening reveals two non-conventional SUMO-binding modules linked to DNA repair by non-homologous end-joining. Cabello-Lobato MJ, Jenner M, Cisneros-Aguirre M, Brüninghoff K, Sandy Z, da Costa IC, Jowitt TA, Loch CM, Jackson SP, Wu Q, Mootz HD, Stark JM, Cliff MJ, Schmidt CK. Nucleic Acids Res 50 4732-4754 (2022)
  12. Stages, scaffolds and strings in the spatial organisation of non-homologous end joining: Insights from X-ray diffraction and Cryo-EM. Liang S, Chaplin AK, Stavridi AK, Appleby R, Hnizda A, Blundell TL. Prog Biophys Mol Biol 163 60-73 (2021)
  13. Design considerations in coiled-coil fusion constructs for the structural determination of a problematic region of the human cardiac myosin rod. Andreas MP, Ajay G, Gellings JA, Rayment I. J Struct Biol 200 219-228 (2017)
  14. 1H, 13C, 15N backbone resonance assignment for the 1-164 construct of human XRCC4. Cabello-Lobato MJ, Schmidt CK, Cliff MJ. Biomol NMR Assign 15 389-395 (2021)
  15. A Two-Layer SVM Ensemble-Classifier to Predict Interface Residue Pairs of Protein Trimers. Lyu Y, Gong X. Molecules 25 E4353 (2020)
  16. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (46)

  1. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Lieber MR. Annu Rev Biochem 79 181-211 (2010)
  2. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Nat Rev Mol Cell Biol 18 495-506 (2017)
  3. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Mahaney BL, Meek K, Lees-Miller SP. Biochem J 417 639-650 (2009)
  4. Regulation and mechanisms of mammalian double-strand break repair. Valerie K, Povirk LF. Oncogene 22 5792-5812 (2003)
  5. Nonhomologous end joining in yeast. Daley JM, Palmbos PL, Wu D, Wilson TE. Annu Rev Genet 39 431-451 (2005)
  6. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. Pannunzio NR, Watanabe G, Lieber MR. J Biol Chem 293 10512-10523 (2018)
  7. The endless tale of non-homologous end-joining. Weterings E, Chen DJ. Cell Res 18 114-124 (2008)
  8. Eukaryotic DNA ligases: structural and functional insights. Ellenberger T, Tomkinson AE. Annu Rev Biochem 77 313-338 (2008)
  9. Interactions between BRCT repeats and phosphoproteins: tangled up in two. Glover JN, Williams RS, Lee MS. Trends Biochem Sci 29 579-585 (2004)
  10. The DNA-dependent protein kinase: the director at the end. Meek K, Gupta S, Ramsden DA, Lees-Miller SP. Immunol Rev 200 132-141 (2004)
  11. The mechanism of non-homologous end-joining: a synopsis of synapsis. Weterings E, van Gent DC. DNA Repair (Amst) 3 1425-1435 (2004)
  12. An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. O'Driscoll M, Gennery AR, Seidel J, Concannon P, Jeggo PA. DNA Repair (Amst) 3 1227-1235 (2004)
  13. Non-homologous end-joining, a sticky affair. van Gent DC, van der Burg M. Oncogene 26 7731-7740 (2007)
  14. Detection and repair of ionizing radiation-induced DNA double strand breaks: new developments in nonhomologous end joining. Wang C, Lees-Miller SP. Int J Radiat Oncol Biol Phys 86 440-449 (2013)
  15. Non-homologous end-joining factors of Saccharomyces cerevisiae. Dudásová Z, Dudás A, Chovanec M. FEMS Microbiol Rev 28 581-601 (2004)
  16. DNA double-strand break repair from head to tail. Hopfner KP, Putnam CD, Tainer JA. Curr Opin Struct Biol 12 115-122 (2002)
  17. The clinical impact of deficiency in DNA non-homologous end-joining. Woodbine L, Gennery AR, Jeggo PA. DNA Repair (Amst) 16 84-96 (2014)
  18. BRCT domains: easy as one, two, three. Leung CC, Glover JN. Cell Cycle 10 2461-2470 (2011)
  19. Non-homologous end joining: emerging themes and unanswered questions. Radhakrishnan SK, Jette N, Lees-Miller SP. DNA Repair (Amst) 17 2-8 (2014)
  20. V(D)J and immunoglobulin class switch recombinations: a paradigm to study the regulation of DNA end-joining. Soulas-Sprauel P, Rivera-Munoz P, Malivert L, Le Guyader G, Abramowski V, Revy P, de Villartay JP. Oncogene 26 7780-7791 (2007)
  21. Choosing the right path: does DNA-PK help make the decision? Neal JA, Meek K. Mutat Res 711 73-86 (2011)
  22. DNA double-strand break repair in a cellular context. Shibata A, Jeggo PA. Clin Oncol (R Coll Radiol) 26 243-249 (2014)
  23. Nonhomologous end joining: a good solution for bad ends. Waters CA, Strande NT, Wyatt DW, Pryor JM, Ramsden DA. DNA Repair (Amst) 17 39-51 (2014)
  24. The role of the nonhomologous end-joining DNA double-strand break repair pathway in telomere biology. Riha K, Heacock ML, Shippen DE. Annu Rev Genet 40 237-277 (2006)
  25. Structural insights into NHEJ: building up an integrated picture of the dynamic DSB repair super complex, one component and interaction at a time. Williams GJ, Hammel M, Radhakrishnan SK, Ramsden D, Lees-Miller SP, Tainer JA. DNA Repair (Amst) 17 110-120 (2014)
  26. Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Blundell TL, Sibanda BL, Montalvão RW, Brewerton S, Chelliah V, Worth CL, Harmer NJ, Davies O, Burke D. Philos Trans R Soc Lond B Biol Sci 361 413-423 (2006)
  27. XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair. Mahaney BL, Hammel M, Meek K, Tainer JA, Lees-Miller SP. Biochem Cell Biol 91 31-41 (2013)
  28. Recognition and repair of chemically heterogeneous structures at DNA ends. Andres SN, Schellenberg MJ, Wallace BD, Tumbale P, Williams RS. Environ Mol Mutagen 56 1-21 (2015)
  29. DNA repair pathways in trypanosomatids: from DNA repair to drug resistance. Genois MM, Paquet ER, Laffitte MC, Maity R, Rodrigue A, Ouellette M, Masson JY. Microbiol Mol Biol Rev 78 40-73 (2014)
  30. Ligase IV syndrome. Chistiakov DA, Voronova NV, Chistiakov AP. Eur J Med Genet 52 373-378 (2009)
  31. ATP-dependent DNA ligases. Martin IV, MacNeill SA. Genome Biol 3 REVIEWS3005 (2002)
  32. BRCT domains: A little more than kin, and less than kind. Gerloff DL, Woods NT, Farago AA, Monteiro AN. FEBS Lett 586 2711-2716 (2012)
  33. Molecular determinants of radiosensitivity in normal and tumor tissue: A bioinformatic approach. Pavlopoulou A, Bagos PG, Koutsandrea V, Georgakilas AG. Cancer Lett 403 37-47 (2017)
  34. Non-homologous end joining: advances and frontiers. Yang K, Guo R, Xu D. Acta Biochim Biophys Sin (Shanghai) 48 632-640 (2016)
  35. Artemis sheds new light on V(D)J recombination. Le Deist F, Poinsignon C, Moshous D, Fischer A, de Villartay JP. Immunol Rev 200 142-155 (2004)
  36. Dynamic mechanism of nick recognition by DNA ligase. Cherepanov AV, de Vries S. Eur J Biochem 269 5993-5999 (2002)
  37. XLF/Cernunnos: An important but puzzling participant in the nonhomologous end joining DNA repair pathway. Menon V, Povirk LF. DNA Repair (Amst) 58 29-37 (2017)
  38. Cernunnos-XLF, a recently identified non-homologous end-joining factor required for the development of the immune system. Revy P, Malivert L, de Villartay JP. Curr Opin Allergy Clin Immunol 6 416-420 (2006)
  39. Regulation of non-homologous end joining via post-translational modifications of components of the ligation step. Durdíková K, Chovanec M. Curr Genet 63 591-605 (2017)
  40. Achieving high signal-to-noise in cell regulatory systems: Spatial organization of multiprotein transmembrane assemblies of FGFR and MET receptors. Blaszczyk M, Harmer NJ, Chirgadze DY, Ascher DB, Blundell TL. Prog Biophys Mol Biol 118 103-111 (2015)
  41. What Combined Measurements From Structures and Imaging Tell Us About DNA Damage Responses. Brosey CA, Ahmed Z, Lees-Miller SP, Tainer JA. Methods Enzymol 592 417-455 (2017)
  42. Role and regulation of human XRCC4-like factor/cernunnos. Dahm K. J Cell Biochem 104 1534-1540 (2008)
  43. Druggable binding sites in the multicomponent assemblies that characterise DNA double-strand-break repair through non-homologous end joining. Kefala Stavridi A, Appleby R, Liang S, Blundell TL, Chaplin AK. Essays Biochem 64 791-806 (2020)
  44. Double-Stranded Break Repair in Mammalian Cells and Precise Genome Editing. Ali A, Xiao W, Babar ME, Bi Y. Genes (Basel) 13 737 (2022)
  45. Mechanistic Insights From Single-Molecule Studies of Repair of Double Strand Breaks. Kong M, Greene EC. Front Cell Dev Biol 9 745311 (2021)
  46. How to fix DNA breaks: new insights into the mechanism of non-homologous end joining. Vogt A, He Y, Lees-Miller SP. Biochem Soc Trans 51 1789-1800 (2023)

Articles citing this publication (97)

  1. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Ahnesorg P, Smith P, Jackson SP. Cell 124 301-313 (2006)
  2. DNA double strand break repair via non-homologous end-joining. Davis AJ, Chen DJ. Transl Cancer Res 2 130-143 (2013)
  3. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Srivastava M, Nambiar M, Sharma S, Karki SS, Goldsmith G, Hegde M, Kumar S, Pandey M, Singh RK, Ray P, Natarajan R, Kelkar M, De A, Choudhary B, Raghavan SC. Cell 151 1474-1487 (2012)
  4. Structures of SAS-6 suggest its organization in centrioles. van Breugel M, Hirono M, Andreeva A, Yanagisawa HA, Yamaguchi S, Nakazawa Y, Morgner N, Petrovich M, Ebong IO, Robinson CV, Johnson CM, Veprintsev D, Zuber B. Science 331 1196-1199 (2011)
  5. DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Ochi T, Blackford AN, Coates J, Jhujh S, Mehmood S, Tamura N, Travers J, Wu Q, Draviam VM, Robinson CV, Blundell TL, Jackson SP. Science 347 185-188 (2015)
  6. DNA binding and nucleotide flipping by the human DNA repair protein AGT. Daniels DS, Woo TT, Luu KX, Noll DM, Clarke ND, Pegg AE, Tainer JA. Nat Struct Mol Biol 11 714-720 (2004)
  7. Analysis of alpha-helical coiled coils with the program TWISTER reveals a structural mechanism for stutter compensation. Strelkov SV, Burkhard P. J Struct Biol 137 54-64 (2002)
  8. Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1. Williams RS, Lee MS, Hau DD, Glover JN. Nat Struct Mol Biol 11 519-525 (2004)
  9. A supramodular FHA/BRCT-repeat architecture mediates Nbs1 adaptor function in response to DNA damage. Lloyd J, Chapman JR, Clapperton JA, Haire LF, Hartsuiker E, Li J, Carr AM, Jackson SP, Smerdon SJ. Cell 139 100-111 (2009)
  10. Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. Derbyshire DJ, Basu BP, Serpell LC, Joo WS, Date T, Iwabuchi K, Doherty AJ. EMBO J 21 3863-3872 (2002)
  11. XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. Hammel M, Rey M, Yu Y, Mani RS, Classen S, Liu M, Pique ME, Fang S, Mahaney BL, Weinfeld M, Schriemer DC, Lees-Miller SP, Tainer JA. J Biol Chem 286 32638-32650 (2011)
  12. The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Li M, Lu LY, Yang CY, Wang S, Yu X. Genes Dev 27 1752-1768 (2013)
  13. Crystal structure of human XLF: a twist in nonhomologous DNA end-joining. Andres SN, Modesti M, Tsai CJ, Chu G, Junop MS. Mol Cell 28 1093-1101 (2007)
  14. ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. Balmus G, Pilger D, Coates J, Demir M, Sczaniecka-Clift M, Barros AC, Woods M, Fu B, Yang F, Chen E, Ostermaier M, Stankovic T, Ponstingl H, Herzog M, Yusa K, Martinez FM, Durant ST, Galanty Y, Beli P, Adams DJ, Bradley A, Metzakopian E, Forment JV, Jackson SP. Nat Commun 10 87 (2019)
  15. Structural and functional interaction between the human DNA repair proteins DNA ligase IV and XRCC4. Wu PY, Frit P, Meesala S, Dauvillier S, Modesti M, Andres SN, Huang Y, Sekiguchi J, Calsou P, Salles B, Junop MS. Mol Cell Biol 29 3163-3172 (2009)
  16. Structural characterization of filaments formed by human Xrcc4-Cernunnos/XLF complex involved in nonhomologous DNA end-joining. Ropars V, Drevet P, Legrand P, Baconnais S, Amram J, Faure G, Márquez JA, Piétrement O, Guerois R, Callebaut I, Le Cam E, Revy P, de Villartay JP, Charbonnier JB. Proc Natl Acad Sci U S A 108 12663-12668 (2011)
  17. XLF regulates filament architecture of the XRCC4·ligase IV complex. Hammel M, Yu Y, Fang S, Lees-Miller SP, Tainer JA. Structure 18 1431-1442 (2010)
  18. Analysis of DNA ligase IV mutations found in LIG4 syndrome patients: the impact of two linked polymorphisms. Girard PM, Kysela B, Härer CJ, Doherty AJ, Jeggo PA. Hum Mol Genet 13 2369-2376 (2004)
  19. Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ. Li Y, Chirgadze DY, Bolanos-Garcia VM, Sibanda BL, Davies OR, Ahnesorg P, Jackson SP, Blundell TL. EMBO J 27 290-300 (2008)
  20. DNA-PK phosphorylation sites in XRCC4 are not required for survival after radiation or for V(D)J recombination. Yu Y, Wang W, Ding Q, Ye R, Chen D, Merkle D, Schriemer D, Meek K, Lees-Miller SP. DNA Repair (Amst) 2 1239-1252 (2003)
  21. Interaction of the Ku heterodimer with the DNA ligase IV/Xrcc4 complex and its regulation by DNA-PK. Costantini S, Woodbine L, Andreoli L, Jeggo PA, Vindigni A. DNA Repair (Amst) 6 712-722 (2007)
  22. Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. Calsou P, Delteil C, Frit P, Drouet J, Salles B. J Mol Biol 326 93-103 (2003)
  23. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Dooley J, Tian L, Schonefeldt S, Delghingaro-Augusto V, Garcia-Perez JE, Pasciuto E, Di Marino D, Carr EJ, Oskolkov N, Lyssenko V, Franckaert D, Lagou V, Overbergh L, Vandenbussche J, Allemeersch J, Chabot-Roy G, Dahlstrom JE, Laybutt DR, Petrovsky N, Socha L, Gevaert K, Jetten AM, Lambrechts D, Linterman MA, Goodnow CC, Nolan CJ, Lesage S, Schlenner SM, Liston A. Nat Genet 48 519-527 (2016)
  24. Early embryonic lethality due to targeted inactivation of DNA ligase III. Puebla-Osorio N, Lacey DB, Alt FW, Zhu C. Mol Cell Biol 26 3935-3941 (2006)
  25. Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression. Wang J, Pluth JM, Cooper PK, Cowan MJ, Chen DJ, Yannone SM. DNA Repair (Amst) 4 556-570 (2005)
  26. SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Yurchenko V, Xue Z, Sadofsky MJ. Mol Cell Biol 26 1786-1794 (2006)
  27. Different DNA End Configurations Dictate Which NHEJ Components Are Most Important for Joining Efficiency. Chang HHY, Watanabe G, Gerodimos CA, Ochi T, Blundell TL, Jackson SP, Lieber MR. J Biol Chem 291 24377-24389 (2016)
  28. End-joining repair of double-strand breaks in Drosophila melanogaster is largely DNA ligase IV independent. McVey M, Radut D, Sekelsky JJ. Genetics 168 2067-2076 (2004)
  29. Evolutionary and functional conservation of the DNA non-homologous end-joining protein, XLF/Cernunnos. Hentges P, Ahnesorg P, Pitcher RS, Bruce CK, Kysela B, Green AJ, Bianchi J, Wilson TE, Jackson SP, Doherty AJ. J Biol Chem 281 37517-37526 (2006)
  30. PAXX promotes KU accumulation at DNA breaks and is essential for end-joining in XLF-deficient mice. Liu X, Shao Z, Jiang W, Lee BJ, Zha S. Nat Commun 8 13816 (2017)
  31. Phosphorylation and regulation of DNA ligase IV stability by DNA-dependent protein kinase. Wang YG, Nnakwe C, Lane WS, Modesti M, Frank KM. J Biol Chem 279 37282-37290 (2004)
  32. Structure of the tropomyosin overlap complex from chicken smooth muscle: insight into the diversity of N-terminal recognition. Frye J, Klenchin VA, Rayment I. Biochemistry 49 4908-4920 (2010)
  33. Dual requirement for flexibility and specificity for binding of the coiled-coil tropomyosin to its target, actin. Singh A, Hitchcock-DeGregori SE. Structure 14 43-50 (2006)
  34. Polymorphisms of LIG4 and XRCC4 involved in the NHEJ pathway interact to modify risk of glioma. Liu Y, Zhou K, Zhang H, Shugart YY, Chen L, Xu Z, Zhong Y, Liu H, Jin L, Wei Q, Huang F, Lu D, Zhou L. Hum Mutat 29 381-389 (2008)
  35. Extreme growth failure is a common presentation of ligase IV deficiency. Murray JE, Bicknell LS, Yigit G, Duker AL, van Kogelenberg M, Haghayegh S, Wieczorek D, Kayserili H, Albert MH, Wise CA, Brandon J, Kleefstra T, Warris A, van der Flier M, Bamforth JS, Doonanco K, Adès L, Ma A, Field M, Johnson D, Shackley F, Firth H, Woods CG, Nürnberg P, Gatti RA, Hurles M, Bober MB, Wollnik B, Jackson AP. Hum Mutat 35 76-85 (2014)
  36. Tetramerization and DNA ligase IV interaction of the DNA double-strand break repair protein XRCC4 are mutually exclusive. Modesti M, Junop MS, Ghirlando R, van de Rakt M, Gellert M, Yang W, Kanaar R. J Mol Biol 334 215-228 (2003)
  37. Structure of an Xrcc4-DNA ligase IV yeast ortholog complex reveals a novel BRCT interaction mode. Doré AS, Furnham N, Davies OR, Sibanda BL, Chirgadze DY, Jackson SP, Pellegrini L, Blundell TL. DNA Repair (Amst) 5 362-368 (2006)
  38. Non-homologous end-joining partners in a helical dance: structural studies of XLF-XRCC4 interactions. Wu Q, Ochi T, Matak-Vinkovic D, Robinson CV, Chirgadze DY, Blundell TL. Biochem Soc Trans 39 1387-92, suppl 2 p following 1392 (2011)
  39. Recruitment of Saccharomyces cerevisiae Dnl4-Lif1 complex to a double-strand break requires interactions with Yku80 and the Xrs2 FHA domain. Palmbos PL, Wu D, Daley JM, Wilson TE. Genetics 180 1809-1819 (2008)
  40. XRCC4's interaction with XLF is required for coding (but not signal) end joining. Roy S, Andres SN, Vergnes A, Neal JA, Xu Y, Yu Y, Lees-Miller SP, Junop M, Modesti M, Meek K. Nucleic Acids Res 40 1684-1694 (2012)
  41. SAS-6 coiled-coil structure and interaction with SAS-5 suggest a regulatory mechanism in C. elegans centriole assembly. Qiao R, Cabral G, Lettman MM, Dammermann A, Dong G. EMBO J 31 4334-4347 (2012)
  42. Ku heterodimer-independent end joining in Trypanosoma brucei cell extracts relies upon sequence microhomology. Burton P, McBride DJ, Wilkes JM, Barry JD, McCulloch R. Eukaryot Cell 6 1773-1781 (2007)
  43. Modes of interaction among yeast Nej1, Lif1 and Dnl4 proteins and comparison to human XLF, XRCC4 and Lig4. Deshpande RA, Wilson TE. DNA Repair (Amst) 6 1507-1516 (2007)
  44. An Intrinsically Disordered APLF Links Ku, DNA-PKcs, and XRCC4-DNA Ligase IV in an Extended Flexible Non-homologous End Joining Complex. Hammel M, Yu Y, Radhakrishnan SK, Chokshi C, Tsai MS, Matsumoto Y, Kuzdovich M, Remesh SG, Fang S, Tomkinson AE, Lees-Miller SP, Tainer JA. J Biol Chem 291 26987-27006 (2016)
  45. Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility. Zhao P, Zou P, Zhao L, Yan W, Kang C, Jiang T, You Y. BMC Cancer 13 234 (2013)
  46. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining. Kapusta A, Matsuda A, Marmignon A, Ku M, Silve A, Meyer E, Forney JD, Malinsky S, Bétermier M. PLoS Genet 7 e1002049 (2011)
  47. Delineation of the Xrcc4-interacting region in the globular head domain of cernunnos/XLF. Malivert L, Ropars V, Nunez M, Drevet P, Miron S, Faure G, Guerois R, Mornon JP, Revy P, Charbonnier JB, Callebaut I, de Villartay JP. J Biol Chem 285 26475-26483 (2010)
  48. Nepenthesin from monkey cups for hydrogen/deuterium exchange mass spectrometry. Rey M, Yang M, Burns KM, Yu Y, Lees-Miller SP, Schriemer DC. Mol Cell Proteomics 12 464-472 (2013)
  49. Structure of C-terminal tandem BRCT repeats of Rtt107 protein reveals critical role in interaction with phosphorylated histone H2A during DNA damage repair. Li X, Liu K, Li F, Wang J, Huang H, Wu J, Shi Y. J Biol Chem 287 9137-9146 (2012)
  50. Amyotrophic lateral sclerosis-associated TDP-43 mutation Q331K prevents nuclear translocation of XRCC4-DNA ligase 4 complex and is linked to genome damage-mediated neuronal apoptosis. Guerrero EN, Mitra J, Wang H, Rangaswamy S, Hegde PM, Basu P, Rao KS, Hegde ML. Hum Mol Genet 28 2459-2476 (2019)
  51. Structural basis of DNA ligase IV-Artemis interaction in nonhomologous end-joining. De Ioannes P, Malu S, Cortes P, Aggarwal AK. Cell Rep 2 1505-1512 (2012)
  52. Structural insights into the role of domain flexibility in human DNA ligase IV. Ochi T, Wu Q, Chirgadze DY, Grossmann JG, Bolanos-Garcia VM, Blundell TL. Structure 20 1212-1222 (2012)
  53. NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain. Pustovalova Y, Maciejewski MW, Korzhnev DM. J Mol Biol 425 3091-3105 (2013)
  54. The Drosophila melanogaster DNA Ligase IV gene plays a crucial role in the repair of radiation-induced DNA double-strand breaks and acts synergistically with Rad54. Gorski MM, Eeken JC, de Jong AW, Klink I, Loos M, Romeijn RJ, van Veen BL, Mullenders LH, Ferro W, Pastink A. Genetics 165 1929-1941 (2003)
  55. Mapping of the laminin-binding site of the N-terminal agrin domain (NtA). Mascarenhas JB, Rüegg MA, Winzen U, Halfter W, Engel J, Stetefeld J. EMBO J 22 529-536 (2003)
  56. Clinical spectrum of LIG4 deficiency is broadened with severe dysmaturity, primordial dwarfism, and neurological abnormalities. IJspeert H, Warris A, van der Flier M, Reisli I, Keles S, Chishimba S, van Dongen JJ, van Gent DC, van der Burg M. Hum Mutat 34 1611-1614 (2013)
  57. DNA ligases as therapeutic targets. Tomkinson AE, Howes TR, Wiest NE. Transl Cancer Res 2 1219 (2013)
  58. Genetic factors in individual radiation sensitivity. Hornhardt S, Rößler U, Sauter W, Rosenberger A, Illig T, Bickeböller H, Wichmann HE, Gomolka M. DNA Repair (Amst) 16 54-65 (2014)
  59. Electron microscopy of Xrcc4 and the DNA ligase IV-Xrcc4 DNA repair complex. Recuero-Checa MA, Doré AS, Arias-Palomo E, Rivera-Calzada A, Scheres SH, Maman JD, Pearl LH, Llorca O. DNA Repair (Amst) 8 1380-1389 (2009)
  60. Agrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration. Vaghchhipawala ZE, Vasudevan B, Lee S, Morsy MR, Mysore KS. Plant Cell 24 4110-4123 (2012)
  61. Knowledge-based real-space explorations for low-resolution structure determination. Furnham N, Doré AS, Chirgadze DY, de Bakker PI, Depristo MA, Blundell TL. Structure 14 1313-1320 (2006)
  62. Structure-function analysis of the C-terminal domain of CNM67, a core component of the Saccharomyces cerevisiae spindle pole body. Klenchin VA, Frye JJ, Jones MH, Winey M, Rayment I. J Biol Chem 286 18240-18250 (2011)
  63. Human DNA ligase IV is able to use NAD+ as an alternative adenylation donor for DNA ends ligation. Chen SH, Yu X. Nucleic Acids Res 47 1321-1334 (2019)
  64. Adenoviral-mediated mda-7 expression suppresses DNA repair capacity and radiosensitizes non-small-cell lung cancer cells. Nishikawa T, Munshi A, Story MD, Ismail S, Stevens C, Chada S, Meyn RE. Oncogene 23 7125-7131 (2004)
  65. End-processing during non-homologous end-joining: a role for exonuclease 1. Bahmed K, Seth A, Nitiss KC, Nitiss JL. Nucleic Acids Res 39 970-978 (2011)
  66. Identification of a novel motif in DNA ligases exemplified by DNA ligase IV. Marchetti C, Walker SA, Odreman F, Vindigni A, Doherty AJ, Jeggo P. DNA Repair (Amst) 5 788-798 (2006)
  67. Prognostic significance of XRCC4 expression in hepatocellular carcinoma. Lu J, Wang XZ, Zhang TQ, Huang XY, Yao JG, Wang C, Wei ZH, Ma Y, Wu XM, Luo CY, Xia Q, Long XD. Oncotarget 8 87955-87970 (2017)
  68. Radiation-induced XRCC4 association with chromatin DNA analyzed by biochemical fractionation. Kamdar RP, Matsumoto Y. J Radiat Res 51 303-313 (2010)
  69. Spatial and temporal organization of multi-protein assemblies: achieving sensitive control in information-rich cell-regulatory systems. Bolanos-Garcia VM, Wu Q, Ochi T, Chirgadze DY, Sibanda BL, Blundell TL. Philos Trans A Math Phys Eng Sci 370 3023-3039 (2012)
  70. Polymorphisms in DNA repair genes and risk of non-Hodgkin lymphoma in a pooled analysis of three studies. Shen M, Menashe I, Morton LM, Zhang Y, Armstrong B, Wang SS, Lan Q, Hartge P, Purdue MP, Cerhan JR, Grulich A, Cozen W, Yeager M, Holford TR, Vajdic CM, Davis S, Leaderer B, Kricker A, Severson RK, Zahm SH, Chatterjee N, Rothman N, Chanock SJ, Zheng T. Br J Haematol 151 239-244 (2010)
  71. Lysine 271 but not lysine 210 of XRCC4 is required for the nuclear localization of XRCC4 and DNA ligase IV. Fukuchi M, Wanotayan R, Liu S, Imamichi S, Sharma MK, Matsumoto Y. Biochem Biophys Res Commun 461 687-694 (2015)
  72. Multimerization properties of PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements. Dubois E, Mathy N, Régnier V, Bischerour J, Baudry C, Trouslard R, Bétermier M. Nucleic Acids Res 45 3204-3216 (2017)
  73. "Similarity trap" in protein-protein interactions could be carcinogenic: simulations of p53 core domain complexed with 53BP1 and BRCA1 BRCT domains. Liu J, Pan Y, Ma B, Nussinov R. Structure 14 1811-1821 (2006)
  74. A critical role for the C-terminus of Nej1 protein in Lif1p association, DNA binding and non-homologous end-joining. Sulek M, Yarrington R, McGibbon G, Boeke JD, Junop M. DNA Repair (Amst) 6 1805-1818 (2007)
  75. C-Terminal region of DNA ligase IV drives XRCC4/DNA ligase IV complex to chromatin. Liu S, Liu X, Kamdar RP, Wanotayan R, Sharma MK, Adachi N, Matsumoto Y. Biochem Biophys Res Commun 439 173-178 (2013)
  76. Structure-Based Virtual Ligand Screening on the XRCC4/DNA Ligase IV Interface. Menchon G, Bombarde O, Trivedi M, Négrel A, Inard C, Giudetti B, Baltas M, Milon A, Modesti M, Czaplicki G, Calsou P. Sci Rep 6 22878 (2016)
  77. Emerging models for DNA repair: Dictyostelium discoideum as a model for nonhomologous end-joining. Pears CJ, Lakin ND. DNA Repair (Amst) 17 121-131 (2014)
  78. Lif1 SUMOylation and its role in non-homologous end-joining. Vigasova D, Sarangi P, Kolesar P, Vlasáková D, Slezakova Z, Altmannova V, Nikulenkov F, Anrather D, Gith R, Zhao X, Chovanec M, Krejci L. Nucleic Acids Res 41 5341-5353 (2013)
  79. Ovarian cancer and DNA repair: DNA ligase IV as a potential key. Assis J, Pereira D, Medeiros R. World J Clin Oncol 4 14-24 (2013)
  80. Evolutionary diversity and novelty of DNA repair genes in asexual Bdelloid rotifers. Hecox-Lea BJ, Mark Welch DB. BMC Evol Biol 18 177 (2018)
  81. Reprint of "The clinical impact of deficiency in DNA non-homologous end-joining". Woodbine L, Gennery AR, Jeggo PA. DNA Repair (Amst) 17 9-20 (2014)
  82. Absence of XRCC4 and its paralogs in human cells reveal differences in outcomes for DNA repair and V(D)J recombination. Ruis B, Molan A, Takasugi T, Hendrickson EA. DNA Repair (Amst) 85 102738 (2020)
  83. Monoubiquitination of the nonhomologous end joining protein XRCC4. Foster RE, Nnakwe C, Woo L, Frank KM. Biochem Biophys Res Commun 341 175-183 (2006)
  84. Positive selection on the nonhomologous end-joining factor Cernunnos-XLF in the human lineage. Pavlicek A, Jurka J. Biol Direct 1 15 (2006)
  85. The active DNA-PK holoenzyme occupies a tensed state in a staggered synaptic complex. Hepburn M, Saltzberg DJ, Lee L, Fang S, Atkinson C, Strynadka NCJ, Sali A, Lees-Miller SP, Schriemer DC. Structure 29 467-478.e6 (2021)
  86. Cloning, localization and focus formation at DNA damage sites of canine XRCC4. Koike M, Yutoku Y, Koike A. J Vet Med Sci 78 1865-1871 (2017)
  87. DNA double strand break repair in mitosis is suppressed by phosphorylation of XRCC4. Lees-Miller SP. PLoS Genet 10 e1004598 (2014)
  88. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation. Wanotayan R, Fukuchi M, Imamichi S, Sharma MK, Matsumoto Y. Biochem Biophys Res Commun 457 526-531 (2015)
  89. Delineation of key XRCC4/Ligase IV interfaces for targeted disruption of non-homologous end joining DNA repair. McFadden MJ, Lee WK, Brennan JD, Junop MS. Proteins 82 187-194 (2014)
  90. A recessive variant of XRCC4 predisposes to non- BRCA1/2 breast cancer in chinese women and impairs the DNA damage response via dysregulated nuclear localization. He M, Hu X, Chen L, Cao AY, Yu KD, Shi TY, Kuang XY, Shi WB, Ling H, Li S, Qiao F, Yao L, Wei Q, Di GH, Shao ZM. Oncotarget 5 12218-12232 (2014)
  91. DNA-PKcs, Allostery, and DNA Double-Strand Break Repair: Defining the Structure and Setting the Stage. Chirgadze DY, Ascher DB, Blundell TL, Sibanda BL. Methods Enzymol 592 145-157 (2017)
  92. Evidence for a structural relationship between BRCT domains and the helicase domains of the replication initiators encoded by the Polyomaviridae and Papillomaviridae families of DNA tumor viruses. Kumar A, Joo WS, Meinke G, Moine S, Naumova EN, Bullock PA. J Virol 82 8849-8862 (2008)
  93. Thermal and chemical denaturation of the BRCT functional module of human 53BP1. Thanassoulas A, Nomikos M, Theodoridou M, Stavros P, Mastellos D, Nounesis G. Int J Biol Macromol 49 297-304 (2011)
  94. Yeast pericentrin/Spc110 contains multiple domains required for tethering the γ-tubulin complex to the centrosome. Alonso A, Fabritius A, Ozzello C, Andreas M, Klenchin D, Rayment I, Winey M. Mol Biol Cell 31 1437-1452 (2020)
  95. Functional analysis of XRCC4 mutations in reported microcephaly and growth defect patients in terms of radiosensitivity. Asa ADDC, Wanotayan R, Sharma MK, Tsukada K, Shimada M, Matsumoto Y. J Radiat Res 62 380-389 (2021)
  96. The flexible and iterative steps within the NHEJ pathway. Watanabe G, Lieber MR. Prog Biophys Mol Biol 180-181 105-119 (2023)
  97. Modifying the function of DNA repair nanomachines for therapeutic benefit. Dynan WS, Takeda Y, Li S. Nanomedicine 2 74-81 (2006)